		02 1(111	• •
Seat		Set	D
No.		Jet	
M.Sc	:. (Semester - I) (New) (NEP CBCS) Examination: March/April-20	24

			PHYSICS (MATERIA Mathematical Physi		•	
•			riday, 10-05-2024 M To 05:30 PM		Max. Marks	: 60
Instr	uctio		1) All questions are compulsory. 2) Figures to the right indicate full (mar	ks.	
Q.1	A)	1)	a) Real	b)	Imaginary	08
		2)	A square matrix A is idempotent in a) $A^1 = A$ c) $A^2 = A$	f b) d)	$A^1 = -A$ None of these	
		3)	The system $x + \alpha y = 0$, $y + \alpha z =$ solutions when a) $\alpha = 1$ c) $\alpha = 0$	b)	$+ \alpha x = 0$ has infinitely many $\alpha = -1$ no real value of α	
		4)	The value of $\int_{-\pi}^{\pi} \cos(mx) \sin(nx)$ a) 1 c) 0	າx) ຜ b) d)	$dx = \underline{\qquad}.$ $a - 1$ π	
		5)	The independent solution of the decay $\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 12y = 0$ are a) e^{3x} and e^{4x} c) $\frac{1}{x^3}$ and x^4	b)	ential equation: $e^{3x} \text{ and } e^{-4x}$ $\sin(3x) \text{ and } \cos(4x)$	
		6)	If $\arg(z) < 0$, then $\arg(-z) - \arg(z)$ a) π c) $-\frac{\pi}{2}$		$-\pi$	
		7)	In complex variable theory $\int_c f(z)$ the contour c from z_0 to z' a) contour integral c) Contour	/dz b) d)	Residue	
		8)	Laplace transform of $f(t)$ is define a) $+ve$ value of t c) both $+ve$ & $-ve$ value of t	ed fo	or _ve value of t	

		SLR-HN	-1
B)	Fill 1)	in the blanks OR write true/false. If $f(s)$ is a Laplace transform then $\lim_{s\to\infty} f(s) = 0$.	04
	2) 3)	Fourier transform is a linear operator. The associative law of multiplication is valid for the matrix product $A(BC) = (AB)C$.	
	4)	A square matrix is called orthogonal if $A = A^{-1}$.	
Ans a) b)	Def	the following. (Any Six) ine singular point, explain in details its types with example. If the pole of $f(z) = \frac{\sin(z-a)}{(z-a)4}$	12
c)	If A	is an orthogonal matrix, then show that $ A = 1$.	
d) e)		ermine the pole and residue at each pole of the function $f(z) = \cot Z$. $e^{\frac{d^2y}{dx^2}} - 6\frac{dy}{dx} + 9y = 0$	
f)		by that the transpose of on orthogonal matrix is also orthogonal.	
g)		If the inverse Laplace transform from of $tan^{-1}\frac{1}{s}$	
h)	$y \log$	$\log y dx + (x - \log y) dy = 0$	
Ans a) b) c) d)	If λ eige Sho Solv	the following. (Any Three) be an eigen value of matrix A (non-zero matrix) show that λ^{-1} is an en value of A^{-1} . by that the eigen value of Hermitian matrix are real. We $ye^ydx=(y^3+2xe^y)dy$. the and prove the Parseval's Theorem.	12
Ans	wer	the following. (Any Two)	12
a)	Eva	luate $\int_0^\infty \frac{\cos 3\theta}{5+4\cos \theta} d\theta$	
b)		ve that $(AB)^n = A^n \cdot B^n$ if $A \cdot B = B \cdot A$.	
c)		we the differential equation. $g y dx + (x - \log y)dy = 0$	
Ans	wer	the following. (Any Two)	12
a)	Veri	fy that $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$ is orthogonal.	
b)		luate the following integral using residue Theorem.	
	$\int_{C} \frac{1}{z(z)}$	$\frac{+z}{(z-2)}dz$ where c is circle $ z =1$	

c) Find the eigen value of a matrix $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Q.2

Q.3

Q.4

Q.5

Seat No.		Set	Р	
M.Sc	c. (Semester - I)	(New) (NEP CBCS) Examination: March/April-202	24	_

M.Sc. (Semester - I) (New) (NEP CBCS) Examination: March/April-2024 PHYSICS (MATERIALS SCIENCE) Solid State Physics (2321102)

			Solid State Physics (2321102)						
•			onday, 13-05-2024 Max. Mark II To 05:30 PM	(s: 60					
Instr	uctio) All questions are compulsory. 2) The figure to right indicate full marks.						
Q.1	A)	Cho 1)	which of the following is a property of a superconductor? a) Perfect diamagnetism b) High electrical resistance c) Low electrical conductivity d) non-zero resistivity	80					
		2)	 What happens to the free electrons when an electric field is applied a) They move randomly and collide with each other b) They move in the direction of the field c) They remain stable d) They move in the direction opposite to that of the field 						
		3)	Dielectrics which show spontaneous polarization are called as a) Pyroelectric b) Piezoelectric c) Ferroelectric d) Centrosymmetric						
		4)	According to Curie-Wiess's law a) $\chi = C/(T-\theta)$ b) $\chi = C/(T+\theta)$ c) $\chi = C/(\theta-T)$ d) $\chi = C/T\theta$						
		5)	The magnetic lines of force cannot penetrate the body of a superconductor, a phenomenon known as a) Isotopic effect b) BCS theory c) Meissner's effect d) London theory						
		6)	In which of the following the magnetic moments align themselves parallel to each other? a) Paramagnetic material b) Ferromagnetic material c) Ferrimagnetic material d) Diamagnetic material						
		7)	The amount of energy required to raise the substance of 1 kg by 1°C is called a) specific entropy b) specific heat capacity c) sensible heat d) latent heat						
		8)	Polarization that possess positive and negative ions when an electric field is not applied is termed as a) Electrical b) Magnetic c) lonic d) orientation						
	B)	Fill (1) (2) (3) (4)	in the blanks OR write true / false. The fermi energy level for extrinsic 'n' type semiconductors lies The temperature at which the conductivity of a material becomes infinite is called Weber is the unit of magnetic flux. In a good conductor, the energy gap between the conduction band and the balance band is wide.	04					

Q.2	Ans a) b) c) d) e) f) g) h)	What is heat capacity? Define diamagnetic materials. Write a short note on the Bloch wall. Define Neel temperature. What is the isotope effect? What is ionic polarization? State the concept of ferroelectricity. State Curie-Wiess's law?	12
Q.3	Ans a) b) c) d)	wer the following (Any Three) Write a note on BCS theory. Difference between diamagnetic and paramagnetic. Explain in Brillouin zones in 2-D. Write a note on the orientation polarization.	12
Q.4	Ans a) b) c)	swer the following (Any Two) Explain the Clausius - Mossotti equation. Explain the motion of electrons in 1-D. Explain Meissner's effect.	12
Q.5	Ans a) b) c)	ewer the following (Any Two) Explain the Kronig-Penny model. Write a note on London penetration depth. Explain Weiss's theory in detail.	12

Seat	Sat	D
No.	Set	

M.Sc. (Semester - I) (New) (NEP CBCS) Examination: March/April-2024

			Analog and Digital Electronics (2321106)	
-			/ednesday, 15-05-2024 Max. Mai M To 05:30 PM	rks: 60
Instr	uctio		1) All Questions are compulsory. 2) Figure to right indicate full marks.	
Q.1	A)	Cho 1)	The basic SR flip-flop can be constructed by cross coupling by using which of the gates a) AND or OR gate b) XOR or XNOR gate c) NOR or NAND gate d) AND or NOR gate	08
		2)	In JK flip-flop "no change" condition appear when a) J = 1, K = 1	
		3)	Which is the 16-bit register for 8085 microprocessors a) Stack pointer b) Accumulator c) Register B d) Register C	
		4)	The feedback path in an op-amp integrator consists of a) A resistor b) A capacitor c) A resistor and capacitor in series d) A resistor and capacitor in parallel	
		5)	Multiplexure has a) Many Input and one output b) One input many output c) Many Input and many out put d) One input and one output	
		6)	The op-amp comparator circuit uses a) Positive feedback b) Negative feedback c) Regenerative feedback d) No feedback	
		7)	Op- amp is a type of amplifier. a) Current b) Voltage c) Power d) Resistance	
		8)	An XOR gate can be used for a) Inverter and non-inverter b) Only inverter c) Only non-inverter d) None of the above	
	B)	1)	in the blanks OR Write True /False. In an instrumentation amplifier, the output voltage is based on the times a scale Factor.	04
		2) 3) 4)	The output voltage of a voltage buffer is with the input voltage. The voltage gain of a voltage buffer is The data in stack is called	

Q.2	a) b) c) d) e) f)	List the allowed register pairs of 8085. Define CMRR frequency response. What is microprocessor? Give the power supply & clock frequency of 8085. Draw AND gate with truth table. Define Input offset voltage. Define Multiplexer. State the principle of phase shift oscillator. Define Voltage follower.	12
Q.3	a) b) c)	Explain Multiplexers and Demultiplexers. Explain Inverting and Non inverting amplifier. Write a note on Demorgan's Theorem. Write in details of Integrator and Differentiator.	12
Q.4	a) b)	Draw and explain Integrator using 741 Op Amp. What is multivibrator? Explain the difference between the three types of multivibrators. Draw and explain 8:1 Multiplexers.	12
Q.5	a)	wer the following. (Any Two) Draw and explain memory write cycle of 8085 microprocessor. Explain in details of instrumentation amplifier. Define Oscillators? Explain their types.	12

Seat	Sat	D
No.	Set	

M.Sc. (Semester - I) (New) (NEP CBCS) Examination: March/April-2024 PHYSICS (MATERIALS SCIENCE) Research Methodology in Physics (2321105)

			R	esearch Methodo	ology in	Pł	nysics (2321105)	
•			•	, 17-05-2024 05:30 PM			Max. M	larks: 60
Insti	ructi		•	l questions are comp gure to right indicate	-	•		
Q.1	A)	Cho 1)	Res a) b) c)	the correct alternate earch is Searching again are Finding solution to Working in a scient None of above	nd again any proble	m	e options. earch for truth of any problem	08
		2)	a)	ctronic interview can Telephonic Personal	b)	d by Fax All of the above	
		3)	a)	OC sputtering, Negative No	b)	ed to the target material. Positive All of the above	
		4)	a)	eam evaporation trai Non-uniform Impure	b))	and precise metal coatings. Pure All of the above	
		5)	tech a)	alitative methods are nniques, the method Questionnaire Depth Interview	of Qualitat b	ive)	oldest of all the scientific e research is Attitude Scales Observation	
		6)	a)	istive thermal depos boiling melting	b))	osit materials with low decimal None of the above	points.
		7)	The a) c)	most common scale Nominal Ordinal	es used in i b d)	search are Ratio All of the above	
		8)	HR ⁻ a) c)	TEM provides medium resolution low resolution		•	poor resolution high resolution	

	B)	 Fill in the blanks OR Write True or False: 1) In sputtering, magnets behind cathode trap electrons. 2) In PLD, kinetic energies of ablated particles are high enough to promote surface diffusion. (True/False) 3) sampling is a probability sampling method. 4) Hypothesis must be conceptually clear. (True/False) 	04
Q.2	Ans a) b) c) d) e) f) g) h)	State the physical conditions of lon beam sputtering. What is the necessity of defining the research problem? Write the significance of HRTEM over SEM and TEM techniques. What is empirical research method? State the parameters affecting the deposition by chemical bath method. State the various tools for data analysis. Draw the neat labeled diagram of electrodeposition method. What are secondary sources of literature review?	12
Q.3	Ans a) b) c) d)	wer the following. (Any Three) Write a note on Applied Vs. Fundamental research methods. Draw the neat labeled diagram of HRTEM instrument. Write a note on Patents. Write in brief about Sol-gel technique.	12
Q.4	Ans a) b) c)	swer the following. (Any Two) Elaborate the mechanism of Magnetron Sputtering. Explain steps/process in scientific Research. Write in detail about the construction and working of SEM.	12
Q.5	Ans a) b) c)	swer the following. (Any Two) What is sampling? Explain essentials of good Sampling? Explain the construction and working of Fourier Transform Infrared Spectroscopy. What is Research Methodology? What are the requisites for Good Scientific Research?	12

Sea No.		Set	Р
	M.Co. (Compositor	I) (Old) (ODOO) Exemination, Manab/Annil 0004	

M.Sc. (Semester - I) (Old) (CBCS) Examination: March/April-2024 PHYSICS (MATERIALS SCIENCE) Mathematical Physics (MSC03101)

			Mathematical Physi	cs (MSC03101)	
•			day, 10-05-2024 To 06:00 PM		Max. Marks: 80
Instr	uctio	2) Q. 1) and 2) are compulsory.) Attempt any three from Q. No. 3) Figure to right indicate full marks		
Q.1	A)	Cho 1)	ose the correct alternative. Legendre polynomial is a set of a) orthogonal c) even	function. b) odd d) real	10
		2)	What are the eigen value of $\begin{pmatrix} 1 \\ i \end{pmatrix}$ a) Both are 0 c) 0 and -1	$\binom{-i}{1}$? b) 0 and 1 d) 0 and 2	
		3)	The eigen value of matrix $A=\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ a) $e^{\pm i\theta}$ c) $e^{\pm 3i\theta}$,	·
		4)	If $ z^2 - 1 = z ^2 + 1$ then z lies of a) The real axis c) a circle	on b) The imaginary a d) on ellipse	axis
		5)	If $f(z) = e^{2z}$ then the imaginary a) $e^{y} \sin x$ c) $e^{2x} \cos 2y$	part of $f(z)$ is b) $e^x \cos y$ d) $e^{2x} \sin 2y$	
		6)	If two eigen value of $\begin{bmatrix} 6 & -2 \\ -2 & 3 \\ 2 & -1 \end{bmatrix}$ is a) 2 c) 7	$\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$ are 2,2 then the third b) 3 d) 8	l eigen value
		7)	Let $u(x,y) = x + \frac{1}{2}(x^2 - y^2)$ be to complex variable, $z = x + iy$. Then a) $y + xy$ c) y		
		8)	If c is the contour defined by $ z $ $a) \infty$	$=\frac{1}{2}$ the value of the integ	$\operatorname{ral} \oint_{\mathcal{C}} \frac{dz}{\sin^2 z} \operatorname{is}$
			α 0	d) mi	

Which of the following is on "even" function of t?

b) $t^3 + 6$

Not defined

d)

9)

a) $t^2 - 4t$

c) t^2

10) A unitary matrix is defined by the expression a) U = UT: where superscript T means transpose b) $U = U^t$ c) $U = U^*$ d) $U' = U^+$ Fill in the blanks/ True or false.

B)

06

- A square matrix is called orthogonal if $A = A^{-1}$ (T/F)
- 2) Fourier transforms is a linear operator (T/F)
- If a function f(z) is continuous & non zero at a point z_o , then $f(z) \neq 0$, 3) throughout some neighborhood of that point (T/F)
- 4) The Fourier transform operator is unitary. (T/F)
- In a matrix using g elements then the possible ordered pair are (3,3), (1,9), (9,1) (T/F)
- The first order ODE can never be linear separable and exact at the 6) same time (T/F)

Q.2 Answer the following.

16

- Find the Laplace transform of $(1 + \sin 2t)$
- Derive an expression for 2^{nd} order homogeneous equation with consent
- If A and B are two orthogonal matrices show that AB is also orthogonal matrix.
- Find the residue of $\frac{1}{(z^2+1)^3}$ at z=i

Answer the following. Q.3

16

- Show that the eigen value of Hermitian matrix are real.
- Write matrix A gives below as the sum of symmetric and a skew symmetric

matrix
$$A = \begin{pmatrix} 1 & 2 & 4 \\ -2 & 5 & 3 \\ -1 & 6 & 3 \end{pmatrix}$$

Q.4 Answer the following.

16

Determine whether the following equation is exact and find its solution if it is

$$(4x^3 + 6xy + y^2)\frac{dx}{dy} = -(3x^2 + 2xy + 2)$$

Explain the details of Parseval Theorem.

Answer the following

16

- If $A = \frac{1}{9} \begin{bmatrix} -8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4 \end{bmatrix}$ prove that $A^{-1} = A^1, A^1$ being the transpose of A.
- b) In square wave expand the Function

$$f(x) = 0; -\pi \le x \le 0$$

 $f(x) = 4; -0 \le x \le \pi$ Fourier

Q.6 Answer the following.

16

- a) Find the residue of $\frac{1}{(z^2+1)^3}$ at z=i
- **b)** Solve $x \frac{dy}{dx} + y \log y = xy e^x$

- Q.7 Answer the following.
 - a) Find the eigen value of a matrix $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
 - **b)** Solve $\frac{dy}{dx} \frac{\tan y}{1-x} = (1+x)e^x \sec y$.

	_	
Seat	Set	D
No.	Set	F

M.Sc. (Semester - I) (Old) (CBCS) Examination: March/April-2024

				PHYSICS (M Solid State			•		
-				13-05-2024 6:00 PM				Max.	Marks: 80
Instr	uctio	2) Atten	os. 1 and. 2 are co npt any three ques re to right indicate t	tions from Q.	No.	3 to Q. No. 7		
Q.1	A)	Cho 1)		ne correct alternate case of a superconduction Zero Infinite		c co b) d)	nductance become Finite None of the abov		10 ·
		2)	Induc a) c)	ced electric dipole i E E ³	moment is dir	ectly b) d)	proportional to E ² E ^{1/2}	·	
		3)	Numl a) c)	ber of tetrad axis ir 2 4	n simple cubic	sys b) d)	tem are 3 8		
		4)		ording to mass action entration is equal to Square 1/3	•				
		5)	Milleı a) c)	r indices of crystal (3,3,6) (2,1,6)	plane which ii		cepts at (2a, 3b, c) (1,2,3) (3,2,1)	are _	·
		6)	a) c)	_ metals are gene Divalent Trivalent	rally not supe	rcon b) d)	ductors. Monovalent A and b		
		7)	Recip a) c)	procal lattice vecto K'-K K'+ K	r G =	b) d)	K - K' (K'+K) ²		
		8)	The ea)	electronic polarizat $4\piarepsilon_0 \ 4\piarepsilon_0 R^3$	oility $lpha e$ of a m	nono b) d)	atomic gas is $4\pi arepsilon_0 R \ 4\pi arepsilon_0^2$	<u>_</u> .	
		9)	The ea)	effective mass of lo (d²E/dK) (d²E/d²K)-²	ocalized electr	ons b) d)	depends on (dE/dK) (d ² E/dK ²) ⁻¹	_·	
		10)	The (a)	coordination numbe Two Six	er of HCP is _	b)	 Four Twelve		

	B)	Fill in the blanks OR Write True or False.	06
		1) The coordination number of the body-centered cubic crystal structure	
		is 2) At temperature materials show transition from normal to	
		superconducting state. 3) Induced electric dipole moment is inversely proportional to electric field E. (T/F)	
		4) Crystalline solids are anisotropic. (T/F)	
		5) The relation between electronic polarizability and induced electric	
		dipole moment is given by $\mu e = \alpha e \cdot E$. (T/F) 6) Brillouin zones are represented on the EK curve. (T/F)	
Q.2		wer the following (Any Four)	16
	a) b)	Define packing fraction. Concept of Cooper pair	
		What is electronic polarization?	
	d)	What is penetration depth?	
	e)	Calculate the electronic polarization of isolated Se atom of atomic radius 0.18nm. Given $\varepsilon_0 = 8.854 \times 10^{-12} F/m$	
Q.3		wer the following.	
	a) b)	Discuss the Meissner effect in detail. Distinguish direct and indirect band gap semiconductors.	10 06
Q.4	Ans	wer the following.	
	a)	Give the expression for interplanar spacing (d).	10
	b)	For simple cubic structure, calculate the number of atoms per square mm for the atomic planes (010), (110) and (111).	06
Q.5		wer the following.	
	a) b)	Explain the Kronig-Penney model. Write about lonic polarization.	80 80
Q.6	Ans	wer the following.	
	a)	Give the expression for the concentration of electrons in the conduction band of Intrinsic semiconductors.	10
	b)	Explain the concept of Brillouin zones.	06
Q.7		wer the following.	
	a) b)	Explain BCC and FCC Crystal structures. Explain the defects in solids.	10 06

Seat	Sat	D
No.	Set	

M.Sc. (Semester - I) (Old) (CBCS) Examination: March/April-2024

		Α	PHYSICS (MATERIA nalog and Digital Elect		-	
Day & Date Time: 03:00			day, 15-05-2024 6:00 PM			Max. Marks: 80
Instructior	2)	Atte	os.1 and 2 are compulsory. mpt any three questions from re to right indicate full marks.		to Q.7.	
Q.1 A)		The a) b)	orrect alternative. (MCQ) feedback path in an op-amp A resistor A capacitor A resistor and capacitor in s A resistor and capacitor in p	eries		_·
	,	a)	iplexer has Many input and one output One input many output Many input and many out pu One input and one output	ıt		
		Op-a a) c)	amp is a type of amp Current Power	b)	Voltage Resistance	
	4)	The a) b) c) d)	Negative feedback	ses _	<u></u> .	
	•		the output of inverting amplit $V_o = AV_{in}$ $V_o = -A(V_{in1}-V_{in2})$		$V_o = -AV_{in}$ None of the mention	ed
	,		at happen if any positive input iguration? Output reaches saturation le Output voltage swing's peak Output will be a sine wavefo Output will be a non-sinusoi	evel to porm	eak	оор
	7)	In 80 a) c)	085 Microprocessor, how ma Two Four	ny int b) d)	errupts are maskable Three Five	·
	8)	In ho a) c)	ow many different modes a u 2 4	nivers b) d)	sal shift register opera 3 5	ites

		9)	Circ a) c)	uit which consist of a quas Bistable circuit tri stable circuits	b)	state is called monostable circuit tristate circuit		
		10)	The a) c)	output pulse width of mul resistor both a & b are correct	b)	can be adjusted through capacitor none is correct		
	B)	Fill in 1) 2) 3) 4) 5)	The The one	bit program counter is a voltage gain of a voltage output of free-running mu state to another. (True / F	al source available buffer is iltivibrato		06 Ilse)	
Q.2	Ans a) b) c) d)	Write List th Expla	a no ne So in RS	lowing. te on Demorgan's Theore oftware and Hardware inte S and JK Flip-flop. O gate and OR gate with tr	rrupts of		16	
Q.3	Ans a) b)	Expla	in the	lowing. e operation of three op-amultiple		mentation amplifier.	10 06	
Q.4	Ans a) b)	·						
Q.5	Ans a) b)	Expla	in in	lowing. details of instrumentation ferentiator? Explain briefly	•	r.	10 06	
Q.6	Ans a) b)	What Multiv	is Mu ibrat	•		between the three types of	10 06	
Q.7	Ans a) b)	Draw Expla	and in inv	lowing. explain 8:1 Multiplexers. verting configuration of Op Amplifiers.	amp as	s Summing, Scaling and	10 06	

Seat	Sat	D
No.	Set	

	M.S	ic. (S	seme	ster - I) (OId) (CE PHYSICS (MA Classical Med	TERIAL	S S		2024
•				7-05-2024 6:00 PM			Max	. Marks: 80
Instr	uctio	2) Atte	os. 1 and. 2 are com mpt any three questic re to right indicate fu	ons from C). No	o. 3 to Q. No. 7	
Q.1	A)	Cho (1)	A pa axis a) b) c)	is said to possess linear momentum ar angular acceleration	 nd angular ı	mor	along a straight path par mentum about given origi ular momentum about giv	n
		2)	cons a) b) c)	alilean transformation ideration is treated a absolute relative some times absolute variant	s			
	3)	then a) b) c)	e condition of the con it is known as Holonomic, Rheono Holonomic, Scaleror Non-holonomic, Rhe Non-holonomic, Sca	.· mous cons nomous co eonomous	strair onstr	aint straint	(x) = 0	
	4)	is dir	er Kepler's third law of ectly proportional to semi-minor axis diameter of a orbit	cube of a b) s	otion, square of a time pe emi-major axis verage diameter of a orbi		
		5)		Rutherford scattering $re \ heta$ is the scattering		tion	$\sigma(\theta)$ varies with _	
		6)	c) Actio	directly, $cosec^4(\frac{\theta}{2})$ directly, $cosec^2(\frac{\theta}{2})$ on is the integral produced moment generalized moment generalized moment none of these	d) luct of tum and ve tum and fo) in eloci erce		

	7)	a) b) c)	[[p,q],r] + [[p,r],c] [[q,q],r] + [[p,r],c] [[p,q],r] + [[p,r],c]	$egin{aligned} egin{aligned} q &+ ig[[q,r],p ig] \ q &+ ig[[q,r],p ig] \ q &+ ig[[r,q],p ig] \end{aligned}$	= = =	0 0 0	
	8)	a)	$H = p_i q' i - L$	b)	i	$H = p_i \overline{q'i + L}$	
	9)	a) b) c)	difference in kinetic addition of kinetic power	c and potenti and potential	al	energy	
	10)	a)	3N		2	2N	
B)	Fill	in the	blanks or write tr	ue /false.			06
,		The t	transformation is ca		η-P	PdQ ia an exact differential.	
	2)	`	,) is the gener	rali	ized co-ordinate. (True/False)	
	3)			nation the ine	ertia	al mass remains invariant.	
	4)			nction of			
	5) 6)					the degrees of freedom	
a) b)	Expla Chec Write State	iin in o k whe a not Hami	detail about the con ether the transforma te on Poisson brack ilton's variational pr	straints and t ition defined a ets and their	as pro	Q=1/p, P=qp ² is canonical or not. operties.	16
Ans a) b)	Prove Expla i) S	e the I iin Symm	aws of linear and a etries and laws of c		ntu	um for a system of particles.	08 08
Ans a) b)	What What	are g are th	generalized co-ordin he Kepler's laws of	•		·	08 08
_				iaal aa4!.		.f. was the company of a decrease the comp	00
a)				ical equations	3 O	of motion and deduce them	80
b)	Apply	the F	Hamilton's equation		e e	equations of motion for simple	80
	a) b) c) d) Ans a) b) Ans a)	9) 10) B) Fill 1) 2) 3) 4) 5) 6) Answer t a) Explai b) Chec c) Write d) State motion Answer t a) Prove b) Explai i) S ii) J Answer t a) What keple Answer t a) Expres from b) Apply	a) b) c) d) 8) Cho a) c) 9) The a) b) c) d) 10) The a) c) B) Fill in the 1) The (True 2) In a s 3) Unde (True 4) Ham 5) Keple 6) A rig Answer the fo a) Explain in a b) Check whe c) Write a not d) State Ham motion from Answer the fo a) Prove the l b) Explain i) Symm ii) Jacobi Answer the fo a) What are g b) Apply the leads	 a) [[p,q],r] + [[p,r], α b) [[q,q],r] + [[p,r], α c) [[p,q],r] + [[p,r], α d) [[p,q],r] + [[r,p], α d) [[p,q],r] + [[r,p], α e) Choose the correct equal a) H = piqi i - L e) H = piqi i - L g) The Lagrangian of the sandifference in kinetic b) addition of kinetic c) power d) rate of change of α 10) The phase space is	 a) [[p,q],r] + [[p,r],q] + [[q,r],p] b) [[q,q],r] + [[p,r],q] + [[q,r],p] c) [[p,q],r] + [[p,r],q] + [[q,r],p] d) [[p,q],r] + [[r,p],q] + [[q,r],p] d) [[p,q],r] + [[r,p],q] + [[q,r],p] 8) Choose the correct equation for Han a) H = p_iq' i - L b) Check be correct equation of Han a) H = piqi + L d) 9) The Lagrangian of the system gives a) difference in kinetic and potential c) power d) rate of change of energy 10) The phase space is dimensio a) 3N b) c) N d) B) Fill in the blanks or write true /false. 1) The transformation is canonical if pdo (True/False) 2) In a simple pendulum (θ) is the general correction of 3) Under Galilean transformation the inequal correction of 5) Kepler's second law tells about 6) A rigid body moving freely in space heads and their correction of 5) Kepler's second law tells about 6) A rigid body moving freely in space heads and their correction of d) State Hamilton's variational principle and demotion from it Answer the following. a) Prove the laws of linear and angular mome bear prove the laws of linear and angular mome bear prove the laws of linear and angular mome bear prove the laws of linear and angular mome bear prove the following. a) What are generalized co-ordinates? Express by What are the Kepler's laws of planetary mon Kepler's first law. Answer the following. a) Express the Hamilton's canonical equations from variational principle. 	 a) [[p,q],r] + [[p,r],q] + [[q,r],p] = b) [[q,q],r] + [[p,r],q] + [[q,r],p] = c) [[p,q],r] + [[p,r],q] + [[q,r],p] = d) [[p,q],r] + [[r,p],q] + [[q,r],p] = d) [[p,q],r] + [[r,p],q] + [[q,r],p] = 8) Choose the correct equation for Hamiltan Hamilt	 a) [[p,q],r] + [[p,r],q] + [[q,r],p] = 0 b) [[q,q],r] + [[p,r],q] + [[q,r],p] = 0 c) [[p,q],r] + [[p,r],q] + [[q,r],p] = 0 d) [[p,q],r] + [[r,p],q] + [[q,r],p] = 0 8) Choose the correct equation for Hamiltonian

Q.6	An	Answer the following.										
	a)	What is canonical transformation? Discuss the exact differential condition to show that the transformation is to be canonical.	30									
	b)	Write about invariance under Galileon Transformation.	80									
Q.7	Answer the following.											
	a)		80									
		ii) Show that the shortest distance between two points is a straight line. Explain and prove the principle of least action.	08									

		SLR-HN	1-11
Seat No.		Set	Р
M.Sc	. (Sem	ester - II) (New) (NEP CBCS) Examination: March/April-2 PHYSICS (MATERIALS SCIENCE) Quantum Mechanics (2321201)	2024
Time:	11:00 A ctions:	hursday, 09-05-2024 Max. Marl M To 01:30 PM 1) All Question are compulsory. 2) Figure to right indicate full marks. 3) Draw neat labelled diagrams wherever necessary.	(s: 60
Q.1 A	1)	A column vectors c) square matrices b) column vectors c) square matrices d) both row and column vectors	80
	2)	For commutativity of, $ \alpha\rangle$ and $ \beta\rangle$, $ \alpha\rangle + \beta\rangle =$ a) $ \alpha\rangle - \beta\rangle$ b) $ \alpha\rangle/ \beta\rangle$ c) $ \alpha\rangle * \beta\rangle$ d) $ \beta\rangle + \alpha\rangle$	
	3)	The product of a scalar with a vector gives a) another vector b) scalar c) pseudo scalar d) null vector	
	4)	The uncertainty relation cannot hold for the following pairs a) position and momentum b) energy and time c) linear momentum and angle d) angular momentum and angle	
	5)	The minimum energy of particle confined to one dimensional rigid box is obtained by substituting n equal to a) one b) zero c) half d) two	
	6)	The Momentum operator is given by a) $\frac{\hbar}{i} \frac{d^2}{dx^2}$ b) $\frac{\hbar}{i} \frac{d}{dx}$. c) $i\hbar \frac{d}{dx}$ d) $-i\hbar \frac{d}{dt}$	
	7)	In operator equation $H\psi=E\psi$ the eigen function is a) H b) ψ c) E d) $H \& E$	
	8)	Which of the following is adjoint of matrix $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$? a) $\begin{bmatrix} -2 & 3 \\ -1 & 4 \end{bmatrix}$ b) $\begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$ c) $\begin{bmatrix} -2 & 3 \\ 1 & -4 \end{bmatrix}$ d) $\begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}$	

	B)		the blanks OR Write True/False. If Ψ_a and Ψ_b are orthogonal to each other, then $\langle \Psi_a \Psi_b \rangle =$	04
		2) _T	The operator $\frac{\partial^2}{\partial x^2}$ has the eigen value corresponding to an eigen	
			unction $\psi = \sin \alpha x$ as	
		3) 7	The value of $\left[L_{\mathcal{Y}},L_{z}\right]=$	
		•	Hermitian operators are represented by matrices that are equal to heir	
Q.2	a) b)	Define What i	e following. (Any Six) e is a linear vector space. is Schwartz Inequality?	12
	c)	Comp	ute eigen values of the square matrix, $A = \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$	
	d) e) f)	Write l	is a Wave function (ψ) ? boundary conditions for infinite potential well. is a harmonic oscillator?	
	g)	Comp	ute ψ^{\dagger} . ψ ; if $\psi^{\dagger}=[c_{lpha}^*\ c_{eta}^*]$ and $\psi=\left[egin{array}{c}c_{lpha}\c_{eta}\end{array} ight]$	
	h)		is Spinor or spin matrix?	
Q.3	Ans a) b) c) d)	Discus Give p Prove	e following. (Any Three) as operator algebra. The shysical interpretation of wave function. That $[L^2, L_z] = 0$ a note on Pauli Spin matrices.	12
Q.4	Ans a) b) c)	Derive Discus	e following. (Any Two) e time dependent Schrödinger's wave equation. ess motion of a particle in square well potential. ibe Algebra of Spin angular momenta.	12
Q.5	Ans a) b) c)	Descri State	e following. (Any Two) ibe Paul Dirac's bra-ket notations. and prove Ehrenfest's theorem. as Clebich Gordon Coefficient.	12

Seat No.		Set	P				
M.Sc.	. (Sen	ester - II) (New) (NEP CBCS) Examination: March/April-202 PHYSICS (MATERIALS SCIENCE) Electrodynamics (2321202)	4				
•	Day & Date: Saturday, 11-05-2024 Max. Marks: 60 ime: 11:00 AM To 01:30 PM						
Instruc		All Questions are compulsory. Figures to the right indicate full marks.					
Q.1 A)) Ch (Stationary charges produce only field. a) Electrostatic b) Magnetostatic b) Both d) None of these	80				
	2)	When wave gets reflected from the surface of denser medium there is a phase change of a) 0° b) 90° c) 180° d) 270°					
	3)	The total power radiated by an oscillating dipole is to the of frequency. a) Proportional, fourth b) Inversely proportional, fourth c) Inversely proportional, third d) proportional, third					
	4)	n an electromagnetic wave, the direction of magnetic field induction \vec{B} is a) parallel to electric field \vec{E} b) perpendicular to electric field \vec{E} c) random d) None of the above					
	5)	The Poynting's vector S of an electromagnetic wave is a) $\vec{S} = \vec{E} \times \vec{H}$ b) $\vec{S} = \vec{E} \times \vec{B}$ c) $\vec{S} = \vec{E}/\vec{B}$ d) $\vec{S} = \vec{E}/\vec{H}$					
	6)	The sum of coefficient of reflection and transmission in absorption ree case is a) 1					

		7)	Poynting's vector S gives a) Energy transported per unit area per second b) Energy stored per unit volume c) Flux of fields d) Electromagnetic Momentum contained per unit volume	
		8)	Which of the Maxwell's following equations is corrected based on equation of continuity a) $\nabla . \vec{E} = \rho/\epsilon_0$ b) $\nabla . \vec{B} = 0$ c) $\nabla \times \vec{E} = -\partial \vec{E}/\partial t$ d) $\nabla \times \vec{B} = \mu_0 J + \mu_0 \in_0 \partial \vec{E}/\partial t$	
	B)	Writ 1) 2) 3) 4)	ite True/False. In equipotential surface, potential is different everywhere. (True/ False) One of the Maxwell's equations (in free space) in differential form is as follows $\nabla . B = 0$ The direction of propagation of electromagnetic wave is $(\vec{E} \times \vec{B})$. (True/ False) The equation of continuity is $\nabla . \vec{J} - \frac{\partial \rho}{\partial t} = 0$. (True/False)	04
Q.2	Ans a) b) c) d) e) f)	Writ Stat Stat Wha Writ Defi Wha		
Q.3	Ans a) b) c) d)	Stat Writ Exp	the following. (Any Three) te and prove Gauss's law. te a note on Maxwell's displacement current. plain the concepts: Lorentz's and Coulomb's gauges. plain magnetic dipole radiation.	12
Q.4	Ans a) b) c)	Deri Deri Deri	the following. (Any Two) rive an expression for differential form of Ampere's law. rive an expression for magnetic interaction between two current loops. rive the expressions for reflection and refraction of electromagnetic wes at plane boundaries for normal incidence.	12
Q.5	Ans a) b) c)	Deri Deri	the following. (Any Two) rive Larmor's formula. rive an expression for differential form of Gauss's law. scribe electromagnetic plane waves in stationary medium.	2

Seat No.				Set	P
M.Sc	. (Se	mester - II) (New) (NEP CBCS) PHYSICS (MATERIA Classical Mechanic	LS S	SCIENCE)	124
-		Tuesday, 14-05-2024 AM To 01:30 PM		Max. Marks	s: 60
Instruc	tions	: 1) All Questions are compulsory.2) Figures to the right indicate full n	ıarks		
Q.1 A	1) C I	noose the correct alternatives from The gyroscopic forces are a) conservative c) pseudo		-	08
	2)	If the total force is zero, then a) angular momentum c) linear momentum			
	3)	The square of the period of revolution proportional to a) cube root of the semi major and the semi minor and the semi minor axis of the semi minor axis of the semi major axis	xis of xis of f the	the ellipse the ellipse ellipse	
	4)	a) $f = -k/r^2$ c) $f = k/r$	b) d)	$f = k/r^2$ $f = -k/r$	
	5)	If coordinates q_j in Lagrangian are a) 1 c) -1	e cyc b) d)		
	6)	The configuration space involves a) 2N dimensions c) 6N dimensions	b)	 3N dimensions 4N dimensions	
	7)	The Poisson's bracket, [q, q] = a) p c) 0	 b) d)	q Q	
	8)	The Kronecker delta, $\delta_{ik}=1$ for _a) $i=k$ c) not depends on i and k	b)	$_{i}$ $\neq k$ depends on i and k	

	В)	 The equations of constraints containing the time as an explicit variable are called rheonomous constraints. (True/ False) In δ variation, both position and time coordinates at the end points, are not fixed. (True/ False) The fundamental Poisson's brackets are invariant under canonical transformation. (True/ False) An angular momentum is conserved in the absence of external torque. (True/ False) 	U4
Q.2	Ans a) b) c) d) e) f) g)	What are the gyroscopic forces? Prove linear momentum is conserved for a particle. What are the degrees of freedom? What are the generalized coordinates? State Hamilton's principle and write its expression. What is configuration space? How many forms of generating function? Write it. Define Poisson's bracket and write its expression.	12
Q.3	Ans a) b) c) d)	State and prove work-energy theorem. Derive an expression for reduction of two body problem in to equivalent one body problem. Deduce Lagrange's equation of motion from Hamilton's principle. Explain any four properties of Poisson's brackets.	12
Q.4	Ans a) b) c)	Swer the following (Any Two) Derive the equation of motion for the system with variable mass. Explain general features of the orbit with effective potential energy curve. Deduce Euler-Lagrange's differential equation using variational technique.	12
Q.5	Ans a) b) c)	swer the following (Any Two) Derive an expression for Kepler's first law of planetary motion. Explain the principle of least action and prove it. Derive Hamilton's canonical equations of motion in terms of Poisson's bracke	12 ts.

Seat	
No.	

Set

t P

M.Sc. (Semester - II) (Old) (CBCS) Examination: March/April-2024 PHYSICS (MATERIALS SCIENCE) Quantum Mechanics (MSC03201)

Day & Date: Thursday, 09-05-2024

Max. Marks: 80

Time: 11:00 AM To 02:00 PM

Instructions: 1) Q. Nos. 1 and. 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7
- 3) Figure to right indicate full marks.

Q.1 A) Choose the correct alternative from the options.

10

- An electron, a neutron, an alpha particle and tennis ball are, moving at the same speed. Which one of them has the greatest de Broglie Wavelength?
 - a) Neutron

- b) Electron
- c) Tennis ball
- d) Alpha particle
- Consider an electron in a ring of constant potential energy. Let \mathcal{C} be the length of circumference of the ring. Since wave functions must be single valued, then $\psi(x) =$ ____.
 - a) $\psi\left(x+\frac{c}{4}\right)$

b) $\psi\left(x+\frac{c}{2}\right)$

c) $\psi(x+C)$

- d) $\psi\left(x+\frac{3c}{4}\right)$
- 3) Which of the following relation is true for wavelength of De Broglie waves?
 - a) $\lambda = \frac{h}{p}$

b) $\lambda = \frac{p}{h}$

c) $\lambda = \frac{1}{\sqrt{ph}}$

- d) $\lambda = \frac{p}{m}$
- 4) The number of electrons circulating about the positively charged nucleus in hydrogen like atom is _____.
 - a) negligible
 - b) equal to the number of protons in the nucleus
 - c) equal to mass number
 - d) one
- 5) The zero-point energy of a particle in 3-dimensional box is
 - a) equal to that for a one-dimensional box.
 - b) double that for a one-dimensional box.
 - c) three times that for a one-dimensional box.
 - d) nine times that for a one-dimensional box.
- 6) If electron 1 is placed at definite point in space, then the potential energy of electron 1 in the field of electron 2 is given by _____.

a)
$$V_1 = \int \frac{\phi_1^2(1)}{r_{12}} d\tau_1$$

b)
$$V_1 = \int \frac{\phi_1^2(1)}{r_{12}} d\tau_2$$

c)
$$V_1 = \int \frac{\phi_2^2(2)}{r_{12}} d\tau_1$$

d)
$$V_1 = \int \frac{\phi_2^2(2)}{r_{12}} d\tau_2$$

		7)	a) b) c)	oms having many can be ignored can be included has to be include none of the above	in the momen ed in the poter	tum o	perator			
		8)	The s a) c)	shell K, L, M, N, O, R $2n^2$ $2l + 1$	b)		(l + 1)	_ number	of electron	S.
		9)	Ψ(ф,	stem is in a state of Q) = $\frac{1}{\sqrt{45}}[2Y_3^1 + 4Y_3^2]$ probability of finding $\frac{4}{9}$ $\frac{41}{45}$	$Y_2^1 + 5Y_2^0$] whe	ere Y_1^n	ⁿ are sph			
		10)	The e a) c)	electrons in K she parallel no	,		iparallel pendicul	ar		
Q.2	B)	1) 2) 3) 4) 5) 6)	Free special The ST The ST Separation of the ST Sep	lowing.	easurable quar chanics. without any resease shape is not on modate ic and nuclear	etrictio d. obtain _ elec functi	en has a ned. etrons. on descr	ibes the _	nergy	16
	a) b) c)	where Explain The letter box is $(Give)$	e 0 < nin wa owest s 5 eV n: Pla 9.1 ×	function for a parti- $x < L$. Calculate the second particle has a kinetic energy of a calculate its energy of anck's constant, $h = 10^{-31} \mathrm{kg}$). The on shape of atomic second particles are shape of atomic second particles.	he value of notature of radiation an electron (E ergy in the section $= 6.626 \times 10^{-1}$	rmalizon. on. onder	zation con fined in c xcited sta	nstant A. one dimenate.	nsional	
Q.3	Ansa a) b)	Write heliur	a not n ator	lowing. e on helium atom. m. olecular orbital the	·	ssion	for grour	nd state e	nergy of	16
Q.4	Ans a) b)	State	and e	lowing. explain 'Heisenber e on hydrogen mo	-	/ princ	ciple.'			16
Q.5	Ans a) b)	State	and e	lowing. explain the postula ysical interpretatio	•					16

Q.6 Answer the following.

16

- Obtain Total wave function of hydrogen- like atom.
 Discuss wave function of many electron systems.

16

- Q.7 Answer the following.a) Write a note on Slater's rules.
 - Give the formulation of Valence-Bond method for the Hydrogen molecule. b)

Seat	Sat	D
No.	Set	F

M.Sc. (Semester - II) (Old) (CBCS) Examination: March/April-2024 PHYSICS (MATERIALS SCIENCE) Electrodynamics (MSC03202)

			Electrodynamics (MSC	C03202)	
_			aturday, 11-05-2024 M To 02:00 PM		Max. Marks	: 80
Instr	uctio	ons:	 Q. No. 1 and 2 are compulsory. Attempt any Three questions from the right indicate full in the right indicate full in the right indicate full in the right indicate. 			
Q.1	A)	Ch (1)	c) Potential gradient	oint ii b)	n an electric field is equal to	10 ·
		2)	In electromagnetic wave, the phamagnetic field vectors E and B is a) π c) $\pi/4$	ase d ——— b) d)	ifference between electric and $\frac{1}{\pi/2}$	
		3)	In the skin definition of skin depth amplitude reduces to a) Nearly one fifth c) One half	b)	distance over which field 1/e One fourth	
		4)	The law is and equation created by a current carrying w strength at various points. a) Ampere's c) Biot-Savart's	ire aı	_	
		5)	Which one of the fundamental eq form the basis of electromagnetic a) Faraday law c) Gauss law of electrostatic	theo b)	ry? Ampere law	
		6)	The Poynting vector P is equal to a) E.H c) E/H	b) d)	 E×H H/E	
		7)	A sphere encloses an electric dip What is total electric flux across that a) zero c) $6 \times 10^{-6} Nm^2/C$	he sp b)		
		8)	The effective length of an antenna a) Effectiveness of the antenna b) length of the antenna neglect c) range of the antenna. d) Power consumed by the ante	as a i	radiator	
		9)	Which of the following laws do no		n a Maxwell equation? Gauss's law	

c) Faraday's law

d) Ampere's law

		10) Divergence theorem is based on a) Gauss law b) Stokes's law c) Ampere's law d) Lenz law	
	B)	 State true or false The curl of the electric field intensity is The line integral of the electric field intensity is The normal component of magnetic field intensity at the boundary of separation of the medium will be Dimensions of Poynting vector P, are same as that of power/Area. In Biot-Savart's law, the magnetic intensity is product of the current. The direction of a propagation of electromagnetic wave is \(\overline{E}\). \(\overline{B}\). 	06
Q.2	Ans a) b) c) d)	wer the following. Write note on Electric Quadrupole. Write a note on Poynting's theorem? Writ the Maxwell equation for moving media? Explain in detail the concept of radiation damping?	16
Q.3	Ans a) b)	1) Coulomb Gauge 2) Lorentz's Gauge	10 06
Q.4	Ans a) b)	·	10 06
Q.5	Ans a) b)	· · · · · · · · · · · · · · · · · · ·	10 06
Q.6	Ans a) b)	space.	10 06
Q.7	Ans a) b)	oblique Incidence?	10 06

Seat No.	Set	Р

M.Sc. (Semester - II) (Old) (CBCS) Examination: March/April-2024 PHYSICS (MATERIALS SCIENCE) Statistical Physics (MSC03206)

				Statistical Physi		•	
•				ay, 14-05-2024 02:00 PM	•	Max. Marks	s: 80
Insti	ructio		2) Att	estion no. 1 and 2 are com empt any three questions f jure to right indicate full ma	rom Q		
Q.1	A)		In Bo a)	correct alternatives. ose Einstein Condensation excited state ground state	b)	particle accumulates in meta state all exited state	10
		2)	a)	ermi Dirac statistics, particle indistinguishable dimensionless	es are b) d)	distinguishable	
		3)	a)	Boltzmann limit of Bosons $e^{\beta\mu}\ll 1$ $e^{\beta\mu}=0$	b)	rmions is $e^{eta\mu} \gg 1$ $e^{eta\mu} = 1$	
		4)	state the r a)		particle _· b)	vo particles are found in the same es belong to different states, then 1: 0: 2 1: 1/2: 0	
		5)	a)	and canonical ensemble, the only matter both matter both matter and energy	b)	only energy	
		6)	a)	axwell Boltzmann statistics indistinguishable dimensionless	•	distinguishable	
		7)	a)	opy in thermodynamics is n order of system volume of system	neasur b) d)	re of pressure of system disorder of system	
		8)	Phas a) c)	0 .	ates at b) d)	Sublimation point Critical point	
		9)	At a a) c)	critical point, $\frac{dp}{dv} = 1$	b) d)	0 -1	
		10)		l gas is one for which mutu high zero	al intei b) d)	raction between the molecules is negligible repulsive	

	B)	State true or false.	06
		 Photons in black body radiation obeys Bose Einstein Statistics. The quantitative explanation of Brownian motion was given by Einstein. Second law of thermodynamics deals with phase transition. During first order transition of a matter from one phase to another, 	
		entropy remains constant. 5) The point at which the vapor pressure curve abruptly terminates is called transition point.	
		 The transition from liquid He I to He II is called second order phase transition. 	
Q.2	a) b) c)	Explain microstates and macrostates. Distinguish between Fermi Dirac Statistics and Bose Einstein Statistics. Derive the conditions for phase equilibrium. Explain Law of corresponding states.	16
Q.3	Ans a) b)	· · · · · · · · · · · · · · · · · · ·	08 08
Q.4	Ans a) b)	·	08 08
Q.5	Ans a) b)	· · · · · · · · · · · · · · · · · · ·	80 80
Q.6	a)		08 08
Q.7	a)	mechanics.	08
	b)	Derive Sackur-Tetrode equation for entropy of a gas.	80

Seat	Sat	D
No.	Set	

M.Sc. (Semester - III) (CBCS) Examination: March/April-2024 PHYSICS (MATERIALS SCIENCE) Semiconductor Physics (MSC03301)

				Semicondu	ctor Phys	ics	(MSC03301)	
•			,	y, 10-05-2024 o 02:00 PM			Max. Marks:	: 80
nstr	ructio	ons:	2) At	. Nos. 1 and 2 are ttempt any three o gure to right indic	questions fro	om (Q. No. 3 to Q. No. 7	
Q.1	A)		Liqu a)	correct alternati id-phase epitaxy of the solid the gas			to grow crystals on a substrate. the solution the vapors	10
		2)	a)	icles in an ionic cı Nuclear forces Covalent bonds		b)	ogether by Electrons Electrostatic forces	
		3)	is a)	shape of E-K dia Horizontal Parabolic	gram of the		duction band and valance band Vertical Elliptical	
		4)		950°C	growth prod		, the material is heated up to 1420°C 1200°C	
		5)	a) b)	effective mass of mass of Tree ele mass of electror both a & b None of above	ectron			
		6)	a) b) c)	axial growth is be Polycrystalline s very thin single o single crystals s single crystal of	ilicon crystal layer everal inche	on s in	a substrate size	
		7)	a)	emiconductor has Negative Zero	temp	b)	ture coefficient of resistance. Positive One	
		8)	has a)		ons	b)	(3° C), an intrinsic semiconductor Many Holes No holes or free electrons	

		9)	Ohm a) c)	i's law is not obeyed l Conductor Insulator	by b) d))	Semiconductor Dielectrics	
		10)	a)		b))	generated by Electron bombardment None of above	
	B)	1) 2) 3) 4) 5)	In a control band For particular Theorem A per Theorem	d and valance band re potentials that are per prem. (True/False)	conductor, esults due riodic, the vely proportions are seen iconductors.	a to wa io ala	avefunction satisfies Bloch nal to particle velocity. (True/False ance electrons. tor is	06
Q.2	a) b) c)	Wri Wri Wh	ite a n ite a s nat is c	following. Note on liquid phase ender the content of the content	bsorption. sition?		od.	16
Q.3	a)	Exp	olain b	following. conding forces in solice gel method with sui		ηp	le	10 06
Q.4		Exp De:	olain ii	variation of energy b			pand gap semiconductors. loy composition with suitable	10 06
Q.5	An a) b)	Exp	olain tl	following. he crystal growth by (vapor phase epitaxy.	Czochralsł	۲i	method.	10 06
Q.6	An a)	Wh		•	ain various	ty	pe of Luminescence with	10
	b)		•	nigh field effects with	neat labell	e	d diagram.	06
Q.7	An a) b)	Giv	e an a	f ollowing. account of Metal-Sen n short about recomb			Interface with band diagrams. rriers.	10 06

|--|

M.Sc. (Semester - III) (CBCS) Examination: March/April-2024

				PHYSICS (MATER Atomic, Molecular P		•
				y, 13-05-2024 02:00 PM		Max. Marks: 80
Inst	ructio		2) Att	lestion no. 1 and 2 are com lempt any three questions f gure to right indicate full ma	rom (•
Q.1	A)	Mu 1)	The a)	choice questions. doublets observed in alkali Orbit orbit Spin Orbit	b)	otra are due to Interaction. Spin Spin All of these
		2)	a)	electronic excitation of mole Hartree Fock method franck condon principle	b)	
		3)	side a)	ase of vibration rotational space of ω_0 are referred to as P branch R branch	 b)	um, the lines to the lower frequency Q branch bond origin
		4)	a)	$K = 4\pi^2 \omega^2 c^2$	b)	force constant is given by $K = 4\pi^2 \omega^2 c^2 \mu^2 \\ K = 4\pi^2 \omega^2 c \mu$
		5)	a)	ch of the following molecule CH ₂ Cl ₂ H ₂ O	b)	not show the microwave spectra? SF ₆ CPH ₃ Cl
		6)	a)	lowest vibrational energy is $\frac{1}{2}\omega$ ω^2	b)	en by ω ω^2
		7)	effec a)	en splitting of the energy leve ot is known as Effect Zeeman Stark	i. b)	ue to strong magnetic field then the Paschen back Back-Goudsmit
		8)	com a)	S coupling the interaction b pared to other. Orbit orbit Spin Orbit	b)	en is assumed greater as Spin Spin Both Spin Spin And Orbit orbit
		9)	land a)	omputing the splitting of spe e g-factor arises because o Pauli Exclusion Principle larmor precession	of	spin-orbit coupling

		 10) laser cooling of atoms is produced due to a) Absorption of photons by atoms b) scattering of photons by atoms c) Transfer of momentum from photon to atoms d) transfer of energy from photons to atoms 	
	В)	 Fill in the blank from given parenthesis. Selection rule for the harmonic oscillator undergoing vibrational changes are (Δv = +1/Δv = +1, +2, +3) is the source for the microwave spectrometer (Klystron/Ncrnst filament). In case of effect the interaction energy between the electron and the field F is greater than the interaction energy between the electron spin and orbit (strong field stark /weak field stark). For organic molecules the skeletal vibrations usually fall in the range 14000-700cm⁻¹. Spin orbit interaction are magnetic in nature. The hyperfine structure is observed due to the different isotope of the same chemical element. 	06
Q.2	a) b)	Explain paschen back effect Explain X ray spectra and there types. What are spectral lines, and write transition rule. Explain Pauli's exclusion principle and write down the possible combination for two equivalent P electrons.	16
Q.3	Ansa) b)		12 04
Q.4	a)	· · · · · · · · · · · · · · · · · · ·	12 04
Q.5		of energy profile diagram.	12 04
Q.6	a)	1 17	12 04
Q.7	Ans a) b)	of vector model diagram.	80 80

Seat	Set	D
No.	Set	

M.Sc. (Semester - III) (CBCS) Examination: March/April-2024 PHYSICS (MATERIALS SCIENCE) Materials Processing (MSC03307)

Day & Date: Wednesday, 15-05-2024

Max. Marks: 80

Time: 11:00 AM To 02:00 PM

Instructions: 1) Question no. 1 and 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7.
- 3) Figure to right indicate full marks.

Q.1 A) Choose the correct alternative.

10

- 1) What is the primary difference between crystalline and amorphous solids?
 - a) Crystalline solids have a regular atomic arrangement, while amorphous solids lack long-range order.
 - b) Crystalline solids have higher density compared to amorphous solids.
 - c) Crystalline solids are transparent, while amorphous solids are opaque.
 - d) Crystalline solids are always metallic, while amorphous solids are non-metallic
- 2) Which model is commonly used to understand the properties of nanocrystals?
 - a) Three-dimensional lattice model
 - b) Hard sphere two-dimensional
 - c) Bohr's atomic model
 - d) Molecular dynamics model
- 3) Which type of pump operates by trapping gas molecules on a surface and then desorbing them by heating?
 - a) Rotary pump
- b) Diffusion pump
- c) Turbomolecular pump
- d) lon pump
- 4) What is the primary purpose of the Joule heating process in materials preparation?
 - a) To cool down the material rapidly
 - b) To induce chemical reactions
 - c) To melt the material for deposition
 - d) To provide energy for vaporization or sublimation
- 5) The sol-gel process is commonly used for the synthesis of:
 - a) Metallic nanoparticles
- b) Ceramic materials
- c) Polymer composites
- d) Carbon nanotube

- SLR-HN-22 6) Electrodeposition methods such as DC and pulsed electrodeposition are commonly used for: a) Sol-gel synthesis b) Synthesizing metal nanoparticles c) Chemical precipitation reactions d) Depositing thin films High-energy ball milling is primarily used for: 7)
 - a) Fabricating thin films
 - b) Synthesizing nanocrystals
 - c) Producing metallic alloys
 - d) Conducting chemical vapor
- Mechanochemical reactions involve chemical transformations 8) induced by:
 - a) High temperatures
- b) High pressures
- c) Mechanical forces
- d) Ultraviolet radiation
- 9) Which process leads to the amorphization of materials by mechanical means?
 - a) Milling at low speeds
 - b) Milling with small balls
 - c) Mechanical milling
 - d) Ball milling at room temperature
- Grain growth in materials occurs due to:
 - a) Cooling of the material
 - b) The presence of impurities
 - c) Nucleation and growth of new grains
 - d) Reduction in temperature

B) Write True/False.

06

- Crystalline solids have a regular atomic arrangement, while amorphous solids lack long-range order.
- The hard sphere two-dimensional model is commonly used to 2) understand the properties of nanocrystals.
- The ratio of grain volume to grain boundary volume is not 3) significant in materials sciences.
- 4) Top-down approaches in materials synthesis involve fabricating materials from smaller to larger scale.
- Temperature has no effect on materials preparation processes. 5)
- 6) Grain growth occurs due to the nucleation and growth of new grains.

Q.2 Answer the following. (4*4)

16

- Explain the concepts of grain boundary segregation and pinning.
- b) Discuss the key milling parameters in high-energy ball milling.
- Compare and contrast normal and reverse chemical precipitation reactions. C)
- Describe grain boundary segregation and pinning mechanisms.

Q.3	Ans a)	swer the following. Classify materials based on dimensional classifications. Provide examples for each classification and discuss their application.	10
	b)	Classify materials based on dimensional classifications. Provide examples for each classification.	06
Q.4	Ans	swer the following.	
	a)	Define and differentiate between crystalline and amorphous solids. Provide examples of each type and explain their structural characteristics.	10
	b)	Discuss the process of aggregation in materials preparation.	06
Q.5	Ans	swer the following.	
	a)	Compare and contrast the top-down and bottom-up approaches in the synthesis of materials. Provide examples of each approach.	10
	b)	Discuss the processes of mechanical alloying and mechanical milling. How do these processes lead to amorphization and crystallization in materials?	06
Q.6	Ans	swer the following.	
	a)	Elaborate on the sol-gel process. What are the key steps involved, and what types of materials can be synthesized using this method?	10
	b)	Describe the role of surfactants in chemical methods of materials synthesis.	06
Q.7	Ans	swer the following.	
	a)	Explore the various chemical methods for materials synthesis, including hydrothermal, solvothermal, sonochemical, and microbial routes. Provide examples for each method.	10
	b)	Define high-energy ball milling and discuss its chronological evolution. How has this method advanced over time?	06

No.

M.Sc. (Semester - III) (New) (CBCS) Examination: March/April-2024

				PHYSICS (MATER Materials Characterials		•			
				day, 15-05-2024 2:00 PM		Max. Marks:	80		
Instr	ructio	2) Atte	Nos. 1 and 2 are compulso empt any three questions four from to right indicate full ma	om Q. No	o. 3 to Q. No. 7			
Q.1 A)	A)	Cho 1)	Erro a) b)	bse the correct alternative. Error of measurement is the difference between a) True value and measured value b) Precision and True value c) Measured value and Precision d) None of the above					
		2)	dep	which factor does the aver end? Nature of the gas Volume	age kinet b) d)	ic energy of gas molecules Temperature Mass			
		3)		ny diffractometers are not ι hich of the following? Metals Polymeric materials		entify the physical properties Liquids Solids			
		4)	Whi a) c)		b)	t be found with Hall Effect? Conductivity Area of the device			
		5)	a) b) c)	Reflected radiation and o	oncentrat concentrat oncentrat	tion ion			
		6)	The a) c)	driving force for sintering Internal energy Surface energy	is reduction b) d)	on in Surface tension Entropy			
		7)	at te	ulb contains one mole of hemperature T. The ratio of ecules to that of oxygen m 1: 16 4: 1	rms value	is			
		8)	In si a) c)	ngle X-ray diffraction mea X-ray source Diffraction plate	surement b) d)		-		

		10)		Drop across the crystal due to the current passed through it Induced voltage by the applied magnetic field Movement of charge carriers towards one end All of the above ch of the following is not a limitation of Beer Lambert's law, which is the relation between absorption, thickness and concentration Concentration must be lower Radiation must have higher bandwidth Radiation source must be monochromatic Does not consider factors other than thickness and concentration that affect absorbance	?
	B)	Writ	te Tru	ıe/ False.	06
		1) 2)		error is an indication of instrumental error. mics have high modulus of elasticity.	
		3)		deal gas is that which can be liquefied.	
		4)		ording to Beer Lambert's law, absorbance depends on colour of solution.	
		5)	The I	Hall Effect coefficient is 6.25 when the number of electrons in a iconductor is 10 ²⁰ .	
		6)		g's law is not a sufficient condition for diffraction by crystalline s	solids.
Q.2	Ans			ollowing.	16
	a) b)			standard distribution functions? lamental concept of vacuum.	
	b) c)			ote nanocrystalline and amorphous solids.	
	ď)	Expl	ain Be	eer-Lambert Law.	
Q.3				ollowing.	•
	a) b)			e Laue method for single crystal structural analysis. in detail about the factors affecting the intensity in powder XRD.	. 08 . 08
Q.4	Ans	wer t	he fo	ellowing.	
	a)			etail about four probe method of conductivity measurement.	08 is. 08
	b)	Elab	orate	the UV-Vis absorption spectroscopy with neat labelled diagram	is. Uo
Q.5	Ans a)			ollowing. detail about Root pumps.	08
	b)	•		etail about methods of sample preparation.	08
Q.6				ollowing.	
	a) b)			cubic structures analyzed? Explain. Vibrational spectroscopy for determining the molecular bonds.	08 08
0.7	,			,	
Q.7	ans			oout the generation and detection of X-rays.	08 08
	b)	Expl	ain Ph	hotoluminescence spectroscopy as the technique of measuremap in solids.	

In Hall Effect, the output voltage produced across the crystal is due

9)

Seat	Set	D
No.	Set	1

M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2024

				PHYSICS (MATERI Semiconductor Devi		•	
-				day, 09-05-2024 o 06:00 PM			Max. Marks: 80
Insti	ructio	ons:	2) At	uestion No.1 and 2 are comp ttempt any three from Q. No. gure to the right indicates ful	3 to	Q. No. 7.	
Q.1	A)	Cho 1)	TRI a)	correct alternatives. ACs is used where the trans power electron transfer	b)	large is involve voltage transfer charge transfer	10 ed.
		2)	cha a)	a CCD operation the thermal arge storage time. longer shorter	b)	ation time is that much longer much shorter	an the
		3)	a)	nt emission is not possible in direct band gap indirect band gap	b)	high mobility	
		4)	a)	As is better for MESFET thar low mobility temperature stability	b)	low power levels	
		5)	low a)	e lasing threshold current der est. homo graded	b)	or junction LAS hetero double hetero	SER is
		6)	a)	e switching ON behavior of S regenerative blocking	b)	based on breakdown etching	
		7)	a) b) c)	CCD involves actions. charge storage and transfer only charge transfer only storage charge storage and loss			
		8)	a)	o valley model of TEDs base BCS RWH		GaAs is proposed by ₋ BBS NWH	
		9)		e condition hv < Eg causes _ absorption reflection		of light in semiconduc transmission modulation	tor.

		10) Thicker oxide layer of MOSFET reduces itsa) biasb) field strength	
		c) work function d) fermi energy	
	B)	 Fill in the blanks /State True or False The drift of stable domains in TEDs is attainable in loaded circuits. HFD collapses when the field outside drops below field. The life time of charge carriers to emit fluorescence is seconds. The potential well is created by applying positive voltage to p substrate. LASERS convert electrical energy to optical energy. Sum of α1 and α2 must be Zero for SCR to become ON. 	06
Q.2	a)	LASCR Photoconductivity Schottky diode GTOs	16
Q.3	a) b)	Describe MOS structure with emphasis on accumulation, depletion & inversion modes with band diagrams. Elucidate Enhancement type MOSFET.	10 06
Q.4	a) b)	Describe various methods of triggering pnpn device. Elucidate Reverse conducting thyristor.	10 06
Q.5	a) b)	Describe GaAs Gun Oscillator modes in terms of, 1) Space charge accumulation 2) Quenched domain mode 3) Delayed domain mode. Elucidate Two Valley Theory proposed by RWH.	10
Q.6	a) b)	Explain IR and Visible LED. Discuss in detail the operating principle of LED. Elucidate LDR device.	10 06
Q.7	a) b)	What is solar cell? Describe construction and working of solar cell with emphasis on I-V characteristics. Elucidate quantum efficiency and response speed of solar cell.	10 06

Seat No. Set	Р
--------------	---

M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2024

		ی, رو	, O1110	PHYSICS (MATER	IALS S	•		
D-11	0 D-4	۰. ۰	_4	Nuclear and Particle F	nysics		20	
-				ay, 11-05-2024 06:00 PM		Max. Marks: 8	30	
Instr	uctio		2) Att	Nos. 1 and. 2 are compulso empt any three questions fr jure to right indicate full mar	om Q. No	o. 3 to Q. No. 7		
Q.1	A)	Ch 1)	noose the correct alternative. The electric quadrupole moment Q is zero for Nuclei. a) Spherical b) Oblate c) Prolate d) All of these					
		2)	The a) c)	shell model explain Even Number of nuclei Odd number	-	magic number All of these		
		3)	a) b)	Non equality of proton nur Non spherical shape of nu Charge independence of r	nber Z ar ıclei nuclear fo	rce		
		4)	emis	cleus of medium mass with sion of Electron Positron	excess of b) d)	of neutrons may decay with the Proton Neutron		
		5)		eta decay are emitted Gamma ray Proton	d. b) d)	Electron Neutron		
		6)		radius R of the nucleus is g R=r _o A ^{-1/3} R=r _o A ⁻³	iven by _ b) d)	$R=r_{o}A^{1/3}$ $R=r_{o}A^{3}$		
		7)	Whice a)	ch one of the following is no Electron Proton	t a memb b) d)	er of the lepton family? Muon Neutrino		
		8)	The a) b) c) d)	Are always obeyed at the the atomic level	ons at all microsco			
		9)	Qua a) c)	ntum chromodynamics expl Chemical reaction nuclear fission	ains the _ b) d)	among the quarks. chain reaction strong interaction		

		10)	a)	nuclear force between the central force columbic forces	b)	are non central forces cohesive forces		
	B)	1) 2) 3) 4)	The If Q verified The verified The verified True Baryer	binding energy of the deutoralue of nuclear reaction is velocity of charged particle tron capture is one of the ele/False) ons contain one quark and k experiences all four fundaments.	teron is s negative e in cyclotromodes of C d one anti d	on is Samma decay process.	06	
Q.2	Ans a) b) c) d)	Disc Disc	e a no uss ty uss a	ef. ote on binding energy and open of nuclear reactions. dvantages of particle accessignificance of collective sh	elerators.	ability.	16	
Q.3		Expl assu	ain th ıming	a square well potential.		s the bound state of deuteron	10 06	
Q.4	Áns	Write a note on radioactive dating and define alpha, beta and gamma decay. swer the following. Derive an explain bethe- Weizsacker formula. What is the significance of binding energy per nucleon, If mass of proton, Neutron and uranium nucleons what will be the binding energy per nucleon ($m_P=1.0078$ amu, $m_n=1.0087$ amu $_{92}U^{238}=238.0508$ amu)						
Q.5		Deri	ve an	bllowing. d explain breit-wigner disp ote on nuclear fission and		nula.	10 06	
Q.6	Ans a) b)	Wha parti	t are cles a	bllowing. the fundamental forces. G and there interaction in na tainty relation to estimate	ture.	ad classification of elementary the nucleon, the nuclear	10 06	
Q.7	Ans	swer Give num	the for the a ber, s	ollowing. account of meson octet an trangeness and hypercha	d find out o	e schematic diagram.	10	
	b)	Disc	uss c	onstruction and working o	f cyclotron	with schematic diagram.	06	

	_	
Seat	Sat	D
No.	Set	F

	IVI.3	C. (S	eme	PHYSICS (MATER	(IALS	S SCIENCE)	Аргіі-2024	
				Physics of Nano Ma	teria	ls (MSC03403)		
•				y, 14-05-2024 06:00 PM			Max. Marks: 80)
Inst	ructio	ons:	2) Atte	estion no. 1 and 2 are compempt any three questions frure to right indicate full man	om Q	-		
Q.1	A)		The i	choice questions. nanoscale involves the rand 1nm to 1000 nm 1nm to 10 nm	b)	1nm to 100 nm	-)
		2)	a)	down and bottom-up appro Speed Quality, speed and cost	b)	Quality		
		3)	struc a)	hene is ananomater ture. 3D 1D	rial wit b) d)	h single atomic layer o 2D 0D	f carbon	
		4)	witho a)	-Lamberts law is applied to out the need for extensive p Thermometry Calorimetry		ocessing of the sample. Spectrophotometry		
		5)	posit a)	semiconductor repels ive ions. Schottky effect Hopping	the ne b) d)		s the	
		6)	that i a)	cular beam epitaxy (MBE) s most simply described as pulse vapor deposition physical laser deposition	a vei b)	y refined form of chemical vapor depos	·	
		7)	level a)	anning probe microscopy (\$ surfaces at the nano atoms at the nano	b)	molecules at the nand		
		8)	exprea) b) c)	BET is commonly used to g essed in units of mass per area of sample area per mass of sample Density per mass of sample area per density of sample	(g/m²) (m²/g) ole		rea result	

	9)	X-Ray Diffraction (XRD) allows one to ascertain the molecular					
		structure of athrough the sample.					
		a) crystalline material by absorbing x-rays					
		, ,					
	10)						
	.0)	a) nanocarbon into a cylindrical shape structure.					
		b) two-dimensional graphite into a circular shape structure.					
		, ,					
ο,	04	, , , , , , , , , , , , , , , , , , , ,	•				
B)							
	1)	and pass into the gas phase by bombardment with energetic ions, mainl					
	2)	· ·	ue				
		•	dent				
	3)	·					
	3)	environment.					
	4)	The Principle of UV-Visible Spectroscopy is based on the absorption of					
		· · · · · · · · · · · · · · · · · · ·					
	5)	•					
	•	· • · · · · · · · · · · · · · · · · · ·					
	,	hand washes, bandages, and socks.					
Α		the fellowing	40				
			16				
•							
c)		· · · · · · · · · · · · · · · · · · ·					
d)	Illust	rate the technique of electrodeposition.					
Δn	ewor	the following					
			08				
•	-		08				
_							
_			10				
aj		· · · · · · · · · · · · · · · · · · ·	10				
b)		· •	06				
An	swer	the following.					
_	Desc	cribe the quantum confinement effect.	80				
b)	Expl	ain the Poole - Frenkel Effect.	80				
An							
a)		•	10				
•			06				
			Λο				
•		· · · · · · · · · · · · · · · · · · ·	08 08				
	a) b) c) d) An: a) b) An: a) b) An: a) b) An: a) b) An: a)	B) Star 1) 2) 3) 4) 5) 6) Answer a) Expl b) Defin c) Expl d) Illust Answer a) Expl b) Men Answer a) Expl b) Men Answer a) Desc b) Disc	structure of athrough the sample. a) crystalline material by absorbing x-rays b) crystalline material by diffracting x rays c) single crystal material by diffracting x rays d) non-crystalline material by diffracting x-rays d) non-crystalline material by diffracting x-rays 10) Nanotubes are formed by folding or rolling a) nanocarbon into a cylindrical shape structure. b) two-dimensional graphite into a circular shape structure. c) nanodiamond into a cylindrical shape structure. d) two-dimensional graphite into a cylindrical shape structure. B) State True or False. 1) Sputtering is a physical process in which atoms in a solid-state are releated and pass into the gas phase by bombardment with energetic ions, maintoble gas ions. 2) Surface plasmon resonance is the manifestation of a resonance effect of to the interaction of conduction electrons of metal nanoparticles with inciphotons. 3) Nanotechnology could also enable objects to harvest energy from their environment. 4) The Principle of UV-Visible Spectroscopy is based on the absorption of visible light by chemical compounds, which results in the production of distinct spectra. 5) The electroplating process is also known as electrodeposition. 6) Nanoparticles of silver are used to deliver antimicrobial properties in hand washes, bandages, and socks. Answer the following. a) Explain in brief the top-down approach of synthesis of nanomaterials. b) Define the Density of States at Low - dimensional Structures. c) Explain the phenomenon of photoluminescence. d) Illustrate the technique of electrodeposition. Answer the following. a) Explain the various conduction mechanism in bulk materials. b) Mention the basic principle of SPM and highlight the details of STM. Answer the following. a) Explain the Prenkel Effect. Answer the following. a) Describe the quantum confinement effect. b) Explain the Prenkel Effect. Answer the following. a) Describe the phenomena of core-shell in nanomaterials.				

							 -		
Seat No.	t							Set	P
N			l	PHYSICS (MA	TERIALS	SC	ation: March/April - IENCE) cterization (MSC034		
-	& Dat	te: Thu		6-05-2024	eriais Cr	iaia	•	Marks	: 80
Instr	uctic	2)	Q. Nos.	ive question. 1 and. 2 are com any three questio		. No.	3 to Q. No. 7		
Q.1	A)	Mult	iple Choi	ice questions.					10
		1)	a) Ele b) Pos c) Ant	once an electron ctrons and x-rays sitrons and Gamr ti-electrons and u utrinos and Radio	s ma rays Iltraviolet ra		mple, the sample ejects		
		2)	a) FTI	R	able for fund		group detection. UV -VIS Spectroscopy NMR		
		3)	a) Cor b) Rar c) Bot	ic collision of pho mpton scattering man scattering th: Raman and C yleigh scattering			cule results into		
		4)	a) X-ra	electromagnetic s ays and Gamma ays and Ultraviol	rays	ne vis b) d)			·
		5)	fast mov	ring ctron	ight source	is reb)	placed by a beam of ver Neutron Photon	у	
		6)	a) 5.05	gnitude of nuclear $5 \times 10^{-27} J/T$ $5 10^{-27} eV/T$	r magnetor	b) _	$\begin{array}{c} -\frac{1}{9.27} \times 10^{-24} J/T \\ 9.27 \times 10^{-24} eV/T \end{array}$		
		7)	seconda a) Equ	rgy of the back so ry electrons. ual to eater than	cattered ele	b) d)	ns in SEM is tha Less than None of these	it of	
		8)	a) Pol	rmula, $\mu=lpha$ E w arization arisability	hat represe	ents t b) d)	the symbol " α "? Magnitude of polarization None of above	on	
		9)		of polarization. ensity	n the Rama	an sp b) d)	ectroscopy represents Magnitude Direction		

		 Solids with more than one atom in the smallest unit cell exhibit a) Acoustic phonons b) Optical phonons c) Both acoustic phonons and optical phonons d) None of the above 						
	B)	Fill in the blanks/State true false 1) transitions take place in UV -Vis Spectroscopy. 2) is the unit of molar absorption coefficient. 3) The polarization in the Raman spectroscopy is represented by 4) technique is used for determination of surface area of material. 5) Elastic scattering is take place in Raman scattering. (True/False) 6) Metal can transmit X rays. (True/False)	06					
Q.2	a) b)	swer the following Acoustic and Optical phonon modes. Auger Transitions. Magic Angle Spinning (MAS). IR and Raman active substances						
Q.3	a)	wer the following Describe the process of image formation and working of Scanning Tunneling Microscopy (STM) with schematic diagram.	10					
	b)	Explain technique used for surface area measurement.	06					
Q.4	Ans a) b)	wer the following Describe principle, and working of Atomic force microscopy (AFM) with schematic diagram. Explain applications of NMR spectroscopy.	10 06					
Q.5	Ans	swer the following						
4.0	a)	Describe principal and working of X-ray photoelectron spectroscopy with schematic diagram.	10					
	b)	Elucidate difference between SEM and TEM.	06					
Q.6	Ans a) b)	wer the following Describe principal and working of TEM with schematic diagram. Give an account of Electrostatic and Magnetic focusing in electron microscope.	10 06					
Q.7	Ans a)	wer the following Describe principal and working of Raman Spectroscopy with schematic diagram.	10					
	b)	Explain the necessity of high-resolution NMR spectrometer for solid samples.	06					