Semester: IV List of open elective –II

Sr.	List of Open Elective
No.	
1	OE-02A Entrepreneurship and Innovation
2	OE-02B Environmental Sustainability
3	OE-02C Renewable Energy
4	OE-02 D Measurement, Instrumentation and Sensors
5	OE-02E Operation Research
6	OE-02F Computational Mathematics
7	OE-02 G Professional Business Communication
8	OE-02 H Applied Mathematics

Punyashlok Ahilyadevi Holkar Solapur University, Solapur Second Year B. Tech Engineering Semester-II OE-02 H APPLIED MATHEMATICS

Theory: - 2 Hrs/Week, 2 Credits Practical- 2Hrs/Week, 1 Credit

Examination Scheme ESE – 70 Marks ISE- 30 Marks ICA- 25Marks

• Course Objectives:

- > To introduce the students to solution higher order differential equation.
- > To introduce the students to Laplace Transforms and Z-transforms.
- > To introduce the student to various numerical methods.
- > To introduce the student to probability distributions.
- > To introduce the student to Fourier series.

• Course Outcomes:

At the end of this course, students will be able to

- Compute higher order linear differential equations.
- Solve Laplace transforms of given functions.
- Compute Z- transforms of given functions.
- Determine the numerical solutions of transcendental equations, ordinary differential equations and numerical integrations.
- Solve problems by binomial, Poisson and normal distribution.
- Compute Fourier series and Half range Fourier series.

Section-I

Unit 1- Linear Differential Equations with Constant Coefficients7 Hrs

Basic definition, differential operator, complimentary functions,

Particular integral shortcut method for standard functions like, e^{ax} sinax, cosax, x^m, e^{ax} V, XV, Particular integral general method (without method of variation of parameters) for other functions, Applications to Electrical Engineering Problems.

Unit 2–Laplace Transform

Definition, Laplace Transform of standard functions, Properties First shifting, change of scale, multiplication of powers of t and division by t, Laplace Transform of derivative and integral, Unit step functions and unit Impulse functions, Methods of finding Inverse Laplace transforms by Convolution Theorem only.

7 Hrs

Unit 3- First Order Partial Differential equations and applications

Non – Linear partial differential Equations of Type I f(p, q) = 0, Type II f(p,q,z)=0, Type III $f_2(p, x)=f_2(q,y)$, Linear partial differential equation by Lagranges method. Solution of partial differential equation by method of separation of variables.

Section-II

Unit 4- Numerical Methods

Newton-Rapshon Method, Multiple roots, Newton's iterative formula for obtaining square root onlyFirst order differential equation by Runge – Kutta method (Fourth order)

Numerical Integration using -Trapezoidal rule, Simpson's 1/3rd rule, Simpson's 3/8th rule.

Unit 5 - Probability Distributions

Random variables, Discrete and Continuous Probability distributions., Binomial distribution, Poisson distribution, Fitting of Binomial or Poisson distributions, Normal distribution

Unit 6 - Fourier Series

Definition, Dirichlet's Conditions, Euler's formula, Fourier series in the interval $(0,2\pi)$, $(-\pi, \pi)$, (0,2 l) and in the interval (-l, l), Half Range Series: Half range cosine series and Half range sine series.

- In Semester Evaluation(ISE): ISE shall be based upon student's performance in minimum two tests & mid-term written test conducted & evaluated at institute level
- Internal Continuous Assessment (ICA): ICA shall be based on student's performance during the laboratory sessions, minimum 6 assignments and on completion of minimum 8 exercises out of the following exercises:
 - 1. Solve any 5 examples on shortcut method of higher order linear differential equations.
 - 2. Solve any 5 examples on general method of higher order linear differential equations.
 - 3. Solve any 5 examples on application of LDE to Electrical Problems
 - 4. Solve any 5 examples on properties of Laplace transform.
 - 5. Solve any 5 examples on laplace transform of derivative.
 - 6. Solve any 5 examples on laplace transform of integral.
 - 7. Solve any 5 examples on standard forms of PDE.
 - 8. Solve any 5 examples on linear PDE by Lagrange method
 - 9. Solve any 5 examples on numerical methods for ODE.
 - 10. Solve any 5 examples on Numerical integration.
 - 11. Solve any 5 examples on Binomial distributions.
 - 12. Solve any 5 examples on Poisson distributions.
 - 13. Solve any 5 examples on on Normal distributions.
 - 14. Solve any 5 examples on on fourier series for the interval $(0,2\pi)$ and $(-\pi,\pi)$,
 - 15. Solve any 5 examples on fourier series for the interval (0, 2l) and (-l, l)
 - 16. Solve any 5 examples on half range Sine/Cosine series.

7 Hrs

6 Hrs

7 Hrs

 \checkmark Note – Students shall be encouraged to use Scilab, R-programming and other software's forsolving examples

• Text Books:

- 1) "A textbook of Applied Mathematics Vol II", Vidyarthi Grah Prakashan, Pune, JN and PN Wartikar
- 2) "Higher Engineering Mathematics", Khanna Publications, Delhi, B S Grewal
- 3) "Advanced Engineering Mathematics", Wiley & SMS, Newyork, Kreyzig-John
- 4) "Numerical Methods", Khanna publications-New Delhi, BSGrewal
- 5) "Introductory methods of Numerical Analysis"-PHI Learning Publication ,SSShastry

• Reference Books:

- 1) "Advanced Engineering Mathematics", Cengage Learning, Peter O'Neil
- 2) "Higher Engineering Mathematics", Tata McGraw-Hill Education, BV Ramana
- 3) "Numerical Methods" SChand Publication, DrPKandasamy
- 4) "Numerical methods for scientific and engineering computations"-New age International Ltd MKJain,SRKIyengar,RKJain
- 5) V. Krishnamurthy, V.P. Mainra and J.L. Arora, "An introduction to Linear Algebra" Affiliated East–West press, Reprint 2005.