Solapur University, Solapur

Revised Semester Pattern Syllabus

B.Sc.I
Mathematics

(w.e.f. June 2013)

For undergraduate course as per the sanctioned workload of Thirty Six (36) Periods.

Class	Periods / Week	Marks
B.Sc.- I	9	250
B.Sc.- II	9	300
B.Sc.-III	18	600

Syllabus of B. Sc. Part-I (MATHEMATICS)
Semester-wise pattern(Commencing from JUN - 2013)
B.Sc.I (Mathematics) (Honours)semester-wise pattern to be implemented from June 2013. This syllabus of Mathematics carries 250 marks. In semester -I university examination of Theory paper -I and paper-II only and in semester - II university examination of Theory paper -III and PaperIV and the university examination of Problem Solving Session [PSS - I] will be held. The distribution of marks is as follows.

Semester -I

(1) Paper-I ALGEBRA
(2) Paper-II CALCULUS

Semester -II

(3) Paper -III GEOMETRY
 (4) Paper -IV DIFFERENTIAL EQUATIONS

(Marks 50)
(Marks 50)
(Marks 50)
(Marks 50)
(5) Problem Solving Session-I [PSS - I\}

Only annual examination of 50 marks.
Note:-
(1) Total teaching periods for Paper -I / Paper -II and for Paper -III / Paper-IV are five(5) per week for each semester.
(2) Total teaching periods for PSS -I are four(4) per week for whole class as one batch.

Duration of Annual Examination :

(i) For Paper-I /II (Two hours) in semester -I
(ii) For Paper-III/IV (Two hours) in semester -II
(ii) For PSS -I (Three hours for a batch of 20 students) annually.

Semester -I

Paper -I (Algebra)
40 Periods
Unit 1 : Matrices : Symmetric and Skew symmetric, Elementary transformations, Rank of a Matrix(Echelon and Normal form), Characteristic equation of a matrix, Cayley Hamilton theorem and its use in finding the inverse of a matrix.
[10]
Unit 2 :Linear Equations : Applications of matrices to a system of linear (both homogeneous and non-homogeneous) equations. Eigen values and eigen vectors.
[10]
Unit 3 : Complex Number : Modulus and Argument of a Complex Number, DeMoivre's theorem and its applications, Roots of Unity, Roots of Complex Numbers.
Unit 4 : Transcendental Functions: Circular Functions with their inverses and Hyperbolic function of a complex variable along with their inverses. [10]
Paper -II (Calculus)

Unit 1 : Differentiation: Indeterminate forms and L' Hospital's Rule, Successive differentiations, $\mathrm{n}^{\text {th }}$ derivatives of standard functions, Leibnitz rule.Taylor's theorem and Maclaurin's Theorem (Only Statements). Series expansions of $\mathrm{e}^{\mathrm{x}}, \cos \mathrm{x}, \sin \mathrm{x},(1+\mathrm{x})^{\mathrm{n}}, \log (1+\mathrm{x})$
Unit 2: Function of two variables: Limit and Continuity of functions of two variables, Partial derivative, partial derivative of higher orders, Homogeneous functions, Euler's theorem on Homogeneous functions.
Unit 3: Reduction formulae :
$\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x \quad \int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x \int_{0}^{\frac{\pi}{2}} \sin ^{n} x \cos ^{m} x d x$
(Note that reductions to these forms are not expected)

Unit 4 :Vector Calculus: Scalar point function, Vector point function, Directional derivative, Gradient, divergence and Curl and its properties.

Semester -II
 Paper -III (Geometry)

40 Periods
Unit 1 :-Change of Axis: Translations, Rotations, Invariants, Identifications of conics from general form of second degree equations,Polar Coordinates, Conversion formulae.
[10]
Unit 2 :-Plane :General equation of plane, Normal equation, Intercept form Angle between two planes, Plane through three points, Plane through a given point, Sides of a plane, Distance of a point from a plane, Family of planes.
[15]
Unit 3 : Sphere: Centre radius form, General form, Diameter form, Equation of Tangent Plane and condition for tangency, Family of spheres $S+\lambda S^{\prime}=0$, $\mathrm{S}+\lambda \mathrm{P}=0$.
[15]

Paper-IV (Differential Equation)

40 periods
Unit 1:- Differential Equations of first order and first degree :[Part-I] Variables separable, Homogeneous, non- homogeneous differential equations.
[10]
Unit 2 :- Differential Equations of first order and first degree :[Part-II] Exact differential equations. Necessary and sufficient condition for exactness, Integrating factor with four rules, Linear differential equations of the form: $d y / d x+p y=Q$;
Bernoulli'sEquation $\mathrm{dy} / \mathrm{dx}+\mathrm{Py}=\mathrm{Qy}{ }^{\mathrm{n}}$.
Unit 3 :- Linear Differential Equations With Constant Coefficients :[Part-I]
Complementary function and particular integral, General solution of $f(D)$ $y=X$, Solution of $f(D) y=0$ for non-repeated, repeated, real and complex root.

Unit 4 :- Linear Differential Equations With Constant Coefficients : [Part-II]
Solution of $f(D) y=X$, where X is of the form

$$
\begin{equation*}
e^{a x}, \sin (a x), \cos (a x), x^{m}, e^{a x} V, x V \tag{10}
\end{equation*}
$$

Problem Solving Session [PSS -I]

4 Periods per week.
Assignment -1: Inverse of Matrix by Cayley-Hamilton Method.
Assignment -2 : Solution of system of Linear Homogeneous Equation
Assignment -3 : Solution of system of Linear non-homogeneous Equation.
Assignment -4: $\mathrm{n}^{\text {th }}$ roots of a comples number.
Assignment -5: Leibnitz Rule
Assignment -6 : Reduction formulae
Assignment- 7: Partial differentiation
Assignment -8 : Numerical examples on gradient, divergence and curl.
Assignment -9: Change of axis and invariants.
Assignment -10: Conversion between Polar and Cartesian of points and equations

Assignment -11 : Family of Planes.
Assignment -12 : Family of Spheres.
Assignment - 13 : Linear differential equations.
Assignment - 14 : Particular Integrals of \mathbf{e}^{ax} and x^{m}.
Assignment -15: Particular Integrals of $\sin (a x)$ and $\cos (a x)$.
Assignment -16: Particular Integrals of $\mathbf{e}^{\mathrm{ax}} \mathbf{V}, \mathbf{x V}$.

Nature of question paper

Theory Papers
(Paper- I, II, III and IV)
Each Paper is of Marks 50 each. Distribution is as follows.
All five questions are compulsory and each of marks Ten (10).
[Total 50]
Q. No. 1: Total 10 Multiple Choice Questions each of mark 1.
Q. No. 2: Attempt any FIVE Questions out of SIX(each of 2 marks) [10]
Q. No. 3: A) Attempt any TWO out of THREE (each of marks 3)
B) One compulsory question of marks 4
Q. No. 4: Attempt any TWO out of THREE each of Marks 5
Q. No. 5: Attempt any ONE out of TWO each of marks 10

Problem Solving Session- I [PSS- I]

There is ONE PSS-I of $\mathbf{3}$ hours for a batch of 20 students at the end of the year. (similar to Practicle)

Problem Solving Session[PSS]
There is ONE PSS of 3 hours each for a batch of 20 students at the end of the year.

Problem Solving Session [PSS - I] Marks 50
Q. 1 Attempt any FOUR out of EIGHT 10 marks each (40marks) Journal (10 marks)

Total (50 marks)

Reference Books

Paper -I : Algebra
Paper-II : Calculus
Paper - III: Geometry
Paper-IV : Differential Equation
Problem Solving Session - I [PSS - I]

1. Algebra and Geometry by R. B. Kulkarni, J. D. Yadav, S. J. Alandkar, N. I. Dhanshetti. (SUMS Publication) B.Sc.-I Paper-I
2. Algebra and Geometry (B.Sc.-I Paper-I) by L. G. Kulkarni, Dr. B. P. Jadhav ,Dr. Mrs. P. D. Patwardhan , Dr. M. K. Kubade. [Phadke Prakashan]
3. Text Books of Matrices by Shanti Narayan.
4. A Text Book of Analytical Geometry of Two dimensions, by P. K. Jain and Khalil Ahmid, Wiley Eartern Ltd. 1994.
5. Calculus and Differential Equations (B.Sc. -I ,Paper-II)

By H. T. Dinde, A. D. Lokhande, P. D. Sutar , U. H. Naik.(SUMS Pub.)
6. Calculus and Differential Equations (B. Sc. I, Paper- II) by L. G. Kulkarni ,Dr. B. P. Jadhav, Dr. Mrs P. D. Patwardhan, Dr. M. K. Kubade [Phadke Prakashan]
7. Differential Calculus by Shanti Narayan
8. A text book of Vector Calculus, by Shanti Narayan.
9. Differential equations, by G. S. Diwan, D. S. Agashe. Popular Prakashn, Bombay.
10. Introductory course in Differential Equation by D. A. Murray Orient Longman

