## SOLAPUR UNIVERSITY, SOLAPUR



**Faculty of Science** 

M. Sc. Part: I - ZOOLOGY

(Choice Based Credit System)

**Syllabus** 

w.e.f. June 2015-2016

## **SOLAPUR UNIVERSITY, SOLAPUR**

M. Sc. Part: I - ZOOLOGY

(Choice Based Credit System Syllabus)

w.e.f. June 2015-16

#### **SEMESTER - I**

| Paper/Practical      | aper/Practical Title of paper/Practical Credits |       | Total marks |  |  |  |
|----------------------|-------------------------------------------------|-------|-------------|--|--|--|
|                      | Theory                                          |       |             |  |  |  |
| ZOO 101              | Biosystematics                                  | 4     | 100         |  |  |  |
| ZOO 102              | Tools and techniques in Biology                 | 4     | 100         |  |  |  |
| ZOO 103              | Cell and Molecular Biology                      | 4     | 100         |  |  |  |
| ZOO 104              | Population Genetics and Evolution               | 4     | 100         |  |  |  |
|                      | Practical                                       |       |             |  |  |  |
| ZOO 105              | Practical based on Zoo 101 & 102                | 4     | 100         |  |  |  |
| ZOO 106              | Practical based on Zoo 103 & 104                | 4     | 100         |  |  |  |
| Seminar / Study Tour |                                                 |       | 25          |  |  |  |
|                      |                                                 | Total | 625         |  |  |  |

#### **SEMESTER - II**

| Paper/Practical                  | Total marks                      |       |     |  |  |  |
|----------------------------------|----------------------------------|-------|-----|--|--|--|
|                                  | Theory                           |       |     |  |  |  |
| ZOO 201                          | ZOO 201 Computational Biology 4  |       |     |  |  |  |
| ZOO 202                          | General and Comparative          | 4     | 100 |  |  |  |
|                                  | Endocrinology                    |       |     |  |  |  |
| ZOO 203                          | Development Biology              | 4     | 100 |  |  |  |
| ZOO 204 Environmental Physiology |                                  | 4     | 100 |  |  |  |
|                                  | Practical                        |       |     |  |  |  |
| ZOO 205                          | Practical based on Zoo 201 & 202 | 4     | 100 |  |  |  |
| ZOO 206                          | Practical based on Zoo 203 & 204 | 4     | 100 |  |  |  |
|                                  | Seminar / Study Tour             |       | 25  |  |  |  |
|                                  |                                  | Total | 625 |  |  |  |

As per the credit system, the assessment of theory paper of 100 marks, weightage will be as follows: 70 marks theory assessment by University examination and 30 marks internal assessment by the college/institute. For internal assessment of candidate, periodical tests/seminars/viva/oral/quiz/study tour etc. may be suitably adopted as per the syllabus guidelines.

#### M. Sc. I, Semester: I **Paper ZOO 101 Title: Biosystematics** Maximum marks: 100 **Teaching Periods: 40= 4 credits** 1.0 Definition and basic concept of Biosystematics and Taxonomy (6)1.1 Historical Resume of Systematic 1.2 Importance and Applications of Biosystematics in Biology. 1.3 International Code of Zoological Nomenclature. **2.0** Trends in Biosystematics: **(6)** 2.1 Chemotaxonomy 2.2 Cytotaxonomy 2.3 Molecular Taxonomy 3.0 Molecular Perspectives on the Conservation of Diversity **(5)** 3.1 Diversity and Ecosystem Process -- Theory, Achievements and Future Directions 4.0 Dimensions of Speciation and Taxonomic Characters **(7)** 4.1 Mechanism of speciation in Panmictic and Apomictic species 4.2 Species concepts- category, different concepts, sub-species and other intra-specific categories 4.3 Theories of Biological Classification, Hierarchy of Categories 4.4 Taxonomic Characters- Different Kinds, Origin of Reproductive Isolation-Biological Mechanism Genetic Incompatibility 5.0 Procedure and keys in taxonomy **(7)** 5.1 Taxonomic Collection, Preservation and Curetting Process of Identification 5.2 Taxonomic Keys: Different Kinds of Taxonomic Keys, their merits and demerits 5.3 Systematic publications: Different Kinds of Publications 5.4 Process of Typification of different Zoological Types **6.0** Molecular Phylogenetics **(6)** 6.1 How to Construct Phylogenetic Trees? 6.2 Phylogenetic Inference: Distance Methods, Parsimony Methods, Maximum Likelihood Methods 6.3 Immunological Techniques. 6.4 Amino Acid Sequences and Phylogeny. 6.5 Nucleic Acid Phylogeny 7.0 Study of Biodiversity Indices: (3)7.1 Shannon diversity index, Simpson diversity index

#### **Suggested Reading Material:**

- 1. M.Kato- The Biology of Diversity.
- 2. J.C. Avise Molecular Markers. Natural History and Evolution, Champman & Hall, New York.
- 3. E.O. Wilson- Biodiversity, Academic Press, Washington.
- 4. G.G. Simpson Principle of Animal Taxonomy, Oxford IBH Publishing Company.
- 5. E. Mayer- Elements of Taxonomy.
- 6. E.O. Wilson- The Diversity of Life. W.W. Northern and Company.
- 7. B.K. Tikedar- Threatened Animals of India, ZSI Publication, Calcutta.
- 8. E. Mayer- Principles of Systematic Zoology, M. Hill Publication.

# Paper ZOO 102 Title: Tools and Techniques in Biology

| Maximum marks: 100 Teaching periods: 40= |         |                                                                                                                                                                | 40= 4 credits                                                                                                 |
|------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 1.0                                      | Princip | ples and uses of analytical Instruments                                                                                                                        | (6)                                                                                                           |
|                                          | 1.1     | Spectroscopy (Spectrophotometer, NMR, FTIR)                                                                                                                    |                                                                                                               |
|                                          |         | Lasers in Biology                                                                                                                                              |                                                                                                               |
|                                          |         | X- rays in Biology                                                                                                                                             |                                                                                                               |
|                                          |         | Electron Microscope (TEM, SEM)                                                                                                                                 |                                                                                                               |
|                                          | 1.5     | Proteomics – Mass spectrrophotometry                                                                                                                           |                                                                                                               |
| 2.0                                      | Cell C  | ulture Techniques                                                                                                                                              | (6)                                                                                                           |
|                                          |         | Design and functioning of Tissue Culture Laboratory                                                                                                            |                                                                                                               |
|                                          |         | Culture media preparation                                                                                                                                      |                                                                                                               |
|                                          | 2.3     | Types of culture: Monolayer, Suspension, Macrocarrier Culture, Cap                                                                                             | illary Culture                                                                                                |
|                                          |         | Units, Feeder Layers, Cell Secretions and Metabolic Harvesting                                                                                                 |                                                                                                               |
|                                          |         | Cell Viability Testing                                                                                                                                         |                                                                                                               |
|                                          |         | Cell Characterization                                                                                                                                          |                                                                                                               |
|                                          | 2.6     | Cell Transformation                                                                                                                                            |                                                                                                               |
| 3.0                                      | Cell-ba | ased techniques                                                                                                                                                | (6)                                                                                                           |
|                                          |         | Fusogens Somatic Cell: Fusion and its Application.                                                                                                             | (-)                                                                                                           |
|                                          |         | Fusion in different cell-cycle phases and its applications                                                                                                     |                                                                                                               |
|                                          | c)      | Cell hybrids and its applications                                                                                                                              |                                                                                                               |
| 4.0                                      | Cryote  | echnique                                                                                                                                                       | (5)                                                                                                           |
|                                          |         | Cryopreservation of Cells, Tissues, Organs and Organisms                                                                                                       |                                                                                                               |
|                                          |         | Cryotomy                                                                                                                                                       |                                                                                                               |
|                                          |         | Freeze - drying and freeze fracturing techniques                                                                                                               |                                                                                                               |
| 5.0                                      |         | ation techniques.                                                                                                                                              | (5)                                                                                                           |
|                                          | 5.1     | Chromatography-TLC& Paper Chromatography, Electrophoresis and                                                                                                  | nd its types,                                                                                                 |
|                                          | 5.0     | Column Fractionation                                                                                                                                           |                                                                                                               |
|                                          |         | Ultracentrifugation and sub-cellular fractionation Cell separation by: Flow-cytometry,                                                                         |                                                                                                               |
|                                          | 3.3     | Cen separation by Prow-Cytometry,                                                                                                                              |                                                                                                               |
| 6.0                                      | Radioi  | sotopes and uses.                                                                                                                                              | <b>(6)</b>                                                                                                    |
|                                          |         | Radiolabel Techniques in Biology                                                                                                                               |                                                                                                               |
|                                          |         | Radioactivity Counter Geigometry and Scintillation                                                                                                             |                                                                                                               |
|                                          |         | Autoradiography                                                                                                                                                |                                                                                                               |
|                                          |         | Metabolic labeling                                                                                                                                             |                                                                                                               |
| <b>7</b> A                               |         | Biotelemetry                                                                                                                                                   | (6)                                                                                                           |
| 7.0                                      |         | ological techniques based on antigen antibody interactions                                                                                                     | (6)                                                                                                           |
| onn                                      |         | ibody labels, Hybrid antibody, Immunoassay, Immunocytochemi , Vectors, DNA Cloning, DNA library.                                                               | stry and its                                                                                                  |
|                                          |         | eading Material:                                                                                                                                               |                                                                                                               |
| Jus                                      |         | n R.W. Masters. Animal Cell Culture. IRL Press.                                                                                                                |                                                                                                               |
|                                          |         | ert Braun. Introduction of Instrumental Analysis. McGrow Hill International Edi                                                                                | tions.                                                                                                        |
|                                          | 3. K. V | Wilson and K.H. Goulding. A Biologist Guide to Principles and Techniques of Pra                                                                                |                                                                                                               |
|                                          |         | chemistry. ELBS Ed.                                                                                                                                            |                                                                                                               |
|                                          |         | abhi, V. Biophysics. Narosa Publishing House.                                                                                                                  | المعالمة ا |
|                                          |         | en, P.S. & Mathur. Tools and Techniques in Life Sciences. CBS Publishers and D<br>th Wilson & John Walker. Practical Biochemistry. Cambridge University Press. | asuroutors.                                                                                                   |
|                                          |         | Cooper, A molecular approach Second Edition                                                                                                                    |                                                                                                               |
|                                          |         | : Alberts, 2002                                                                                                                                                |                                                                                                               |
|                                          |         | nenberg E. Rediscovering Biology: Edition                                                                                                                      |                                                                                                               |
|                                          | 10 Cai  | sa. Call Physiology                                                                                                                                            |                                                                                                               |

## Title: Cell and Molecular Biology

| Maximum marks: 100                                                                                                                                                                                                                                                                                                                                                                               | <b>Teaching periods: 40= 04 Credits</b> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| <ul> <li>1.0 Biomembranes:</li> <li>1.1 Molecular Composition, Arrangement and Fu</li> <li>1.2 Transport across the cell membrane: Passive a symports and antiports.</li> <li>1.3 Transport across epithelia</li> <li>1.4 Membrane potential</li> </ul>                                                                                                                                          |                                         |
| 2.0 <b>Structural organization and function of intrace</b><br>Nucleus, Mitochondria, Golgi bodies, Lysosomes                                                                                                                                                                                                                                                                                     | 9                                       |
| <ul> <li>3.0 Cytoskeleton:</li> <li>3.1 Microfilaments and Microtubules: Structure a</li> <li>3.2 Cilia, Flagella: Structure and Dynamics</li> <li>3.3 Microtubules in Mitosis</li> <li>3.4 Microtubular organizing centers: Centriole, K</li> <li>3.5 Intermediate filaments: structure and function</li> <li>3.6 Actin-binding proteins</li> <li>3.7 Cell movement and cytoskeleton</li> </ul> | inetochore, Basal Bodies                |
| <ul> <li>4.0 Cell-cell adhesion</li> <li>4.1 Cell junctions (tight adhesion belts, focation hemidesmosomes, gap, chemical synapses, particular adhesion)</li> <li>4.2 Integrins</li> <li>4.3 Collagens</li> </ul>                                                                                                                                                                                |                                         |
| <ul><li>5.0 Cell cycle</li><li>5.1 Cell cycle control (cyclins and cyclin depende (cdk), MPF-role, re-replication block and its r control)</li></ul>                                                                                                                                                                                                                                             |                                         |
| <ul> <li>6.0 Cell organelles and cell traffic</li> <li>6.1 Protein synthesis on free and bound polysome</li> <li>6.2 Uptake into ER</li> <li>6.3 Membrane proteins and other proteins in ER</li> <li>6.4 Post transcriptional modification and protein s</li> <li>6.5 Lysosomal assembly and functions</li> <li>6.6 Biogenesis of mitochondria</li> </ul>                                        | sorting in Golgi apparatus              |
| 7.0 Biology of cancer- causes of cancer, cancer cel                                                                                                                                                                                                                                                                                                                                              | I morphology and properties (5)         |

#### **Suggested Reading Material**

- 1. B. Alberts *et al*. The Molecular Biology of Cell Garland Publishing Inc. New York and London.
- 2. De. Robertis *et al.* Cell and Molecular Biology. Saunders College Publishing, Philadelphia.
- 3. W. H. Elliot and D.C. Elliot. Biochemistry and Molecular Biology. Oxford University Press. Oxford, New York.
- 4. Giese A.C. Cell Physiology. Saunders College Publishing, Philadelphia.
- 5. P.S. Verma & V.K. Agrawal . Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. S. Chand and Company, New Delhi-55
- 6. Sandhya Mitra. Genetic Engineering, Macmillan.
- 7. R.C. Dubey .A text Book of Biotechnology. S. Chand and Company, New Delhi-
- 8. Mohan Arora. Genetic Engineering. Himalaya Publishing House.
- 9. Becker Kleins Smith. The World of the Cell. Pearson Education.
- 10. Geoffrey M. Cooper. Cell. A Molecular Approach. ASM Press, Washington.
- 11. Gerald Karp. Cell and Molecular Biology. Willey International Edition.
- 12. Watson et al. Molecular Biology of the Gene. Pearson Education.

## **Title: Population Genetics and Evolution**

1.0 Concepts of evolution and theories of organic evolution

Teaching periods 40 = 4 Credits

Maximum marks: 100

|            |     | nergence of evolutionary thoughts: Lamarck, Darwin-concepts of variation, |                    |
|------------|-----|---------------------------------------------------------------------------|--------------------|
|            |     | aggle, fitness and natural selection, Mendelism, spontaneity of muta      | ations, the        |
|            |     | olutionary synthesis                                                      |                    |
| 2.0        | N   | Neo Darwinism                                                             | <b>(6)</b>         |
|            |     | 2.1 Hardy-Weinberg Law of genetic equilibrium                             |                    |
|            |     | 2.2 A Detailed account of destabilizing forces a) Natural selection b) N  | <b>futation</b> c) |
|            |     | Genetic drift d) Migration e) Meiotic drive                               |                    |
| 3. 0       | M   | olecular population genetics                                              | <b>(6)</b>         |
|            |     | 4.1 Patterns of change in nucleotide and amino acid sequences             |                    |
|            |     | 4.2 Ecological significance of molecular variations                       |                    |
|            |     | 4.3 Emergence of Neo-Darwinism-neutral hypothesis                         |                    |
| 4.0        | Ge  | netics of speciation                                                      | <b>(4)</b>         |
|            |     | 6.1 Phylogenetic and biological concept of speciation                     |                    |
|            |     | 6.2 Patterns and mechanisms of reproductive isolation                     |                    |
|            |     | 6.3 Models of speciation (Allopatric, Sympatric and Parapatric)           |                    |
| <b>5.0</b> | Mo  | olecular evolution                                                        | <b>(6)</b>         |
|            |     | 7.1 Gene evolution                                                        |                    |
|            |     | 7.2 Evolution of gene families, Molecular drive in evolution              |                    |
|            |     | 7.3 Assessment of molecular variation                                     |                    |
|            |     | 7.4 Evolutionary links based on gene and protein families                 |                    |
|            |     | and eukaryotic evolution based on different gene families                 |                    |
| 6.0        | Or  | igin of higher categories                                                 | <b>(4)</b>         |
|            |     | 8.1 Phylogenetic gradualism and punctuated equilibrium                    |                    |
|            |     | 8.2 Major trends in the origin of higher categories                       |                    |
|            |     | 8.3 Micro and macro evolution                                             |                    |
| <b>7.0</b> | Pop | pulation genetics and ecology                                             | <b>(6)</b>         |
|            |     | 9.1 Metapopulations                                                       |                    |
|            |     | 9.2 Monitoring natural populations                                        |                    |
|            |     | 9.3 Why small populations become extinct?                                 |                    |
|            |     | 9.4 Loss of genetic variation                                             |                    |
|            |     | 9.5 Conservation of genetic resources in diverse taxa                     |                    |
|            |     | 9.6 Genomic studies in biodiversity                                       |                    |
| _          | _   | sted Reading Material                                                     |                    |
|            | 1.  | Hart, D.L. A primer of Population Genetics. Suinuaer associates, Inc.     |                    |
|            | _   | Massachusetts.                                                            |                    |
|            |     | King. M. Species Evolution. The Cambridge University Press, Cambridge     |                    |
|            | 3.  | Smith J.M. Evolutionary Genetics. Oxford University Press. Oxford, Ne     | w York.            |
|            |     | Merrel D.J. Evolution and Genetics. Holt, Rinchart and Winston, Inc.      |                    |
|            | 5.  | Jha A.P. Genes and Evolution. John Publication, New Delhi.                |                    |
|            | 6.  | Boylan. Genetic Engineering: Science and Ethics on the New Frontier.Pe    | arson              |
|            | _   | Education. Delhi                                                          | 0 0 -              |
| ,          | /.  | G.A. Harrison, G.M. Tanner, D.R. Pilbeam, P.T. Baker; Human Biolog        | y. Oxford          |
|            | 0   | Science Publication. 1988.                                                | 2001               |
|            | X   | Carl Zimmer Harper: Evolution The triumph of an Idea Collins Publishe     | rs 2001            |

9. PBS Org. Website for Evolution concept

#### M.Sc. I, SEMESTER – I

# PRACTICAL PAPER ZOO 105 (Based on Theory Papers ZOO 101 & ZOO 102)

#### **Biosystematics:**

#### Marks 100= 4 Credits

- 1. Calculation of diversity indices of Zooplankton communities from freshwater resources.
- 2. Classification of Invertebrates specimens available in laboratory (approximately 40) preserved/CD/Models/chart.
- 3. Study of types of invertebrate larvae –Peculiarities and evolutionary significance/CD/Models/chart
- 4. Classification of Vertebrates specimens available in laboratory (approximately 40) preserved/ CD/Models/chart
- 5. Identification of poisonous and non poisonous snakes (preserved/CD/Models/chart)
- 6. Study of temporal vacuities in skulls of reptiles.

#### **Tools & Techniques:**

- **1.** Study of different laboratory equipments (Calorimeter, Spectrophotometer, pH meter, Electrophorosis, Ultra Centrifuge machine etc.)
- 2. Study of different microscopes (compound, phase contrast).
- 3. Cell separation by density gradient centrifugation
- 4. Separation of amino acids by paper chromatography.
- 5. Separation of sugars by paper chromatography.
- 6. Isolation of active ingredients from natural resources by using column chromatography.
- 7. Sub cellular fractionation by using ultra centrifugation.
- 8. DNA Extraction and Isolation.
- 9. Analysis of DNA samples by Gel Electrophoresis.
- 10. Excursion: Visit to ZSI/Seashore/ National Institutes /Wildlife Sanctuary/ National Parks/ Water reservoirs

## PRACTICAL PAPER ZOO 106 (Based on Theory Papers ZOO 103 & ZOO 104)

#### Cell and Molecular Biology:

#### Marks 100= 4 Credits

- 1. Sub cellular fractionation of suitable material to show Nucleus and Mitochondia.
- 2. Estimation of marker enzyme Succinate dehydrogenase in mitochondrial fraction. (use suitable material).
- 3. Demonstration of collagen using suitable material/virtual demo/CD.
- 4. Metaphasic chromosome preparation of mitosis using suitable material
- 5. Demonstration of meiosis in onion bud.
- 6. Preparation of *Drosophila* Culture (Virtual/CD/Model)
- 7. Polytene chromosomes from permanent slide/photos of salivary glands of *Chironomous/Drosophila* larva (CD/Model/Chart).

#### **Population genetics and evolution:**

- 1. Migration influenced examples identification with pictures/Chart/Model/CD
- 2. Isolation influenced examples identification with pictures/Chart/Model/CD
- 3. Evolution influenced examples identification with pictures/Chart/Model/CD
- 4. Estimation of genes & genotypic frequencies by Hardy Weinberg law.
- 5. Construction of Phylogenetic trees based on DNA, RNA and RFLP
- 6. Study of prezygotic isolation in some species of Drosophila.
- 7. Case studies related with population genetics and evolution.

#### M. Sc. I SEMESTER – II

#### \_\_\_\_\_\_

#### **PAPER ZOO 201**

## **Title: Computational Biology**

Maximum marks: 100 Teaching periods: 40=4 Credits

#### 1.0 Measures of Central Tendency and Measures of Dispersion: (8)1.1 Arithmetic mean, median and mode 1.2 Absolute and relative measures of dispersion: Range and its coefficient, Mean deviation and its coefficient, Quartile deviation and its coefficient, Standard deviation and its coefficient, Coefficient of variation 2.0 Correlation and regression (ungrouped data): **(7)** Concept of correlation and regression, Methods of studying correlation a) Scatter diagram b) Karl Pearson's coefficient of correlation and c) Rank correlation 3.0 Probability **(5)** 3.1 Elements of Probability, classical definition of probability 4.0 Probability distributions **(5)** 4.1 Introduction to probability distribution 4.2 Definition and properties of binomial distribution and normal distribution. **5.0** Tests of simple hypothesis **(7)** 5.1 Based on normal distribution (population mean, population proportion) 5.2 Student's 'T' test (paired, unpaired) 5.3 Chi-square tests for goodness of fit and for independence of attributes. 6.0 One way Analysis of variance **(4)**

## **Suggested Reading Material**

7.0 Sequencing software

- 1. Sokal R.R. and F.J. Rohit. Biometry, Freeman, San Fransisco.
- 2. Gupta- Fundamentals of Statistics.
- 3. Snedecor, G.W. and W.G. Cochran, Statistical Methods, East-West Press, New Delhi.
- 4. Green, R.H. Sampling Design and Statistical Methods for Environmental Biologist. John Wiley & sons, New York.

7.1 Sequencing analytical techniques for DNA, amino acids & proteins synthesis.

- 5. Pranab Kumar Banerjee. Introduction to Biostatistics. S. Chand and Company, New Delhi-55.
- 6. Zar. Biostatistician Analysis. Pearson Education. Delhi.
- 7. Deshpande A.V.Introduction to Probablity and Statistics. Vipul Prakashan.
- 8. Arora P.N. and Malhan P.K. Biostatistics. Himalaya Publishing House.

**(4)** 

## **Title : General and Comparative Endocrinology**

| Max                                  | ximum marks: 100 Teaching periods:                                                                                                                                     | <b>Teaching periods: 40= 4 Credits</b> |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| 1.0                                  | Endocrinology: General consideration 1.1 Discovery of hormones 1.2 Classification and chemical nature of hormones 1.3 Experimental methods of hormone study            | (6)                                    |  |
| 2.0                                  | Neuro-endocrine system of vertebrates and neuro secretion in inve                                                                                                      | ertebrates<br>(5)                      |  |
| 3.0                                  | Biosynthesis and mechanism of hormone secretion 3.1 Biosynthesis of amino acid derivative peptides and steroid horm 3.2 Hormones: Secretion, transport and degradation | (6) nones                              |  |
| 4.0                                  | Physiology and mechanism of hormone action 4.1 Hormones and homeostasis 4.2 Hormone receptors and mechanism of hormone action 4.3 Hormonal regulation in metabolism    | (6)                                    |  |
| 5.0                                  | Hormone action in different facets of life 5.1 Growth 5.2 Migration and colour change 5.3 Behavior                                                                     | (6)                                    |  |
| 6.0                                  | Hormones and reproduction in Vertebrates                                                                                                                               | (6)                                    |  |
| 7.0                                  | Hormones of gastro -intestinal tract                                                                                                                                   | (5)                                    |  |
| 1<br>2<br>3<br>4<br>5<br>7<br>8<br>9 | Burch, Warner M, Burch, Endocrinology, Lippincott Williams & Wil                                                                                                       | ork.<br>kins.<br>ition.                |  |

## **Title: Developmental Biology**

| Credits |
|---------|
|         |

| Ι. | Evolution of sexual reproduction in Eukaryotes                                   | (6)       |
|----|----------------------------------------------------------------------------------|-----------|
| 2. | Study of egg, blastula, gastrula and three germ layers in Amphioxus, Frog.       | , Chick   |
|    | and Mammals, Fertilization and Capacitation                                      | (6)       |
| 3. | Introduction to Organogenesis                                                    | (6)       |
|    | Development of limbs in Fishes, Amphibians, Birds and Mammals. Regul             | ation of  |
|    | limb development in Chordates                                                    | (6)       |
| 4. | Development of anteriority to posteriority in <i>Drosophila</i> and Chordates. R | egulation |
|    | of development in <i>Drosophila</i>                                              | (5)       |
| 5. | Programmed Cell Death: Cell Apoptosis & its role in development of hun           | nan limbs |
|    |                                                                                  | (4)       |
| 6. | Cloning experiments in Mammals, Embryonic stem cells and their appli             | cations   |
|    |                                                                                  | (4)       |
| 7. | Regeneration                                                                     | (3)       |

#### **Suggested Reading Material**

- 1. Turner, C.D. and Bangara J.T. General Endocrinology
- 2. R.G. Edwards. Human Reproduction.
- 3. Austen C.R. and Short R.V. Reproduction in Animals.
- 4. F.T. Longo. Fertilization, Chapman & Hall.
- 5. Mathur Ramesh: Embryology, Anmol Publications .
- 6. Morgan T. H.: Embryology & Genetics. Agrobios India
- 7. Balanski, Introduction to Embryology.
- 8. Scott F Gilbert: Developmental Biology, Sixth Edition. Sinaur Publications

### **Title: Environmental Physiology**

| Ma         | ximum    | Marks:              | 100                                                                              |                                  | Teac           | ching perio               | ods: 40= 4 C                  | Credits     |
|------------|----------|---------------------|----------------------------------------------------------------------------------|----------------------------------|----------------|---------------------------|-------------------------------|-------------|
| 1.0        | Home     | ostasis an          | nd physiologica                                                                  | l regulations                    |                |                           |                               | <b>(6)</b>  |
|            | 1.1      | Concept             | of homeostasis                                                                   |                                  |                |                           |                               |             |
|            | 1.2      | Acclimat            | tization- acclima                                                                | atization and ac                 | laptatio       | on                        |                               |             |
| 2.0        | Physio   | logy of st          | tress                                                                            |                                  |                |                           |                               | <b>(6)</b>  |
|            |          |                     | ental concept of                                                                 |                                  |                |                           |                               |             |
|            |          |                     | and effects of str                                                               |                                  |                |                           |                               |             |
|            |          |                     | train and fatigue                                                                |                                  |                |                           |                               |             |
|            | 2.4      | Environr toxins     | mental stresses                                                                  | (temperature,                    | light,         | humidity,                 | vibration,                    | noise and   |
|            | 2.5      | Physiolo            | gical responses                                                                  | to stresses                      |                |                           |                               |             |
|            |          |                     | anagement                                                                        |                                  |                |                           |                               |             |
|            | 2.7      | Man und             | ler stress                                                                       |                                  |                |                           |                               |             |
| 3.0        |          |                     | nd Health                                                                        |                                  |                |                           |                               | <b>(6)</b>  |
|            |          |                     | mental health ha                                                                 |                                  |                |                           |                               |             |
|            |          |                     | l health hazards                                                                 | <b>,</b>                         |                |                           |                               |             |
|            |          |                     | ional diseases                                                                   |                                  |                |                           |                               |             |
| 4.0        |          |                     | nachine and envi                                                                 | ronment syster                   | n              |                           |                               | (6)         |
|            | -        | physiolog           |                                                                                  |                                  |                |                           |                               | <b>(6)</b>  |
| <b>5.0</b> |          | and circu           |                                                                                  |                                  |                |                           |                               | <b>(6)</b>  |
|            | tissı    | ues, ECG            | cles, haemopoies - Its principle ar ılation of cardiac                           | nd significance,                 |                |                           |                               | •           |
| 6.0        | Physio   | logy of re          | espiration and n                                                                 | ervous system                    |                |                           |                               | <b>(6)</b>  |
|            | gases, o | exchange on section | espiratory system<br>of gases, waste of<br>potential, gross<br>us system, neural | elimination, neu<br>neuroanatomy | ral and of the | l chemical i<br>brain and | regulation of<br>spinal cord, | respiration |
|            |          | egulation           |                                                                                  |                                  |                |                           |                               | <b>(4)</b>  |
| Co         | mfort zo | ne hody             | temperature _ nh                                                                 | weical chemica                   | land r         | naural ragui              | lation acclin                 | natization  |

Comfort zone, body temperature – physical, chemical and neural regulation, acclimatization **Suggested Reading Material** 

- 1. Echert R. Animal Physiology: Mechanisms and Adaptations. W.H. Freeman and Company, New York.
- 2. Hoar W.S. General and Comparative Animal Physiology, Prentice Hall of India.
- 3. Pummer L. Practical Biochemistry, Tata McGrow -Hill.
- 4. Wilson K. and Walker J. Practical Biochemistry.
- 5. Strand F.L. Physiology: A Regulatory System Approach. Macmillan Publishing Co. New York.
- 6. Wilma P.G. et al. Environmental Physiology, Blackwell Sci. Oxford, UK.
- 7. Frederic Martini. Fundamentals of Anatomy and Physiology. Prentice Hall.
- 8. Tortora. Principles of Anatomy and Physiology. Wiley Publications.
- 9. Ezeilo, Gabriel C. Textbook of Physiology. Oxford University Press.

#### PRACTICAL PAPER ZOO 205

### (Based on Theory papers ZOO 201 & ZOO 202)

Marks: 100 = 4 Credits

#### **Computational Biology:**

- 1. Example based on Measures of central tendency.
- 2. Example based on Measures of dispersion.
- 3. Example based on Coefficient of variation.
- 4. Example based on Correlation coefficient and regression coefficient (ungrouped data).
- 5. Problems based on classical definition of probability
- 6. Example based on Chi-square test
- 7. Example based on Student's 'T' test
- 8. Example based on one way ANOVA
- 9. Sequence search using BLAST search engine.
- 10. Reading of sequence of DNA and protein based on photograph of polyacryl amide gel.
- 11. Any other practical set by the Department in connection with the computational Biology.

#### **General and Comparative Endocrinology:**

- 1. Study of testicular cells Sertoli cells, Interstitial cells and sperm cells in the sections of testis (Permanent slides/CD/Model/Chart).
- 2. Demonstration of cell types in pituitary (Permanent slides/CD/Model/Chart).
- 3. Demonstration of neurosecretory cells (Permanent slides/CD/Model/Chart).
- 4. Bioassay of estrogen by vaginal smear technique by photos / pictures/permanent slides/CD/Model/Chart.
- 5. Effect of Adrenalin and Atropine Sulphates (Permanent slides/CD/Model/Chart/virtual).
- 6. Study of different endocrine glands of vertebrates and invertebrates (Permanent slides/CD/Model/Chart).

#### PRACTICAL PAPER ZOO 206

#### (Based on Theory papers ZOO 203 & ZOO 204)

Marks: 100 = 4 Credits

#### **Developmental Biology**

- 1. Sperm motility test and analysis (Suitable Material)
- 2. Demonstrate of different phases of oestrus cycle in Rat.
- 3. To demonstrate acrosomal development in Rat testis by PAS method. (Procedure with permanent slides/CD/Chart/Virtual).
- 4. Procedure to understand embryological stages of chick up to 72 hrs' by non invasive method- using CD/Model/Chart
- 5. Study of mammalian development (Rat) up to three germ layers using CD/Virtual method.

#### **Environmental Physiology**

- 1. Heart perfusion and recording of cardiogram of frog by CD/Model/Virtual demonstration
- 2. Estimation of rate of  $O_2$  consumption by the freshwater fish
- 3. Study of effect of Temperature on the heart rate of frog (CD/Virtual).
- 4. Study of effect of temperature on chick heart rate. (CD/Virtual).
- 5. Study of spiracle and trachea (CD/ permanent slide/Model)
- 5. Study of effect of aphlatoxins or CCl<sub>4</sub> induction (CD/Chart/Conventional Method)
- 6. Estimation of Blood lactic acid (use suitable material with standard method).
- 7. To study digestive enzyme (Amylase, Protease and Lipase) by standard biochemical methods.
- 8 To study effects of various physical and chemical factors on enzyme activity and to demonstrate the protein nature of enzyme (by standard method).