Page	1	of	3

Seat	
No.	

M.Sc. (Semester – I) (New) (CBCS) Examination Oct/Nov-2019 Physics (Condensed Matter Physics) MATHEMATICAL TECHNIQUES

Day & Date: Monday, 18-11-2019 Time: 11:30 AM To 02:00 PM

1)

Instructions: 1) All questions are compulsory. 2) Figures to the right indicate full marks.

Fill in the blanks by choosing correct alternatives given below. Q.1

- Which of the following is an analytic function of the complex variable z = x + iy in the domain |z| < 2?
 - a) $(3+x-iy)^7$ c) $(1-x-iy)^4 (7-x+iy)^3$ b) $(1+x+iy)^4 (7-x-iy)^3$ c) $(1-x-iy)^4 (7-x+iy)^3$ d) $(x+iy-1)^{\frac{1}{2}}$
- Let $u(x, y) = x + \frac{1}{2}(x^2 y^2)$ be the real part of analytic function f(z) of the 2) complex variable, z = x + iy. The imaginary part of f(z) is _____. a) y + xy
 - b) xyd) $y^2 x^2$ c) y

If C is the contour defined by $|z| = \frac{1}{2}$, the value of the integral $\oint_C \frac{dz}{\sin^2 z}$ is 3)

a)
$$\infty$$
b) $2\pi i$ c) 0 d) πi

The Cauchy – Riemann equation in polar form is given as ______ a) $\frac{\partial u}{\partial r} = \frac{\partial v}{\partial \theta}$ and $\frac{\partial u}{\partial \theta} = \frac{\partial v}{\partial r}$ b) $\frac{\partial u}{\partial r} = r\frac{\partial v}{\partial \theta}$ and $\frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$ c) $\frac{\partial u}{\partial r} = \frac{1}{r}\frac{\partial v}{\partial \theta}$ and $\frac{1}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$ d) $\frac{\partial u}{\partial r} = \frac{\partial v}{\partial \theta}$ and $\frac{1}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$ 4)

- 5) If A, B and C are non-zero Hermitian operators, which of the following relations must be false?
 - a) [A, B] = CAB + BA = Cb)
 - c) ABA = Cd) A + B = C

A unitary matrix is defined by the expression: ______. 6)

- a) $U = U^T$, where superscript T means transpose
- b) $U = U^{\dagger}$
- c) $U = U^*$
- d) $U^{-1} = U^{\dagger}$

Any set of linearly independent vectors can be orthonormalized by the 7)

- a) Pound smith procedure Gram – Schmidt procedure b)
- c) Sobolev method d) Sobolev – P method
- What are the eigenvalues of $\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$? 8)
 - a) Both are 0 0 and 1 b)
 - c) 0 and -1 d) 0 and 2

Set

Max. Marks: 70

9) The differential equation of all parabolas having axis parallel to y- axis is

Write short notes. (Any Two)
1) The Cauchy Principal Value
2) Properties of Fourier series B)

- Linear dependent and independent set of vectors 3)

06

Q.3 A) Answer the following questions. (Any Two)

- 1) Show that the eigenvalues of a Hermitian matrix are all real.
- 2) State and prove Cauchy's Integral theorem.
- 3) Solve the differential equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = 2\cos x$

B) Answer the following (Any One)

1) Using partial fraction expansion, show that for $a^2 \neq b^2$,

$$\mathcal{L}^{-1}\left\{\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right\} = \frac{1}{a^2-b^2}\left[a\sin(at)-b\sin(bt)\right]$$
2) By use of the residue theorem, evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{(a+b\cos\theta)^2}$$

where a > b > 0.

Q.4 A) Answer the following questions. (Any Two)

- 1) Find the eigenvalues and eigenvectors of $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$
- 2) Find the Fourier transform of Gaussian distribution functions.
- 3) Solve the differential equation, $y^3 \frac{dy}{dx} + \frac{1}{x}y^4 = x$

B) Answer the following questions. (Any One)

1) If $f(x) = x + x^2$ is expanded in a Fourier series then show that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

2) Find the value of integral

$$I \quad P \int_{-\infty}^{\infty} \frac{e^{ix}}{x} dx$$

Q.5 Answer the following questions. (Any Two)

- a) Develop the Fourier expansion for $f(t) = \frac{\sin wt}{-\sin wt}$ $0 \le wt \le \pi$ $-\pi \le wt \le 0$
- **b)** Find a matrix s that diagonalizes.

$$A = \begin{pmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

c) By use of the three-dimensional Fourier transform method, solve poisson's equation for the electrostatic potential function.

$$\nabla^2 \phi(\vec{r}) = -\frac{\varrho(\vec{r})}{\epsilon}$$

06

10

04

08

Seat No.							Set	Ρ
	М.	Sc.(Semester Phy C	– I) (New) (CBC sics (Condense ONDENSED MA	S) Ex d Ma TTEF	caminati tter Phy R PHYSI	ion Oct/No ⁄sics) CS	ov-2019	
Day 8 Time:	Date 11:30	: Tuesday, 05-11) AM To 02:00 PI	-2019 VI				Max. Marks	: 70
Instru	uction	s: 1) All question 2) Figures to t	ns are compulsory. The right indicate full	l mark	S.			
Q.1	Fill in 1)	the blanks by Relative permitti a) 2 c) 1	choosing correct a vity (ε_r) of the air is	b) d)	atives giv 0.5 0	en below.		14
	2)	Reciprocal lattic a) K'-K c) K' + K	e vector G =	 b) d)	K - K ' (K'+K) ²			
	3)	The electronic p a) $4\pi\varepsilon_0$ c) $4\pi\varepsilon_0 R^3$	olarizability α_e of a ı	monoa b) d)	atomic gas $4\pi \varepsilon_0 R$ $4\pi \varepsilon_0^2$	s is	-	
	4)	Elemental solid a) electronic c) orientationa	dielectric has only _ I	b) d)	polariza ionic all	ation.		
	5)	The Fermi energy a) $\frac{Ec+Ev}{2}$ c) $\frac{Ec-Ev}{2}$	y of intrinsic semic	onduc b) d)	$ \frac{cr is}{\frac{cc+Ed}{2}} $			
	6)	Number of tetrac a) 2 c) 4	d axis in simple cub	ic sys [:] b) d)	tem are 3 8			
	7)	Plane cut to neg a) 011 c) 110	ative x axis have th	e mille b) d)	er indices 001 100			
	8)	Which of the foll a) Majority car c) Holes	owing cannot actua riers	lly mo b) d)	ve? lons Free elee	ctron		
	9)	Effective mass is a) mean c) residual	s equal to	mass b) d)	for free e real zero	lectron.		
	10)	In an p dipole. a) orientationa c) electronic	olarization, electror	nic clo b) d)	ud is comi ionic optical	ing to one si	de to form	
	11)	FCC structure co a) Two c) nine	ontains the contribu	tion o b) d)	f four six	atoms.		

	12)	In monoclinic lattice are equal. a) a, b, c b) α, β, γ c) h, k, l d) none of these	
	13)	Conductivity in metal depends on mobility. a) proton b) neutron c) electron d) none of these	
	14)	Penetration depth varies witha) pressureb) Temperaturec) volumed) Width	
Q.2	A)	 Answer the following (Any Four) 1) Define packing fraction. 2) Define coordination number. 3) What is dielectric loss? 4) What is penetration depth? 5) What is rectification? 	08
	B)	 Write short notes (Any Two) 1) Brillion zones. 2) Effective mass of the electron. 3) Schottky barrier. 	06
Q.3	A)	 Answer the following (Any Two) 1) Derive the rectifier equation. 2) Write about orientational polarization. 3) Explain thermal properties of the superconductor. 	08
	B)	 Answer the following (Any One) 1) Explain dielectrics loss angle and power factor. 2) Explain the defects in solids. 	06
Q.4	A)	 Answer the following (Any Two) 1) Show the absence of fivefold symmetry. 2) Explain Missner's effect. 3) Write about Reciprocal Lattice. 	10
	B)	 Answer the following (Any One) 1) Distinguish direct and indirect band gap semiconductors. 2) Write about London equation. 	04
Q.5	Ans a) b) c)	wer the following (Any Two) Write about the behavior of electron in a periodic potential. Give the theory of DC Josephson's effect. Give the expression for inter planer spacing (d).	14

Page	1	of	3

Seat	
No.	

M.Sc. (Semester - I) (New) (CBCS) Examination Oct/Nov-2019 **Physics (Condensed Matter Physics) ANALOG & DIGITAL ELECTRONICS**

Day & Date: Thursday, 07-11-2019 Time: 11:30 AM To 02:00 PM

Instructions: 1) All questions are compulsory.

2) Figures to the right indicate full marks.

Fill in the blanks by choosing correct alternatives. Q.1

- In a differential amplifier, the configuration is said to be an 'unbalanced 1) output', if
 - a) Output voltage is measured between two collectors
 - b) Output is measured with respect to ground
 - c) Two input signals are used
 - d) All the above

An ideal operational amplifier has ____ 2)

- infinite output impedance b) zero input impedance a)
- infinite bandwidth C) d) all of the above

3) Another name for a unity gain amplifier is _

- difference amplifier b) comparator a)
- single ended d) voltage follower c)
- 4) What should be the value of input resistance for an ideal voltage amplifier circuit?
 - b) Unity a) Zero Infinity d) Unpredictable c)
- The use of negative feedback _____ 5)
 - a) reduces the voltage gain of an Op-amp
 - b) makes the Op-amp oscillate
 - c) makes linear operation possible
 - d) answers (a) and (b)

Hartley oscillator is commonly used in 6) a)

- Radio receivers b) Radio transmitters
- TV receivers C) d) None of the above

7) A Wein-bridge oscillator uses which feedback?

- only positive b) only negative a)
- both negative and positive d) none of the above c)
- Circuit which consist of a quasi-stable state is called 8)
 - a) bistable circuit b) monostable circuit c)
 - tri stable circuits d) tristate circuit
- 9) What is the range of the voltage level of the LM317 adjusted voltage regulator?
 - a) 0 V to 5 V b) 1.2 V to 37 V
 - c) -5 V to -24 V d) 5 V to 24 V

Max. Marks: 70

Set

- 10) Simplify Y = AB' + (A' + B) C
 - a) AB' +C

a)

- b) (A + B')(C'+D)(A'+B) (C'+D) d) (A+B') (C+D') c)
- 11) The EXCLUSIVE NOR gate is equivalent to which gate followed by an inverter.
 - a) OR b) AND
 - C) NAND d) XOR

12) The basic latch consists of _____

- a) two inverters
- b) two comparators two amplifiers C)
 - d) two adders
- 13) Which is the 16-bit register for 8085 microprocessor?
 - stack pointer b) accumulator
 - register **B** d) register C c)
- A bus connected between the CPU and main memory that permits transfer 14) of information between main memory and CPU is known as _____
 - DMA bus a) b) memory bus
 - d) control bus address bus c)

Q.2 A) Answer the following questions. (Any Four)

- 1) Define open loop and closed loop amplifier circuits.
 - 2) Explain CMRR.
 - 3) Explain the conditions of the sustainable oscillator.
 - Define AND gate. Write its logic symbol and truth table. 4)
 - State and prove De Morgan's theorem. 5)

Write Notes. (Any Two) B)

- 1) Fixed regulators.
- 2) Explain the concept of virtual ground.
- Dual input balance output differential amplifier. 3)

Q.3 Answer the following questions. (Any Two) A)

- Discuss the effect of feedback on closed loop gain. 1)
- 2) Draw the circuit diagram and output wave forms of triangle wave generator.
- Explain registers in 8085. 3)

B) Answer the following question. (Any One)

- Derive an expression for input resistance and bandwidth of voltage 1) series negative feedback amplifier.
- Write logic diagram and truth table of RS flip flop and explain its 2) working.

Answer the following questions. (Any Two) Q.4 A)

- A phase shift oscillator uses register R=220 Ohms, what should be 1) the capacitance value if the capacitor required for a phase shift oscillator of frequency of 120 Hz and 1 KHz.
- Derive an expression for output resistance with feedback in a closed 2) loop amplifier.
- Write an assembly language program to add two 8 bit numbers. 3)

Answer the following questions. (Any One) B)

- Derive an expression for op. amp as integrator. 1)
- 2) With a neat circuit diagram explain switching regulator.

08

06

08

06

14

Q.5 Answer the following questions. (Any Two)

- 1) With a near circuit diagram explain master slave JK flip flop.
- 2)
- With a near circuit diagram explain the working of LC tunable shift oscillator. Write an assembly language program for 2's complement of two 16-bit 3) numbers.

08

SLR-FA-462

Set

Page	1	of	2

06

Seat	
No.	

M.Sc. (Semester - I) (New) (CBCS) Examination Oct/Nov-2019 **Physics (Condensed Matter Physics) CLASSICAL MECHANICS** Day & Date: Saturday, 09-11-2019 Max. Marks: 70 Time: 11:30 AM To 02:00 PM **Instructions:** 1) All questions are compulsory. 2) Figures to the right indicate full marks.

3) Use of non-programmable calculator is allowed. Q.1 Fill in the blanks by choosing the correct alternatives given below. A) The configuration space is _____ dimensional space. 1) 6N a) b) 3N c) 2N 4N d) b) $+ \partial u / \partial p_j$ 2) The Poisson bracket $[u, q_i] =$ _____. $-\partial u/\partial p_i$ a) c) $\partial u / \partial q_i$ The generating function $F_2(q, P, t)$ generates _____ transformations. 3) exchange identity a) b) c) none d) infinite 4) The Hamiltonian is defined as _____ H = T-Vb) H = T.Va) H = T/VC) H = T + Vd) In Lagrangian the motion of the system has been described by the 5) consideration. a) force b) momentum C) energy d) acceleration If $mi \ll m_2$, then the centre of mass of system coincides with the centre 6) of mass of _____. b) a) m₁ m_2 in between m_1 and m_2 d) away from m₁ c) If $\in > 1$, then the shape of the orbit formed will be _____. 7) Circle a) Ellipse b) Hyperbola Parabola C) d)

In mechanics the action is _____. 8) b) $\Sigma q + p$ Σq.p a)

c) Σq-p

- B) State True or False:
 - The Lagrangian equation from D'Alembarts principle is based on 1) Newton's laws.
 - 2) [u, c] = 0 where c is constant.

The variational principle associated with Hamiltonian formulation is 3) called the principle of least action.

4) The Hamiltonian formulation is more advantageous than Newtonian.

 $\Sigma q^2 p^2$

d)

- In the configuration space system is having unique path. 5)
- In mechanics the addition of q and p is called action. 6)

Q.2	A)	 Answer the following questions (Any Four) 1) What is phase space? Explain it with one example. 2) Define Poisson Bracket. 3) Show that the angular acceleration is the same in fixed and rotating frames. 4) Explain the concept of the inertial and non-inertial frames. 5) Explain the term differential scattering cross section.
	B)	Write short Notes. (Any Two)061)Holonomic and non- holonomic constraints2)Properties of motion under central force field3)Shapes of orbit formed under central force field
Q.3	A)	 Answer the following questions. (Any Two) 1) State the Hamilton's variational principle and derive the Lagrange's equation of motion form it. 2) Show that the transformation P = q cot p and Q = log{(sin p)/q} is canonical. 3) Show that the poisson bracket obeys distributive law of algebra.
	B)	Write Short notes. (Any One)061)Rutherford scattering2)Lagrange's equation of motion for one dimensional linear harmonic oscillator.
Q.4	A)	 Answer the following questions. (Any Two) 1) Distinguish between the configuration space and phase space. 2) What is canonical transformation? Discuss the exact differential condition to show that the transformation is to be canonical. 3) Discuss the different types of generating functions useful for canonical transformations.
	B)	Write Short notes. (Any One)041)Advantages of Hamiltonian mechanics over the Lagrangian and Newtonian mechanics.042)Principle of least action.
Q.5	Ans 1) 2) 3)	wer the following questions. (Any Two)14Show that Poisson Brackets remains invariant under canonical transformations.14Show that the generating function $F = \sum q_k Q_k$ produce exchange transformation.14How a two body problem does reduce to a single body problem? Derive the equation of motion for it?14