Seat	
No.	

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Use of non programmable scientific calculator allowed.
3) Figures to the right indicate full marks.
4) Assume suitable data if necessary and state it clearly.

MCQ/Objective Type Questions

Duration: 30 Minutes
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The general solution of $\left(D^{4}+6 D^{2}+9\right) y=0$ is \qquad .
a) $y=\left(c_{1}+c_{2} x\right) e^{x}+\left(c_{3}+c_{4} x\right) e^{-x}$
b) $y=\left(c_{1}+c_{2} x\right) \cos \sqrt{3} x+\left(c_{3}+c_{4} x\right) \sin \sqrt{3} x$
c) $y=\left(c_{1}+c_{2} x\right) e^{-x}+\left(c_{3}+c_{4} x\right) e^{x}$
d) $y=\left(c_{1}+c_{2} \cos x\right) e^{x}+\left(c_{3}+c_{4} \sin x\right) e^{x}$
2) The particular integral of $\left(D^{4}-n^{4}\right) y=\sin n x$ is
a) $\frac{x}{4 n^{3}} \sin n x$
b) $-\frac{x}{4 n^{3}} \cos n x$
c) $\frac{x}{4 n^{3}} \cos n x$
d) $-\frac{x}{4 n^{3}} \sin n x$
3) If $f(t)=f(t+T)$ where T is period of $f(t)$ then $L\{f(t)\}=$ \qquad .
a) $\frac{1}{1-e^{-T s}} \int_{0}^{T} e^{-s t} f(t) d t$
b) $\frac{1}{1-e^{T s}} \int_{0}^{T} e^{-s t} f(t) d t$
c) $\frac{1}{1-e^{s t}} \int_{0}^{T} e^{-S T} f(t) d t$
d) $\frac{1}{1-e^{-s t}} \int_{0}^{T} e^{S T} f(t) d t$
4) $L^{-1}\left\{\frac{s+3}{s^{2}+3^{2}}\right\}=$ \qquad -.
a) $\cos 3 t$
b) $\sin 3 t$
c) $3 t+\cos 3 t$
d) $\cos 3 t+\sin 3 t$
5) If $L\left\{f_{1}(t)\right\}=\phi_{1}(s) \& L\left\{f_{2}(t)\right\}=\phi_{2}(s)$ then $L^{-1}\left\{\phi_{1}(s) \cdot \phi_{2}(s)\right\}=$ \qquad .
a) $\int_{0}^{t} f_{1}(u) f_{2}(t-u) d u$
b) $\int_{0}^{\infty} f_{1}(u) f_{2}(t-u) d u$
c) $\int_{0}^{t} f_{1}(u) f_{2}(u) d u$
d) $\int_{0}^{\infty} f_{1}(u) f_{2}(u) d u$
6) If $\bar{x}=70, \bar{y}=149, b_{y x}=0.7$ then the equation of the line of regression of y on x is
a) $y=0.7 x+60$
b) $y=0.7 x+80$
c) $y=0.7 x+100$
d) $y=0.7 x+120$
7) If a random variable x has a Poisson distribution with mean 3 , then $P(x=4)=$ \qquad .
a) 0.11
b) 0.13
c) 0.15
d) 0.17
8) In solving algebraic and transcendental equation, which of the following method is called method of chord?
a) Newton's Raphson
b) Regula Falsi
c) Iteration method
d) Bisection method
9) In solving simultaneous linear equation, which of the following method is direct method?
a) Gauss elimination
b) Gauss Jacobi's
c) Newton's Raphson
d) Gauss Seidal
10) Fourier series of $f(x)=1-x^{2}$ in $(-1,1)$ contains \qquad .
a) only sine series
b) only cosine series
c) both sine and cosine series
d) none of these
11) In the interval $(0,2)$ the constant term in the Fourier series of $f(x)=x$ is \qquad .
a) 1
b) 2
c) 3
d) 0
12) Fourier cosine transform of e^{-x} for $x \geq 0$ is \qquad .
a) $\frac{s}{1+s^{2}}$
b) $\sqrt{\frac{2}{\pi}} \frac{s}{s^{2}+1}$
c) $\sqrt{\frac{\pi}{2}} \frac{1}{1+s^{2}}$
d) $\sqrt{\frac{2}{\pi}} \frac{1}{1+s^{2}}$
13) If $z\{f(k)\}=F(z)$, then $Z\{k . f(k)\}=$
a) $\frac{d F(z)}{d z}$
b) $z \frac{d F(z)}{d z}$
c) $-z \frac{d F(z)}{d z}$
d) $-\frac{d F(z)}{d z}$
14) For $|z|>1$, the inverse z-Transform of $\frac{z}{z-1}$ is \qquad
a) $1, k \geq 0$
b) $2^{k}, k \geq 0$
c) $2^{k}, k<0$
d) not exists

Seat	
No.	

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of non-programmable calculators is allowed.
Section - I

Q. 2 Attempt any three of the following question.

a) In an experiment with 500 seeds in group of 5 the following results were obtained

$x:$	0	1	2	3	4	5	Total
$f:$	10	70	150	160	80	30	500

Where f denote the number of groups in which x seeds germinated. Fit a binominal distributed to the data.
b) Solve $\left(D^{2}-5 D+6\right) y=\sin 3 x$
c) Find $L\left\{t e^{-3 t} \sin t\right\}$
d) Evaluate $\int_{0}^{\infty} \frac{\sin 2 t}{t} d t$ by using Laplace transform.
e) Find inverse Laplace transform of $\log \left(1+\frac{a^{2}}{s^{2}}\right)$
Q. 3 Attempt any three of the following question..
a) If the probability that an individual suffers a bad reaction from a particular injection is 0.001 , determine the probability that out of 2000 individuals

1) exactly four
2) more than two individuals will suffer from bad reaction
b) Solve $\left(D^{2}+2 D+1\right) y=x \cos x$
c) Find $L\left\{\frac{e^{-3 t} \sin 5 t}{t}\right\}$
d) Find the Laplace transform of $\left(1+2 t-3 t^{2}+4 t^{3}\right) \cdot H(t-2)$.
e) Using convolution theorem find inverse Laplace transform of $\frac{1}{s .\left(s^{2}+4\right)}$

Q. 4 Attempt any two of the following question.

a) From the following data find line of regression of x on y \& estimate x when $y=105$

$x:$	44	58	49	46	58	56	48	46	48	47
$y:$	88	114	102	113	91	89	102	93	114	94

b) An electrical circuit consists of an inductance L, a condenser of capacity C \& an e.m.f. $E=E_{0} \cos w t$ so that the charge Q satisfies the differential equation $\frac{d^{2} Q}{d t^{2}}+\frac{Q}{L C}=\frac{E_{0}}{L} \cdot \cos w t$
If $w=\frac{1}{\sqrt{L c}}$ \& initially $Q=Q_{0}$ at $t=0 \&$ the current is $i=i_{0}$ at $t=0$. show that the charge Q at time t is given by

$$
Q=Q_{0} \cos w t+\frac{i_{0}}{w} \sin w t+\frac{E_{0}}{2 L w} t \sin w t
$$

c) Solve by using Laplace transform

$$
\left(D^{2}+25\right) y=10 \cos 5 t, y(0)=2 \& y^{\prime}(0)=0
$$

Section-II

Q. 5 Attempt any three of the following questions.

a) Solve the following set of equations by Gauss Elimination method.

$$
3 x+4 y+5 z=18,2 x-y+8 z=13,5 x-2 y+7 z=20
$$

b) Solve the equation $x \tan x+1=0$ by Regula Falsi method starting with $a=2.5$ and $b=3$ correct to three decimal places.
c) Expand x^{2} as a Fourier series in interval (-1, 1)
d) Find z-transform of the sequence

$$
\begin{aligned}
f(k) & =3^{k}, & & k<0 \\
& =2^{k}, & & k \geq 0
\end{aligned}
$$

e) Find the Fourier Sine transform of $f(x)=2 e^{-5 x}+5 e^{-2 x}$ where $x \geq 0$

Q. 6 Attempt any three of the following questions.

a) Find a posite real root of $2 x^{3}-3 x-6=0$ by Newton's Raphson method correct to five places of decimal.
b) Obtain half range sine series of $f(x)=l x-x^{2}$ in the interval $(0, l)$.
c) Find z-tranform of the sequence $\left\{k^{2} a^{k\}}\right.$ where $k \geq 0$
d) Express the function $f(x)=1 \quad 0 \leq x<\pi$

$$
=0 \quad x>\pi
$$

as a Fourier sine integral representation
e) Solve the following system of equation by Gauss-Seidal method correct to three decimal places.

$$
x+y+54 z=110, \quad 27 x+6 y-z=85, \quad 6 x+15 y+2 z=72
$$

Q. 7 Attempt any two of the following questions.
a) Find the Fourier series of the function

$$
\begin{aligned}
f(x) & =\pi x & & 0<x<1 \\
& =0 & & 1<x<2
\end{aligned}
$$

b) Find inverse z-transform of $\frac{2 z^{2}-5 z}{(z-2)(z-3)}$ where $|z|>3$
c) Find the Fourier transform of the function

$$
\begin{aligned}
f(x) & =1-x^{2} & & |x| \leq 1 \\
& =0 & & |x|>1
\end{aligned}
$$

Hence evaluate

$$
\int_{0}^{\infty}\left(\frac{\sin x-x \cos x}{x^{3}}\right) \cos \left(\frac{x}{2}\right) d x
$$

Seat	
No.	

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Use of non programmable scientific calculator allowed.
3) Figures to the right indicate full marks.
4) Assume suitable data if necessary and state it clearly.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) In solving algebraic and transcendental equation, which of the following method is called method of chord?
a) Newton's Raphson
b) Regula Falsi
c) Iteration method
d) Bisection method
2) In solving simultaneous linear equation, which of the following method is direct method?
a) Gauss elimination
b) Gauss Jacobi's
c) Newton's Raphson
d) Gauss Seidal
3) Fourier series of $f(x)=1-x^{2}$ in $(-1,1)$ contains \qquad .
a) only sine series
b) only cosine series
c) both sine and cosine series
d) none of these
4) In the interval $(0,2)$ the constant term in the Fourier series of $f(x)=x$ is \qquad .
a) 1
b) 2
c) 3
d) 0
5) Fourier cosine transform of e^{-x} for $x \geq 0$ is \qquad .
a) $\frac{s}{1+s^{2}}$
b) $\sqrt{\frac{2}{\pi}} \frac{s}{s^{2}+1}$
c) $\sqrt{\frac{\pi}{2}} \frac{1}{1+s^{2}}$
d) $\sqrt{\frac{2}{\pi}} \frac{1}{1+s^{2}}$
6) If $z\{f(k)\}=F(z)$, then $Z\{k . f(k)\}=$
\qquad
a) $\frac{d F(z)}{d z}$
b) $z \frac{d F(z)}{d z}$
c) $-z \frac{d F(z)}{d z}$
d) $-\frac{d F(z)}{d z}$
7) For $|z|>1$, the inverse z-Transform of $\frac{z}{z-1}$ is \qquad .
a) $1, k \geq 0$
b) $2^{k}, k \geq 0$
c) $2^{k}, k<0$
d) not exists
8) The general solution of $\left(D^{4}+6 D^{2}+9\right) y=0$ is \qquad .
a) $y=\left(c_{1}+c_{2} x\right) e^{x}+\left(c_{3}+c_{4} x\right) e^{-x}$
b) $y=\left(c_{1}+c_{2} x\right) \cos \sqrt{3} x+\left(c_{3}+c_{4} x\right) \sin \sqrt{3} x$
c) $y=\left(c_{1}+c_{2} x\right) e^{-x}+\left(c_{3}+c_{4} x\right) e^{x}$
d) $y=\left(c_{1}+c_{2} \cos x\right) e^{x}+\left(c_{3}+c_{4} \sin x\right) e^{x}$
9) The particular integral of $\left(D^{4}-n^{4}\right) y=\sin n x$ is
a) $\frac{x}{4 n^{3}} \sin n x$
b) $-\frac{x}{4 n^{3}} \cos n x$
c) $\frac{x}{4 n^{3}} \cos n x$
d) $-\frac{x}{4 n^{3}} \sin n x$
10) If $f(t)=f(t+T)$ where T is period of $f(t)$ then $L\{f(t)\}=$ \qquad .
a) $\frac{1}{1-e^{-T s}} \int_{0}^{T} e^{-s t} f(t) d t$
b) $\frac{1}{1-e^{T s}} \int_{0}^{T} e^{-s t} f(t) d t$
c) $\frac{1}{1-e^{s t}} \int_{0}^{T} e^{-S T} f(t) d t$
d) $\frac{1}{1-e^{-s t}} \int_{0}^{T} e^{S T} f(t) d t$
11) \qquad .
a) $\cos 3 t$
b) $\sin 3 t$
c) $3 t+\cos 3 t$
d) $\cos 3 t+\sin 3 t$
12) If $L\left\{f_{1}(t)\right\}=\phi_{1}(s) \& L\left\{f_{2}(t)\right\}=\phi_{2}(s)$ then $L^{-1}\left\{\phi_{1}(s) \cdot \phi_{2}(s)\right\}=$ \qquad .
a) $\int_{0}^{t} f_{1}(u) f_{2}(t-u) d u$
b) $\int_{0}^{\infty} f_{1}(u) f_{2}(t-u) d u$
c) $\int_{0}^{t} f_{1}(u) f_{2}(u) d u$
d) $\int_{0}^{\infty} f_{1}(u) f_{2}(u) d u$

SLR-FM-227
 Set Q

13) If $\bar{x}=70, \bar{y}=149, b_{y x}=0.7$ then the equation of the line of regression of y on x is
a) $y=0.7 x+60$
b) $y=0.7 x+80$
c) $y=0.7 x+100$
d) $y=0.7 x+120$
14) If a random variable x has a Poisson distribution with mean 3 , then $P(x=4)=$ \qquad .
a) 0.11
b) 0.13
c) 0.15
d) 0.17

Seat	
No.	

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of non-programmable calculators is allowed.

Section - I
Q. 2 Attempt any three of the following question.
a) In an experiment with 500 seeds in group of 5 the following results were obtained

$x:$	0	1	2	3	4	5	Total
$f:$	10	70	150	160	80	30	500

Where f denote the number of groups in which x seeds germinated. Fit a binominal distributed to the data.
b) Solve $\left(D^{2}-5 D+6\right) y=\sin 3 x$
c) Find $L\left\{t e^{-3 t} \sin t\right\}$
d) Evaluate $\int_{0}^{\infty} \frac{\sin 2 t}{t} d t$ by using Laplace transform.
e) Find inverse Laplace transform of $\log \left(1+\frac{a^{2}}{s^{2}}\right)$
Q. 3 Attempt any three of the following question..
a) If the probability that an individual suffers a bad reaction from a particular injection is 0.001 , determine the probability that out of 2000 individuals

1) exactly four
2) more than two individuals will suffer from bad reaction
b) Solve $\left(D^{2}+2 D+1\right) y=x \cos x$
c) Find $L\left\{\frac{e^{-3 t} \sin 5 t}{t}\right\}$
d) Find the Laplace transform of $\left(1+2 t-3 t^{2}+4 t^{3}\right) \cdot H(t-2)$.
e) Using convolution theorem find inverse Laplace transform of $\frac{1}{\left.\text { s.(s } s^{2}+4\right)}$

Q. 4 Attempt any two of the following question.

a) From the following data find line of regression of x on y \& estimate x when $y=105$

$x:$	44	58	49	46	58	56	48	46	48	47
$y:$	88	114	102	113	91	89	102	93	114	94

b) An electrical circuit consists of an inductance L, a condenser of capacity C \& an e.m.f. $E=E_{0} \cos w t$ so that the charge Q satisfies the differential equation $\frac{d^{2} Q}{d t^{2}}+\frac{Q}{L C}=\frac{E_{0}}{L} \cdot \cos w t$
If $w=\frac{1}{\sqrt{L c}}$ \& initially $Q=Q_{0}$ at $t=0 \&$ the current is $i=i_{0}$ at $t=0$. show that the charge Q at time t is given by

$$
Q=Q_{0} \cos w t+\frac{i_{0}}{w} \sin w t+\frac{E_{0}}{2 L w} t \sin w t
$$

c) Solve by using Laplace transform

$$
\left(D^{2}+25\right) y=10 \cos 5 t, y(0)=2 \& y^{\prime}(0)=0
$$

Section-II

Q. 5 Attempt any three of the following questions.
a) Solve the following set of equations by Gauss Elimination method.

$$
3 x+4 y+5 z=18,2 x-y+8 z=13,5 x-2 y+7 z=20
$$

b) Solve the equation $x \tan x+1=0$ by Regula Falsi method starting with $a=2.5$ and $b=3$ correct to three decimal places.
c) Expand x^{2} as a Fourier series in interval (-1, 1)
d) Find z-transform of the sequence

$$
\begin{aligned}
f(k) & =3^{k}, & & k<0 \\
& =2^{k}, & & k \geq 0
\end{aligned}
$$

e) Find the Fourier Sine transform of $f(x)=2 e^{-5 x}+5 e^{-2 x}$ where $x \geq 0$

Q. 6 Attempt any three of the following questions.

a) Find a posite real root of $2 x^{3}-3 x-6=0$ by Newton's Raphson method correct to five places of decimal.
b) Obtain half range sine series of $f(x)=l x-x^{2}$ in the interval $(0, l)$.
c) Find z-tranform of the sequence $\left\{k^{2} a^{k\}}\right.$ where $k \geq 0$
d) Express the function $f(x)=1 \quad 0 \leq x<\pi$

$$
=0 \quad x>\pi
$$

as a Fourier sine integral representation
e) Solve the following system of equation by Gauss-Seidal method correct to three decimal places.

$$
x+y+54 z=110, \quad 27 x+6 y-z=85, \quad 6 x+15 y+2 z=72
$$

Q. 7 Attempt any two of the following questions.

a) Find the Fourier series of the function

$$
\begin{array}{rlll}
f(x) & =\pi x & & 0<x<1 \\
& =0 & & 1<x<2
\end{array}
$$

b) Find inverse z-transform of $\frac{2 z^{2}-5 z}{(z-2)(z-3)}$ where $|z|>3$
c) Find the Fourier transform of the function

$$
\begin{aligned}
f(x) & =1-x^{2} & & |x| \leq 1 \\
& =0 & & |x|>1
\end{aligned}
$$

Hence evaluate

$$
\int_{n}^{\infty}\left(\frac{\sin x-x \cos x}{x^{3}}\right) \cos \left(\frac{x}{2}\right) d x
$$

S.E. (Part - I) (New/OId) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Use of non programmable scientific calculator allowed.
3) Figures to the right indicate full marks.
4) Assume suitable data if necessary and state it clearly.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) If $L\left\{f_{1}(t)\right\}=\phi_{1}(s) \& L\left\{f_{2}(t)\right\}=\phi_{2}(s)$ then $L^{-1}\left\{\phi_{1}(s) . \phi_{2}(s)\right\}=$ \qquad .
a) $\int_{0}^{t} f_{1}(u) f_{2}(t-u) d u$
b) $\int_{0}^{\infty} f_{1}(u) f_{2}(t-u) d u$
c) $\int_{0}^{t} f_{1}(u) f_{2}(u) d u$
d) $\int_{0}^{\infty} f_{1}(u) f_{2}(u) d u$
2) If $\bar{x}=70, \bar{y}=149, b_{y x}=0.7$ then the equation of the line of regression of y on x is
a) $y=0.7 x+60$
b) $y=0.7 x+80$
c) $y=0.7 x+100$
d) $y=0.7 x+120$
3) If a random variable x has a Poisson distribution with mean 3 , then $P(x=4)=$ \qquad .
a) 0.11
b) 0.13
c) 0.15
d) 0.17
4) In solving algebraic and transcendental equation, which of the following method is called method of chord?
a) Newton's Raphson
b) Regula Falsi
c) Iteration method
d) Bisection method
5) In solving simultaneous linear equation, which of the following method is direct method?
a) Gauss elimination
b) Gauss Jacobi's
c) Newton's Raphson
d) Gauss Seidal
6) Fourier series of $f(x)=1-x^{2}$ in $(-1,1)$ contains \qquad .
a) only sine series
b) only cosine series
c) both sine and cosine series
d) none of these
7) In the interval $(0,2)$ the constant term in the Fourier series of $f(x)=x$ is \qquad .
a) 1
b) 2
c) 3
d) 0
8) Fourier cosine transform of e^{-x} for $x \geq 0$ is \qquad .
a) $\frac{s}{1+s^{2}}$
b) $\sqrt{\frac{2}{\pi}} \frac{s}{s^{2}+1}$
c) $\sqrt{\frac{\pi}{2}} \frac{1}{1+s^{2}}$
d) $\sqrt{\frac{2}{\pi}} \frac{1}{1+s^{2}}$
9) If $z\{f(k)\}=F(z)$, then $Z\{k . f(k)\}=$ \qquad
a) $\frac{d F(z)}{d z}$
b) $z \frac{d F(z)}{d z}$
c) $-z \frac{d F(z)}{d z}$
d) $-\frac{d F(z)}{d z}$
10) For $|z|>1$, the inverse z-Transform of $\frac{z}{z-1}$ is \qquad .
a) $1, k \geq 0$
b) $2^{k}, k \geq 0$
c) $2^{k}, k<0$
d) not exists
11) The general solution of $\left(D^{4}+6 D^{2}+9\right) y=0$ is \qquad .
a) $y=\left(c_{1}+c_{2} x\right) e^{x}+\left(c_{3}+c_{4} x\right) e^{-x}$
b) $y=\left(c_{1}+c_{2} x\right) \cos \sqrt{3} x+\left(c_{3}+c_{4} x\right) \sin \sqrt{3} x$
c) $y=\left(c_{1}+c_{2} x\right) e^{-x}+\left(c_{3}+c_{4} x\right) e^{x}$
d) $y=\left(c_{1}+c_{2} \cos x\right) e^{x}+\left(c_{3}+c_{4} \sin x\right) e^{x}$
12) The particular integral of $\left(D^{4}-n^{4}\right) y=\sin n x$ is
a) $\frac{x}{4 n^{3}} \sin n x$
b) $-\frac{x}{4 n^{3}} \cos n x$
c) $\frac{x}{4 n^{3}} \cos n x$
d) $-\frac{x}{4 n^{3}} \sin n x$

SLR-FM-227 Set R

13) If $f(t)=f(t+T)$ where T is period of $f(t)$ then $L\{f(t)\}=$ \qquad .
a) $\frac{1}{1-e^{-T s}} \int_{0}^{T} e^{-s t} f(t) d t$
b) $\frac{1}{1-e^{T s}} \int_{0} e^{-s t} f(t) d t$
c) $\frac{1}{1-e^{s t}} \int_{0}^{T} e^{-S T} f(t) d t$
d) $\frac{1}{1-e^{-s t}} \int_{0}^{T} e^{S T} f(t) d t$
14) $L^{-1}\left\{\frac{s+3}{s^{2}+3^{2}}\right\}=$ \qquad .
a) $\cos 3 t$
b) $\sin 3 t$
c) $3 t+\cos 3 t$
d) $\cos 3 t+\sin 3 t$

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of non-programmable calculators is allowed.

Section - I

Q. 2 Attempt any three of the following question.

a) In an experiment with 500 seeds in group of 5 the following results were obtained

$x:$	0	1	2	3	4	5	Total
$f:$	10	70	150	160	80	30	500

Where f denote the number of groups in which x seeds germinated. Fit a binominal distributed to the data.
b) Solve $\left(D^{2}-5 D+6\right) y=\sin 3 x$
c) Find $L\left\{t e^{-3 t} \sin t\right\}$
d) Evaluate $\int_{0}^{\infty} \frac{\sin 2 t}{t} d t$ by using Laplace transform.
e) Find inverse Laplace transform of $\log \left(1+\frac{a^{2}}{s^{2}}\right)$
Q. 3 Attempt any three of the following question..
a) If the probability that an individual suffers a bad reaction from a particular injection is 0.001 , determine the probability that out of 2000 individuals

1) exactly four
2) more than two individuals will suffer from bad reaction
b) Solve $\left(D^{2}+2 D+1\right) y=x \cos x$
c) Find $L\left\{\frac{e^{-3 t} \sin 5 t}{t}\right\}$
d) Find the Laplace transform of $\left(1+2 t-3 t^{2}+4 t^{3}\right) \cdot H(t-2)$.
e) Using convolution theorem find inverse Laplace transform of $\frac{1}{s .\left(s^{2}+4\right)}$
Q. 4 Attempt any two of the following question.
a) From the following data find line of regression of x on y \& estimate x when $y=105$

$x:$	44	58	49	46	58	56	48	46	48	47
$y:$	88	114	102	113	91	89	102	93	114	94

b) An electrical circuit consists of an inductance L, a condenser of capacity C \& an e.m.f. $E=E_{0} \cos w t$ so that the charge Q satisfies the differential equation $\frac{d^{2} Q}{d t^{2}}+\frac{Q}{L C}=\frac{E_{0}}{L} \cdot \cos w t$
If $w=\frac{1}{\sqrt{L c}}$ \& initially $Q=Q_{0}$ at $t=0 \&$ the current is $i=i_{0}$ at $t=0$. show that the charge Q at time t is given by

$$
Q=Q_{0} \cos w t+\frac{i_{0}}{w} \sin w t+\frac{E_{0}}{2 L w} t \sin w t
$$

c) Solve by using Laplace transform

$$
\left(D^{2}+25\right) y=10 \cos 5 t, y(0)=2 \& y^{\prime}(0)=0
$$

Section-II

Q. 5 Attempt any three of the following questions.

a) Solve the following set of equations by Gauss Elimination method.

$$
3 x+4 y+5 z=18,2 x-y+8 z=13,5 x-2 y+7 z=20
$$

b) Solve the equation $x \tan x+1=0$ by Regula Falsi method starting with $a=2.5$ and $b=3$ correct to three decimal places.
c) Expand x^{2} as a Fourier series in interval (-1, 1)
d) Find z-transform of the sequence

$$
\begin{aligned}
f(k) & =3^{k}, & & k<0 \\
& =2^{k}, & & k \geq 0
\end{aligned}
$$

e) Find the Fourier Sine transform of $f(x)=2 e^{-5 x}+5 e^{-2 x}$ where $x \geq 0$

Q. 6 Attempt any three of the following questions.

a) Find a posite real root of $2 x^{3}-3 x-6=0$ by Newton's Raphson method correct to five places of decimal.
b) Obtain half range sine series of $f(x)=l x-x^{2}$ in the interval $(0, l)$.
c) Find z-tranform of the sequence $\left\{k^{2} a^{k\}}\right.$ where $k \geq 0$
d) Express the function $f(x)=1 \quad 0 \leq x<\pi$

$$
=0 \quad x>\pi
$$

as a Fourier sine integral representation
e) Solve the following system of equation by Gauss-Seidal method correct to three decimal places.

$$
x+y+54 z=110, \quad 27 x+6 y-z=85, \quad 6 x+15 y+2 z=72
$$

Q. 7 Attempt any two of the following questions.
a) Find the Fourier series of the function

$$
\begin{array}{rlll}
f(x) & =\pi x & & 0<x<1 \\
& =0 & & 1<x<2
\end{array}
$$

b) Find inverse z-transform of $\frac{2 z^{2}-5 z}{(z-2)(z-3)}$ where $|z|>3$
c) Find the Fourier transform of the function

$$
\begin{aligned}
f(x) & =1-x^{2} & & |x| \leq 1 \\
& =0 & & |x|>1
\end{aligned}
$$

Hence evaluate

$$
\int_{0}^{\infty}\left(\frac{\sin x-x \cos x}{x^{3}}\right) \cos \left(\frac{x}{2}\right) d x
$$

Seat	
No.	

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Use of non programmable scientific calculator allowed.
3) Figures to the right indicate full marks.
4) Assume suitable data if necessary and state it clearly.

MCQ/Objective Type Questions

Duration: 30 Minutes
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Fourier series of $f(x)=1-x^{2}$ in $(-1,1)$ contains \qquad .
a) only sine series
b) only cosine series
c) both sine and cosine series
d) none of these
2) In the interval $(0,2)$ the constant term in the Fourier series of $f(x)=x$ is \qquad .
a) 1
b) 2
c) 3
d) 0
3) Fourier cosine transform of e^{-x} for $x \geq 0$ is \qquad .
a) $\frac{s}{1+s^{2}}$
b) $\sqrt{\frac{2}{\pi}} \frac{s}{s^{2}+1}$
c) $\sqrt{\frac{\pi}{2}} \frac{1}{1+s^{2}}$
d) $\sqrt{\frac{2}{\pi}} \frac{1}{1+s^{2}}$
4) If $z\{f(k)\}=F(z)$, then $Z\{k . f(k)\}=$ \qquad
a) $\frac{d F(z)}{d z}$
b) $\quad z \frac{d F(z)}{d z}$
C) $-z \frac{d F(z)}{d z}$
d) $-\frac{d F(z)}{d z}$
5) For $|z|>1$, the inverse z-Transform of $\frac{z}{z-1}$ is \qquad .
a) $1, k \geq 0$
b) $\quad 2^{k}, k \geq 0$
c) $2^{k}, k<0$
d) not exists
6) The general solution of $\left(D^{4}+6 D^{2}+9\right) y=0$ is \qquad .
a) $y=\left(c_{1}+c_{2} x\right) e^{x}+\left(c_{3}+c_{4} x\right) e^{-x}$
b) $y=\left(c_{1}+c_{2} x\right) \cos \sqrt{3} x+\left(c_{3}+c_{4} x\right) \sin \sqrt{3} x$
c) $y=\left(c_{1}+c_{2} x\right) e^{-x}+\left(c_{3}+c_{4} x\right) e^{x}$
d) $y=\left(c_{1}+c_{2} \cos x\right) e^{x}+\left(c_{3}+c_{4} \sin x\right) e^{x}$
7) The particular integral of $\left(D^{4}-n^{4}\right) y=\sin n x$ is
a) $\frac{x}{4 n^{3}} \sin n x$
b) $-\frac{x}{4 n^{3}} \cos n x$
c) $\frac{x}{4 n^{3}} \cos n x$
d) $-\frac{x}{4 n^{3}} \sin n x$
8) If $f(t)=f(t+T)$ where T is period of $f(t)$ then $L\{f(t)\}=$ \qquad .
a) $\frac{1}{1-e^{-T s}} \int_{0}^{T} e^{-s t} f(t) d t$
b) $\frac{1}{1-e^{T s}} \int_{0}^{T} e^{-s t} f(t) d t$
c) $\frac{1}{1-e^{s t}} \int_{0}^{T} e^{-S T} f(t) d t$
d) $\frac{1}{1-e^{-s t}} \int_{0}^{T} e^{S T} f(t) d t$
9) $L^{-1}\left\{\frac{s+3}{s^{2}+3^{2}}\right\}=$ \qquad .
a) $\cos 3 t$
b) $\sin 3 t$
c) $3 t+\cos 3 t$
d) $\cos 3 t+\sin 3 t$
10) If $L\left\{f_{1}(t)\right\}=\phi_{1}(s) \& L\left\{f_{2}(t)\right\}=\phi_{2}(s)$ then $L^{-1}\left\{\phi_{1}(s) . \phi_{2}(s)\right\}=$ \qquad .
a) $\int_{0}^{t} f_{1}(u) f_{2}(t-u) d u$
b) $\int_{0}^{\infty} f_{1}(u) f_{2}(t-u) d u$
c) $\int_{0}^{t} f_{1}(u) f_{2}(u) d u$
d) $\int_{0}^{\infty} f_{1}(u) f_{2}(u) d u$
11) If $\bar{x}=70, \bar{y}=149, b_{y x}=0.7$ then the equation of the line of regression of y on x is
a) $y=0.7 x+60$
b) $y=0.7 x+80$
c) $y=0.7 x+100$
d) $y=0.7 x+120$
12) If a random variable x has a Poisson distribution with mean 3 , then $P(x=4)=$ \qquad .
a) 0.11
b) 0.13
c) 0.15
d) 0.17

SLR-FM-227 Set S

13) In solving algebraic and transcendental equation, which of the following method is called method of chord?
a) Newton's Raphson
b) Regula Falsi
c) Iteration method
d) Bisection method
14) In solving simultaneous linear equation, which of the following method is direct method?
a) Gauss elimination
b) Gauss Jacobi's
c) Newton's Raphson
d) Gauss Seidal

Seat	
No.	

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of non-programmable calculators is allowed.

Section - I
Q. 2 Attempt any three of the following question.
a) In an experiment with 500 seeds in group of 5 the following results were obtained

$x:$	0	1	2	3	4	5	Total
$f:$	10	70	150	160	80	30	500

Where f denote the number of groups in which x seeds germinated. Fit a binominal distributed to the data.
b) Solve $\left(D^{2}-5 D+6\right) y=\sin 3 x$
c) Find $L\left\{t e^{-3 t} \sin t\right\}$
d) Evaluate $\int_{0}^{\infty} \frac{\sin 2 t}{t} d t$ by using Laplace transform.
e) Find inverse Laplace transform of $\log \left(1+\frac{a^{2}}{s^{2}}\right)$
Q. 3 Attempt any three of the following question..
a) If the probability that an individual suffers a bad reaction from a particular injection is 0.001 , determine the probability that out of 2000 individuals

1) exactly four
2) more than two individuals will suffer from bad reaction
b) Solve $\left(D^{2}+2 D+1\right) y=x \cos x$
c) Find $L\left\{\frac{e^{-3 t} \sin 5 t}{t}\right\}$
d) Find the Laplace transform of $\left(1+2 t-3 t^{2}+4 t^{3}\right) \cdot H(t-2)$.
e) Using convolution theorem find inverse Laplace transform of $\frac{1}{s .\left(s^{2}+4\right)}$

Q. 4 Attempt any two of the following question.

a) From the following data find line of regression of x on y \& estimate x when $y=105$

$x:$	44	58	49	46	58	56	48	46	48	47
$y:$	88	114	102	113	91	89	102	93	114	94

b) An electrical circuit consists of an inductance L, a condenser of capacity C \& an e.m.f. $E=E_{0} \cos w t$ so that the charge Q satisfies the differential equation $\frac{d^{2} Q}{d t^{2}}+\frac{Q}{L C}=\frac{E_{0}}{L} \cdot \cos w t$
If $w=\frac{1}{\sqrt{L c}}$ \& initially $Q=Q_{0}$ at $t=0 \&$ the current is $i=i_{0}$ at $t=0$. show that the charge Q at time t is given by

$$
Q=Q_{0} \cos w t+\frac{i_{0}}{w} \sin w t+\frac{E_{0}}{2 L w} t \sin w t
$$

c) Solve by using Laplace transform

$$
\left(D^{2}+25\right) y=10 \cos 5 t, y(0)=2 \& y^{\prime}(0)=0
$$

Section-II

Q. 5 Attempt any three of the following questions.

a) Solve the following set of equations by Gauss Elimination method.

$$
3 x+4 y+5 z=18,2 x-y+8 z=13,5 x-2 y+7 z=20
$$

b) Solve the equation $x \tan x+1=0$ by Regula Falsi method starting with $a=2.5$ and $b=3$ correct to three decimal places.
c) Expand x^{2} as a Fourier series in interval (-1, 1)
d) Find z-transform of the sequence

$$
\begin{aligned}
f(k) & =3^{k}, & & k<0 \\
& =2^{k}, & & k \geq 0
\end{aligned}
$$

e) Find the Fourier Sine transform of $f(x)=2 e^{-5 x}+5 e^{-2 x}$ where $x \geq 0$

Q. 6 Attempt any three of the following questions.

a) Find a posite real root of $2 x^{3}-3 x-6=0$ by Newton's Raphson method correct to five places of decimal.
b) Obtain half range sine series of $f(x)=l x-x^{2}$ in the interval $(0, l)$.
c) Find z-tranform of the sequence $\left\{k^{2} a^{k\}}\right.$ where $k \geq 0$
d) Express the function $f(x)=1 \quad 0 \leq x<\pi$

$$
=0 \quad x>\pi
$$

as a Fourier sine integral representation
e) Solve the following system of equation by Gauss-Seidal method correct to three decimal places.

$$
x+y+54 z=110, \quad 27 x+6 y-z=85, \quad 6 x+15 y+2 z=72
$$

Q. 7 Attempt any two of the following questions.
a) Find the Fourier series of the function

$$
\begin{aligned}
f(x) & =\pi x & & 0<x<1 \\
& =0 & & 1<x<2
\end{aligned}
$$

b) Find inverse z-transform of $\frac{2 z^{2}-5 z}{(z-2)(z-3)}$ where $|z|>3$
c) Find the Fourier transform of the function

$$
\begin{aligned}
f(x) & =1-x^{2} & & |x| \leq 1 \\
& =0 & & |x|>1
\end{aligned}
$$

Hence evaluate

$$
\int_{0}^{\infty}\left(\frac{\sin x-x \cos x}{x^{3}}\right) \cos \left(\frac{x}{2}\right) d x
$$

Seat
 No.
 S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Set
P

Day \& Date: Tuesday,10-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The ripple factor is independent of resistance in \qquad filter.
a) L
b) LC
c) C
d) CLC
2) Load regulation of ideal power supply must be \qquad .
a) Zero
b) Infinite
c) Large
d) None of these
3) PIV of rectifier diode depends upon \qquad .
a) Maximum reverse voltage across it
b) Maximum forward voltage across it
c) Type of semiconductor material used
d) None of these
4) Load regulation can be improved in LC filter by \qquad .
a) Inductor filter
b) Using capacitor filter
c) Using bleeder resistor
d) Using bleeder capacitor
5) If one of the diode in centre tapped full wave rectifier circuit get damaged it act like \qquad .
a) Clamper circuit
b) Half wave rectifier
c) Both a \& b
d) Cant say
6) Reverse saturation current gets \qquad for every \qquad rise in temperature.
a) Half, $10^{\circ} \mathrm{C}$
b) Triple, $30^{\circ} \mathrm{C}$
c) Double, $10^{\circ} \mathrm{C}$
d) Constant, $10^{\circ} \mathrm{C}$
7) The critical value of inductance in choke input filter is \qquad .
a) $3 \omega / R_{L}$
b) $R_{L} / 3 \omega$
c) $3 \omega R_{L}$
d) R_{L}
8) Which are the majority charge carriers in P-channel JFET by enhancing the flow of current between two N-regions or gates?
a) Holes
b) Electrons
c) Both a \& b
d) None of the above
9) Which internally connected region is heavily doped with an impurity by forming double PN junctions in JFET?
a) Source
b) Drain
c) Gate
d) Channel
10) The output voltage of common base amplifier is \qquad with input signal.
a) in phase
b) 270°
c) 90° out of phase
d) 180°
11) The total emitter current $\left(\mathrm{l}_{E}\right)$ is given by \qquad .
a) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}} * \mathrm{I}_{\mathrm{nE}}$
b) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}}-\mathrm{I}_{\mathrm{nE}}$
c) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}} / \mathrm{I}_{\mathrm{nE}}$
d) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}}+\mathrm{I}_{\mathrm{nE}}$
12) The correct relation between the transistor parameters α and β are related by \qquad .
a) $\beta=1-\alpha / \alpha$
b) $\beta=1+\alpha / \alpha$
c) $\quad \alpha=\beta+1 / \beta$
d) $\alpha=\beta / \beta+1$
13) The Early Effect is also called as \qquad .
a) Base-width modulation effect
b) Base-width amplification effect
c) Punch through effect
d) None of the mentioned
14) Which of the following acts as a buffer?
a) CC amplifier
b) CE amplifier
c) CB amplifier
d) Cascaded amplifier

Seat

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday,10-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

Section - I

Q. 2 Solve any four

a) What is PIV rating of diode? What is value of PIV for centre tapped full wave rectifier explain with neat circuit diagram.
b) Calculate value of reverse saturation current for Silicon diode at room temperature when applied voltage is 5 V and forward current through diode is 1 A .
c) Explain with neat circuit diagram working of voltage Tripler.
d) Draw output waveform and transfer characteristics for following circuit.

e) Derive expression for efficiency and ripple factor for half wave rectifier.
Q. 3 Solve any two.
a) Design unregulated power supply with two diode and CLC filter to provide 20 V and 10 mA current, ripple content in the output must be less than 1%.
b) Explain depletion and diffusion capacitance of diode and derive expression of diffusion capacitance.
c) What is clamper? Explain working of positive clamper with neat circuit diagram and waveform. Explain working of voltage doubler.

Section - II

Q. 4 Solve any four questions.
a) Design Collector to base biasing circuit for

$$
\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=5 \mathrm{~mA}, \mathrm{Vcc}=12 \mathrm{~V}, \beta \mathrm{dc}=120 .
$$

b) Justify output voltage signal is 180° out of phase with input signal with suitable diagram for transistor Common Emitter amplifier.
c) Explain DC load line concept in BJT CE amplifier.
d) Explain effect of Gate to source voltage on channel conductivity for JFET.
e) Explain high frequency response of BJT amplifier.

Q. 5 Solve any Two questions.

12a) Consider transistor CE amplifier with $\mathrm{RL}=2.7 \mathrm{~K} \Omega$, hie $=4.5 \mathrm{~K} \Omega$, hre $=$ 2×10^{-4}, hfe $=-330$, hoe $=30 \mu \mho$. Calculate Ai, Av, Ri, Ro, Ap.
b) Design a single stage CE amplifier with voltage divider bias to give voltage gain of 40 , Vopeak $=4 \mathrm{~V}$ and stability factor $S=10$. Assume hfe $=45$, hie $=$ $1.4 \mathrm{~K} \Omega$.
c) Explain Common Source JFET amplifier with its basic parameters.

Seat

No.
Set

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday,10-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Which are the majority charge carriers in P-channel JFET by enhancing the flow of current between two N -regions or gates?
a) Holes
b) Electrons
c) Both a \& b
d) None of the above
2) Which internally connected region is heavily doped with an impurity by forming double PN junctions in JFET?
a) Source
b) Drain
c) Gate
d) Channel
3) The output voltage of common base amplifier is \qquad with input signal.
a) in phase
b) 270°
c) 90° out of phase
d) 180°
4) The total emitter current $\left(\mathrm{I}_{\mathrm{E}}\right)$ is given by \qquad .
a) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}} * \mathrm{I}_{\mathrm{nE}}$
b) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}}-\mathrm{I}_{\mathrm{nE}}$
c) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}} / \mathrm{I}_{\mathrm{nE}}$
d) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}}+\mathrm{I}_{\mathrm{nE}}$
5) The correct relation between the transistor parameters α and β are related by \qquad .
a) $\beta=1-\alpha / \alpha$
b) $\beta=1+\alpha / \alpha$
c) $\alpha=\beta+1 / \beta$
d) $\alpha=\beta / \beta+1$
6) The Early Effect is also called as \qquad .
a) Base-width modulation effect
b) Base-width amplification effect
c) Punch through effect
d) None of the mentioned
7) Which of the following acts as a buffer?
a) CC amplifier
b) CE amplifier
c) CB amplifier
d) Cascaded amplifier
8) The ripple factor is independent of resistance in \qquad filter.
a) L
b) LC
c) C
d) CLC
9) Load regulation of ideal power supply must be \qquad .
a) Zero
b) Infinite
c) Large
d) None of these
10) PIV of rectifier diode depends upon \qquad .
a) Maximum reverse voltage across it
b) Maximum forward voltage across it
c) Type of semiconductor material used
d) None of these
11) Load regulation can be improved in LC filter by \qquad .
a) Inductor filter
b) Using capacitor filter
c) Using bleeder resistor
d) Using bleeder capacitor
12) If one of the diode in centre tapped full wave rectifier circuit get damaged it act like \qquad .
a) Clamper circuit
b) Half wave rectifier
c) Both a \& b
d) Cant say
13) Reverse saturation current gets \qquad for every \qquad rise in temperature.
a) Half, $10^{\circ} \mathrm{C}$
b) Triple, $30^{\circ} \mathrm{C}$
c) Double, $10^{\circ} \mathrm{C}$
d) Constant, $10^{\circ} \mathrm{C}$
14) The critical value of inductance in choke input filter is \qquad .
a) $3 \omega / R_{L}$
b) $R_{L} / 3 \omega$
c) $3 \omega R_{L}$
d) R_{L}

Seat

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday,10-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

Section - I

Q. 2 Solve any four

a) What is PIV rating of diode? What is value of PIV for centre tapped full wave rectifier explain with neat circuit diagram.
b) Calculate value of reverse saturation current for Silicon diode at room temperature when applied voltage is 5 V and forward current through diode is 1 A .
c) Explain with neat circuit diagram working of voltage Tripler.
d) Draw output waveform and transfer characteristics for following circuit.

e) Derive expression for efficiency and ripple factor for half wave rectifier.
Q. 3 Solve any two.
a) Design unregulated power supply with two diode and CLC filter to provide 20 V and 10 mA current, ripple content in the output must be less than 1%.
b) Explain depletion and diffusion capacitance of diode and derive expression of diffusion capacitance.
c) What is clamper? Explain working of positive clamper with neat circuit diagram and waveform. Explain working of voltage doubler.

Section - II

Q. 4 Solve any four questions.
a) Design Collector to base biasing circuit for

$$
\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=5 \mathrm{~mA}, \mathrm{Vcc}=12 \mathrm{~V}, \beta \mathrm{dc}=120 .
$$

b) Justify output voltage signal is 180° out of phase with input signal with suitable diagram for transistor Common Emitter amplifier.
c) Explain DC load line concept in BJT CE amplifier.
d) Explain effect of Gate to source voltage on channel conductivity for JFET.
e) Explain high frequency response of BJT amplifier.

Q. 5 Solve any Two questions.

a) Consider transistor CE amplifier with $\mathrm{RL}=2.7 \mathrm{~K} \Omega$, hie $=4.5 \mathrm{~K} \Omega$, hre $=$ 2×10^{-4}, hfe $=-330$, hoe $=30 \mu \mho$. Calculate Ai, Av, Ri, Ro, Ap.
b) Design a single stage CE amplifier with voltage divider bias to give voltage gain of 40 , Vopeak $=4 \mathrm{~V}$ and stability factor $S=10$. Assume hfe $=45$, hie $=$ $1.4 \mathrm{~K} \Omega$.
c) Explain Common Source JFET amplifier with its basic parameters.

Seat

No.
Set

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday,10-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) If one of the diode in centre tapped full wave rectifier circuit get damaged it act like \qquad .
a) Clamper circuit
b) Half wave rectifier
c) Both a \& b
d) Cant say
2) Reverse saturation current gets \qquad for every \qquad rise in temperature.
a) Half, $10^{\circ} \mathrm{C}$
b) Triple, $30^{\circ} \mathrm{C}$
c) Double, $10^{\circ} \mathrm{C}$
d) Constant, $10^{\circ} \mathrm{C}$
3) The critical value of inductance in choke input filter is \qquad .
a) $3 \omega / R_{L}$
b) $R_{L} / 3 \omega$
c) $3 \omega R_{L}$
d) R_{L}
4) Which are the majority charge carriers in P-channel JFET by enhancing the flow of current between two N -regions or gates?
a) Holes
b) Electrons
c) Both a \& b
d) None of the above
5) Which internally connected region is heavily doped with an impurity by forming double PN junctions in JFET?
a) Source
b) Drain
c) Gate
d) Channel
6) The output voltage of common base amplifier is \qquad with input signal.
a) in phase
b) 270°
c) 90° out of phase
d) 180°
7) The total emitter current (l_{E}) is given by \qquad .
a) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}} * \mathrm{I}_{\mathrm{nE}}$
b) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}}-\mathrm{I}_{\mathrm{nE}}$
c) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}} / \mathrm{I}_{\mathrm{nE}}$
d) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}}+\mathrm{I}_{\mathrm{nE}}$
8) The correct relation between the transistor parameters α and β are related by \qquad .
a) $\beta=1-\alpha / \alpha$
b) $\beta=1+\alpha / \alpha$
c) $\alpha=\beta+1 / \beta$
d) $\alpha=\beta / \beta+1$
9) The Early Effect is also called as \qquad .
a) Base-width modulation effect
b) Base-width amplification effect
c) Punch through effect
d) None of the mentioned
10) Which of the following acts as a buffer?
a) CC amplifier
b) CE amplifier
c) CB amplifier
d) Cascaded amplifier
11) The ripple factor is independent of resistance in \qquad filter.
a) L
b) LC
c) C
d) CLC
12) Load regulation of ideal power supply must be \qquad .
a) Zero
b) Infinite
c) Large
d) None of these
13) PIV of rectifier diode depends upon \qquad .
a) Maximum reverse voltage across it
b) Maximum forward voltage across it
c) Type of semiconductor material used
d) None of these
14) Load regulation can be improved in LC filter by \qquad .
a) Inductor filter
b) Using capacitor filter
c) Using bleeder resistor
d) Using bleeder capacitor

Seat

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday,10-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

Section - I

Q. 2 Solve any four

a) What is PIV rating of diode? What is value of PIV for centre tapped full wave rectifier explain with neat circuit diagram.
b) Calculate value of reverse saturation current for Silicon diode at room temperature when applied voltage is 5 V and forward current through diode is 1 A .
c) Explain with neat circuit diagram working of voltage Tripler.
d) Draw output waveform and transfer characteristics for following circuit.

e) Derive expression for efficiency and ripple factor for half wave rectifier.
Q. 3 Solve any two.
a) Design unregulated power supply with two diode and CLC filter to provide 20 V and 10 mA current, ripple content in the output must be less than 1%.
b) Explain depletion and diffusion capacitance of diode and derive expression of diffusion capacitance.
c) What is clamper? Explain working of positive clamper with neat circuit diagram and waveform. Explain working of voltage doubler.

Section - II

Q. 4 Solve any four questions.
a) Design Collector to base biasing circuit for

$$
\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=5 \mathrm{~mA}, \mathrm{Vcc}=12 \mathrm{~V}, \beta \mathrm{dc}=120 .
$$

b) Justify output voltage signal is 180° out of phase with input signal with suitable diagram for transistor Common Emitter amplifier.
c) Explain DC load line concept in BJT CE amplifier.
d) Explain effect of Gate to source voltage on channel conductivity for JFET.
e) Explain high frequency response of BJT amplifier.
Q. 5 Solve any Two questions.
a) Consider transistor CE amplifier with $\mathrm{RL}=2.7 \mathrm{~K} \Omega$, hie $=4.5 \mathrm{~K} \Omega$, hre $=$ 2×10^{-4}, hfe $=-330$, hoe $=30 \mu \mho$. Calculate Ai, Av, Ri, Ro, Ap.
b) Design a single stage CE amplifier with voltage divider bias to give voltage gain of 40 , Vopeak $=4 \mathrm{~V}$ and stability factor $S=10$. Assume hfe $=45$, hie $=$ $1.4 \mathrm{~K} \Omega$.
c) Explain Common Source JFET amplifier with its basic parameters.

Seat

No.
Set

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday,10-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The output voltage of common base amplifier is \qquad with input signal.
a) in phase
b) 270°
c) 90° out of phase
d) 180°
2) The total emitter current $\left(\mathrm{l}_{E}\right)$ is given by \qquad .
a) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}} * \mathrm{I}_{\mathrm{nE}}$
b) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}}-\mathrm{I}_{\mathrm{nE}}$
c) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}} / \mathrm{I}_{\mathrm{nE}}$
d) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{pE}}+\mathrm{I}_{\mathrm{nE}}$
3) The correct relation between the transistor parameters α and β are related by \qquad .
a) $\beta=1-\alpha / \alpha$
b) $\beta=1+\alpha / \alpha$
c) $\alpha=\beta+1 / \beta$
d) $\alpha=\beta / \beta+1$
4) The Early Effect is also called as \qquad -.
a) Base-width modulation effect
b) Base-width amplification effect
c) Punch through effect
d) None of the mentioned
5) Which of the following acts as a buffer?
a) CC amplifier
b) CE amplifier
c) CB amplifier
d) Cascaded amplifier
6) The ripple factor is independent of resistance in \qquad filter.
a) L
b) LC
c) C
d) CLC
7) Load regulation of ideal power supply must be \qquad .
a) Zero
b) Infinite
c) Large
d) None of these
8) PIV of rectifier diode depends upon \qquad .
a) Maximum reverse voltage across it
b) Maximum forward voltage across it
c) Type of semiconductor material used
d) None of these
9) Load regulation can be improved in LC filter by \qquad .
a) Inductor filter
b) Using capacitor filter
c) Using bleeder resistor
d) Using bleeder capacitor
10) If one of the diode in centre tapped full wave rectifier circuit get damaged it act like \qquad .
a) Clamper circuit
b) Half wave rectifier
c) Both a \& b
d) Cant say
11) Reverse saturation current gets \qquad for every \qquad rise in temperature.
a) Half, $10^{\circ} \mathrm{C}$
b) Triple, $30^{\circ} \mathrm{C}$
c) Double, $10^{\circ} \mathrm{C}$
d) Constant, $10^{\circ} \mathrm{C}$
12) The critical value of inductance in choke input filter is \qquad .
a) $3 \omega / R_{L}$
b) $R_{L} / 3 \omega$
c) $3 \omega R_{L}$
d) R_{L}
13) Which are the majority charge carriers in P-channel JFET by enhancing the flow of current between two N-regions or gates?
a) Holes
b) Electrons
c) Both a \& b
d) None of the above
14) Which internally connected region is heavily doped with an impurity by forming double PN junctions in JFET?
a) Source
b) Drain
c) Gate
d) Channel

Seat

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday,10-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

Section - I

Q. 2 Solve any four

a) What is PIV rating of diode? What is value of PIV for centre tapped full wave rectifier explain with neat circuit diagram.
b) Calculate value of reverse saturation current for Silicon diode at room temperature when applied voltage is 5 V and forward current through diode is 1 A .
c) Explain with neat circuit diagram working of voltage Tripler.
d) Draw output waveform and transfer characteristics for following circuit.

e) Derive expression for efficiency and ripple factor for half wave rectifier.
Q. 3 Solve any two.
a) Design unregulated power supply with two diode and CLC filter to provide 20 V and 10 mA current, ripple content in the output must be less than 1%.
b) Explain depletion and diffusion capacitance of diode and derive expression of diffusion capacitance.
c) What is clamper? Explain working of positive clamper with neat circuit diagram and waveform. Explain working of voltage doubler.

Section - II

Q. 4 Solve any four questions.
a) Design Collector to base biasing circuit for

$$
\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=5 \mathrm{~mA}, \mathrm{Vcc}=12 \mathrm{~V}, \beta \mathrm{dc}=120 .
$$

b) Justify output voltage signal is 180° out of phase with input signal with suitable diagram for transistor Common Emitter amplifier.
c) Explain DC load line concept in BJT CE amplifier.
d) Explain effect of Gate to source voltage on channel conductivity for JFET.
e) Explain high frequency response of BJT amplifier.

Q. 5 Solve any Two questions.

12a) Consider transistor CE amplifier with $\mathrm{RL}=2.7 \mathrm{~K} \Omega$, hie $=4.5 \mathrm{~K} \Omega$, hre $=$ 2×10^{-4}, hfe $=-330$, hoe $=30 \mu \mho$. Calculate Ai, Av, Ri, Ro, Ap.
b) Design a single stage CE amplifier with voltage divider bias to give voltage gain of 40 , Vopeak $=4 \mathrm{~V}$ and stability factor $S=10$. Assume hfe $=45$, hie $=$ $1.4 \mathrm{~K} \Omega$.
c) Explain Common Source JFET amplifier with its basic parameters.

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering NETWORK THEORY \& ANALYSIS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Quality factor Q of coil is defined as \qquad .
a) $Q=W L / 2 R$
b) $Q=2 \prod^{*}$ Max energy stored/energy dissipated per cycle
c) $Q=1 / 2 \mathrm{WCR}$
d) None
2) A practical current source consists of \qquad .
a) An ideal current source in series with a resistance
b) An ideal current source in parallel with a resistance
c) An ideal current source in parallel with voltage source
d) None of the above
3) In parallel resonance, resonance occurs when susceptance part of admittance is \qquad .
a) Infinite
b) $\quad X_{L}>X_{C}$
c) $X_{C}>X_{L}$
d) Zero
4) In series RLC circuit operating frequency below for \qquad .
a) I leads Vs
b) I lags behind Vs
c) I \&Vs in phase
d) None
5) In Series RLC circuit, at resonance the voltage across capacitor and voltage across inductance are in \qquad .
a) $V_{L}>V_{C}$
b) $V_{C}>V_{L}$
c) $V L=V_{C}$
d) $V_{L}+V_{C}$
6) What is the driving point impedance at port one with port two open circuited for the network shown below $\left(Z_{a}=1 \Omega, Z_{b}=3 \Omega, \& Z_{c}=2 \Omega\right)$?

a) 4Ω
b) 3Ω
c) 5Ω
d) 2Ω
7) When two port networks are connected in parallel the resultant \qquad .
a) Z parameters are the sum of individual parameters
b) Y parameters are the sum of individual parameters
c) both a \& b
d) None
8) If the number of zeros (n) are greater than the number of poles (m), then there will be \qquad number of zeros at $s=\infty$.
a) n
b) M
c) $n-m$
d) $n+m$
9) If V 1 is the voltage at port 1 and V 2 is the voltage at port 2, then the attenuation in dB is?
a) $20 \log 10(\mathrm{~V} 1 / \mathrm{V} 2)$
b) $10 \log 10(\mathrm{~V} 1 / \mathrm{V} 2)$
c) $20 \log 10$ (V2/V1)
d) $10 \log 10$ (V2/V1)
10) In band elimination filter, the frequency of resonance of individual arms is geometric \qquad .
a) Mean of two cut-off frequencies
b) Difference of two cut-off frequencies
c) Product of two cut-off frequencies
d) Division of two cut-off frequencies
11) Transient behavior occurs in any circuit when \qquad .
a) There are sudden changes of applied voltage
b) The voltage source is shorted
c) The circuit is connected or disconnected from the supply
d) All of these
12) A series $R-L$ circuit with $R=30 \Omega$ and $L=15 H$ has a constant voltage $V=$ 60 V applied at $\mathrm{t}=0$. Determine the current (A) in the circuit at $\mathrm{t}=0+$.
a) 1
b) 2
c) 3
d) 0
13) The ratio of the current transform at one port to current transform at other port is called?
a) Transfer admittance
b) Transfer impedance
c) Current transfer ratio
d) Voltage transfer ratio
14) Consider the RL circuit shown in the figure below. The input voltage $V_{s}(t)$ is also shown in the figure. Let $t 1=0.1 \mathrm{msec}$.
What is $\mathrm{i}(0-)$?

a) 0 mA
b) 1 mA
c) 0.56 mA
d) 0.75 mA

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering NETWORK THEORY \& ANALYSIS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four.
a) For the circuit shown below determine the current in (2+j3) Ω by using superposition theorem.

b) Derive expression for resonant frequency in series RLC circuit. How the value of R will affect on frequency response.
c) Define bandwidth. Derive expression for upper cut off and lower cut off frequencies for series resonant circuit.
d) The parameters of two port n / w are $Z_{11}=10 \Omega, Z_{22}=15 \Omega, Z_{12}=Z_{21}=5 \Omega$. Find the equivalent $T \mathrm{n} / \mathrm{w}$.
e) Find h parameters for the circuit shown below.

Q. 3 Attempt any two.

a) State and verify maximum transfer theorem. A DC voltage source has open circuit voltage of 20 V and internal resistance for of 2Ω. Determine the value of the load resistance that gives maximum power dissipation.
b) Show that $\omega_{\mathrm{r}}=\frac{1}{\sqrt{L C}} \sqrt{\frac{R_{L}^{2}-\left(\frac{L}{C}\right)}{R_{C}^{2}-\left(\frac{L}{C}\right)}}$

For circuit shown below, find the value of L at which the circuit resonates at a frequency of $1000 \mathrm{rda} / \mathrm{sec}$.

c) Explain reciprocity and symmetry for -

1) Z parameters
2) Y parameters

Section - II

Q. 4 Attempt any four
a) Design a π type attenuator to give 20dB attenuation and to have characteristic impedance of 100Ω.
b) Find $\mathrm{Z} 11(\mathrm{~S})=\mathrm{V} 1(\mathrm{~S}) / \mathrm{l} 1(\mathrm{~S})$ and $\mathrm{G} 21(\mathrm{~S})=\mathrm{V} 2(\mathrm{~S}) / \mathrm{V} 1(\mathrm{~S})$ for the Network shown below.

c) In the circuit shown below, the initial charge on the capacitor is 2.5 mC , with the voltage polarity as indicated. The switch is closed at time $t=0$. calculate the current $i(t)$ at a time t after the switch is closed.

d) What is filter? What are applications of filter? Explain types of filters with its ideal attenuation characteristics.
e) Give the definition of poles and zero of the network and significance of pole and zero of the network function.

Q. 5 Attempt any two.

a) Explain the classification of filter in brief. Design T section of m-derived LPF having cut off frequency of 1 Kz , Design impedance of 400Ω and the resonant frequency of 1100 Hz .
b) Show the Pole zero Plot of the given network function $\mathrm{V}(\mathrm{S})$ and hence obtain $\mathrm{V}(\mathrm{t})$.

$$
I(S)=\frac{3 S}{(S+2)\left(S^{2}+2 S+2\right)}
$$

c) Discuss step voltage and Step current response of R-L Circuit.

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering NETWORK THEORY \& ANALYSIS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) If the number of zeros (n) are greater than the number of poles (m), then there will be \qquad number of zeros at $s=\infty$.
a) n
b) M
c) $n-m$
d) $n+m$
2) If V 1 is the voltage at port 1 and V 2 is the voltage at port 2, then the attenuation in dB is?
a) $20 \log 10(\mathrm{~V} 1 / \mathrm{V} 2)$
b) $10 \log 10(\mathrm{~V} 1 / \mathrm{V} 2)$
c) $20 \log 10$ (V2/V1)
d) $10 \log 10$ (V2/V1)
3) In band elimination filter, the frequency of resonance of individual arms is geometric \qquad .
a) Mean of two cut-off frequencies
b) Difference of two cut-off frequencies
c) Product of two cut-off frequencies
d) Division of two cut-off frequencies
4) Transient behavior occurs in any circuit when \qquad .
a) There are sudden changes of applied voltage
b) The voltage source is shorted
c) The circuit is connected or disconnected from the supply
d) All of these
5) A series $R-L$ circuit with $R=30 \Omega$ and $L=15 H$ has a constant voltage $V=$ 60 V applied at $\mathrm{t}=0$. Determine the current (A) in the circuit at $\mathrm{t}=0+$.
a) 1
b) 2
c) 3
d) 0
6) The ratio of the current transform at one port to current transform at other port is called?
a) Transfer admittance
b) Transfer impedance
c) Current transfer ratio
d) Voltage transfer ratio
7) Consider the RL circuit shown in the figure below. The input voltage $V_{s}(t)$ is also shown in the figure. Let $t 1=0.1 \mathrm{msec}$.
What is $\mathrm{i}(0-)$?

a) 0 mA
b) 1 mA
c) 0.56 mA
d) 0.75 mA
8) Quality factor Q of coil is defined as \qquad .
a) $Q=W L / 2 R$
b) $Q=2 \Pi^{*}$ Max energy stored/energy dissipated per cycle
c) $Q=1 / 2 \mathrm{WCR}$
d) None
9) A practical current source consists of \qquad .
a) An ideal current source in series with a resistance
b) An ideal current source in parallel with a resistance
c) An ideal current source in parallel with voltage source
d) None of the above
10) In parallel resonance, resonance occurs when susceptance part of admittance is \qquad .
a) Infinite
b) $\quad X_{L}>X_{C}$
c) $X_{C}>X_{L}$
d) Zero
11) In series RLC circuit operating frequency below for \qquad .
a) I leads Vs
b) I lags behind Vs
c) $\mathrm{I} \& \mathrm{Vs}$ in phase
d) None
12) In Series RLC circuit, at resonance the voltage across capacitor and voltage across inductance are in \qquad .
a) $V_{L}>V_{C}$
b) $\quad V_{C}>V_{L}$
c) $\mathrm{VL}=\mathrm{V}_{\mathrm{C}}$
d) $V_{L}+V_{C}$
13) What is the driving point impedance at port one with port two open circuited for the network shown below ($\left.Z_{a}=1 \Omega, Z_{b}=3 \Omega, \& Z_{c}=2 \Omega\right)$?

a) 4Ω
b) 3Ω
c) 5Ω
d) 2Ω
14) When two port networks are connected in parallel the resultant \qquad .
a) Z parameters are the sum of individual parameters
b) Y parameters are the sum of individual parameters
c) both a \& b
d) None

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering NETWORK THEORY \& ANALYSIS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I
Q. 2 Attempt any four.
a) For the circuit shown below determine the current in (2+j3) Ω by using superposition theorem.

b) Derive expression for resonant frequency in series RLC circuit. How the value of R will affect on frequency response.
c) Define bandwidth. Derive expression for upper cut off and lower cut off frequencies for series resonant circuit.
d) The parameters of two port n / w are $\mathrm{Z}_{11}=10 \Omega, \mathrm{Z}_{22}=15 \Omega, \mathrm{Z}_{12}=\mathrm{Z}_{21}=5 \Omega$. Find the equivalent $T \mathrm{n} / \mathrm{w}$.
e) Find h parameters for the circuit shown below.

Q. 3 Attempt any two.
a) State and verify maximum transfer theorem. A DC voltage source has open circuit voltage of 20 V and internal resistance for of 2Ω. Determine the value of the load resistance that gives maximum power dissipation.
b) Show that $\omega_{\mathrm{r}}=\frac{1}{\sqrt{L C}} \sqrt{\frac{R_{L}^{2}-\left(\frac{L}{C}\right)}{R_{C}^{2}-\left(\frac{L}{C}\right)}}$

For circuit shown below, find the value of L at which the circuit resonates at a frequency of $1000 \mathrm{rda} / \mathrm{sec}$.

c) Explain reciprocity and symmetry for -

1) Z parameters
2) Y parameters

Section - II

Q. 4 Attempt any four
a) Design a π type attenuator to give 20dB attenuation and to have characteristic impedance of 100Ω.
b) Find $\mathrm{Z} 11(\mathrm{~S})=\mathrm{V} 1(\mathrm{~S}) / \mathrm{I}(\mathrm{S})$ and $\mathrm{G} 21(\mathrm{~S})=\mathrm{V} 2(\mathrm{~S}) / \mathrm{V} 1(\mathrm{~S})$ for the Network shown below.

c) In the circuit shown below, the initial charge on the capacitor is 2.5 mC , with the voltage polarity as indicated. The switch is closed at time $t=0$. calculate the current $i(t)$ at a time t after the switch is closed.

d) What is filter? What are applications of filter? Explain types of filters with its ideal attenuation characteristics.
e) Give the definition of poles and zero of the network and significance of pole and zero of the network function.

Q. 5 Attempt any two.

a) Explain the classification of filter in brief. Design T section of m-derived LPF having cut off frequency of 1 Kz , Design impedance of 400Ω and the resonant frequency of 1100 Hz .
b) Show the Pole zero Plot of the given network function $\mathrm{V}(\mathrm{S})$ and hence obtain $\mathrm{V}(\mathrm{t})$.
$I(S)=\frac{3 S}{(S+2)\left(S^{2}+2 S+2\right)}$
c) Discuss step voltage and Step current response of R-L Circuit.

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering NETWORK THEORY \& ANALYSIS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) In Series RLC circuit, at resonance the voltage across capacitor and voltage across inductance are in \qquad .
a) $V_{L}>V_{C}$
b) $\quad V_{C}>V_{L}$
c) $V L=V_{C}$
d) $V_{L}+V_{C}$
2) What is the driving point impedance at port one with port two open circuited for the network shown below ($Z_{a}=1 \Omega, Z_{b}=3 \Omega, \& Z_{c}=2 \Omega$)?

a) 4Ω
b) 3Ω
c) 5Ω
d) 2Ω
3) When two port networks are connected in parallel the resultant \qquad .
a) Z parameters are the sum of individual parameters
b) Y parameters are the sum of individual parameters
c) both a \& b
d) None
4) If the number of zeros (n) are greater than the number of poles (m), then there will be \qquad number of zeros at $s=\infty$.
a) n
b) M
c) $n-m$
d) $n+m$
5) If V 1 is the voltage at port 1 and V 2 is the voltage at port 2, then the attenuation in dB is?
a) $20 \log 10(\mathrm{~V} 1 / \mathrm{V} 2)$
b) $10 \log 10(\mathrm{~V} 1 / \mathrm{V} 2)$
c) $20 \log 10$ (V2/V1)
d) $10 \log 10$ (V2/V1)
6) In band elimination filter, the frequency of resonance of individual arms is geometric \qquad .
a) Mean of two cut-off frequencies
b) Difference of two cut-off frequencies
c) Product of two cut-off frequencies
d) Division of two cut-off frequencies
7) Transient behavior occurs in any circuit when \qquad .
a) There are sudden changes of applied voltage
b) The voltage source is shorted
c) The circuit is connected or disconnected from the supply
d) All of these
8) A series $R-L$ circuit with $R=30 \Omega$ and $L=15 H$ has a constant voltage $V=$ 60 V applied at $\mathrm{t}=0$. Determine the current (A) in the circuit at $t=0+$.
a) 1
b) 2
c) 3
d) 0
9) The ratio of the current transform at one port to current transform at other port is called?
a) Transfer admittance
b) Transfer impedance
c) Current transfer ratio
d) Voltage transfer ratio
10) Consider the RL circuit shown in the figure below. The input voltage $V_{s}(t)$ is also shown in the figure. Let $t 1=0.1 \mathrm{msec}$.
What is $\mathrm{i}(0-)$?

a) 0 mA
b) 1 mA
c) 0.56 mA
d) 0.75 mA
11) Quality factor Q of coil is defined as \qquad .
a) $Q=W L / 2 R$
b) $\mathrm{Q}=2 \prod^{*}$ Max energy stored/energy dissipated per cycle
c) $Q=1 / 2 \mathrm{WCR}$
d) None
12) A practical current source consists of \qquad .
a) An ideal current source in series with a resistance
b) An ideal current source in parallel with a resistance
c) An ideal current source in parallel with voltage source
d) None of the above
13) In parallel resonance, resonance occurs when susceptance part of admittance is \qquad .
a) Infinite
b) $\quad X_{L}>X_{C}$
c) $X_{C}>X_{L}$
d) Zero
14) In series RLC circuit operating frequency below for \qquad .
a) I leads Vs
b) I lags behind Vs
c) I \&Vs in phase
d) None

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering NETWORK THEORY \& ANALYSIS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four.
a) For the circuit shown below determine the current in (2+j3) Ω by using superposition theorem.

b) Derive expression for resonant frequency in series RLC circuit. How the value of R will affect on frequency response.
c) Define bandwidth. Derive expression for upper cut off and lower cut off frequencies for series resonant circuit.
d) The parameters of two port n / w are $Z_{11}=10 \Omega, Z_{22}=15 \Omega, Z_{12}=Z_{21}=5 \Omega$. Find the equivalent $T \mathrm{n} / \mathrm{w}$.
e) Find h parameters for the circuit shown below.

Q. 3 Attempt any two.
a) State and verify maximum transfer theorem. A DC voltage source has open circuit voltage of 20 V and internal resistance for of 2Ω. Determine the value of the load resistance that gives maximum power dissipation.
b) Show that $\omega_{\mathrm{r}}=\frac{1}{\sqrt{L C}} \sqrt{\frac{R_{L}^{2}-\left(\frac{L}{C}\right)}{R_{C}^{2}-\left(\frac{L}{C}\right)}}$

For circuit shown below, find the value of L at which the circuit resonates at a frequency of $1000 \mathrm{rda} / \mathrm{sec}$.

c) Explain reciprocity and symmetry for -

1) Z parameters
2) Y parameters

Section - II

Q. 4 Attempt any four
a) Design a π type attenuator to give 20dB attenuation and to have characteristic impedance of 100Ω.
b) Find $\mathrm{Z} 11(\mathrm{~S})=\mathrm{V} 1(\mathrm{~S}) / \mathrm{I} 1(\mathrm{~S})$ and $\mathrm{G} 21(\mathrm{~S})=\mathrm{V} 2(\mathrm{~S}) / \mathrm{V} 1(\mathrm{~S})$ for the Network shown below.

c) In the circuit shown below, the initial charge on the capacitor is 2.5 mC , with the voltage polarity as indicated. The switch is closed at time $t=0$. calculate the current $i(t)$ at a time t after the switch is closed.

d) What is filter? What are applications of filter? Explain types of filters with its ideal attenuation characteristics.
e) Give the definition of poles and zero of the network and significance of pole and zero of the network function.

Q. 5 Attempt any two.

a) Explain the classification of filter in brief. Design T section of m-derived LPF having cut off frequency of 1 Kz , Design impedance of 400Ω and the resonant frequency of 1100 Hz .
b) Show the Pole zero Plot of the given network function $\mathrm{V}(\mathrm{S})$ and hence obtain $\mathrm{V}(\mathrm{t})$.

$$
\mathrm{I}(\mathrm{~S})=\frac{3 \mathrm{~S}}{(\mathrm{~S}+2)\left(\mathrm{S}^{2}+2 \mathrm{~S}+2\right)}
$$

c) Discuss step voltage and Step current response of R-L Circuit.

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering NETWORK THEORY \& ANALYSIS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) In band elimination filter, the frequency of resonance of individual arms is geometric \qquad .
a) Mean of two cut-off frequencies
b) Difference of two cut-off frequencies
c) Product of two cut-off frequencies
d) Division of two cut-off frequencies
2) Transient behavior occurs in any circuit when \qquad .
a) There are sudden changes of applied voltage
b) The voltage source is shorted
c) The circuit is connected or disconnected from the supply
d) All of these
3) A series $R-L$ circuit with $R=30 \Omega$ and $L=15 H$ has a constant voltage $V=$ 60 V applied at $t=0$. Determine the current (A) in the circuit at $t=0+$.
a) 1
b) 2
c) 3
d) 0
4) The ratio of the current transform at one port to current transform at other port is called?
a) Transfer admittance
b) Transfer impedance
c) Current transfer ratio
d) Voltage transfer ratio
5) Consider the RL circuit shown in the figure below. The input voltage $V_{s}(t)$ is also shown in the figure. Let $t 1=0.1 \mathrm{msec}$.
What is $\mathrm{i}(0-)$?

a) 0 mA
b) 1 mA
c) 0.56 mA
d) 0.75 mA

SLR-FM-229

6) Quality factor Q of coil is defined as \qquad .
a) $Q=W L / 2 R$
b) $Q=2 \prod^{*}$ Max energy stored/energy dissipated per cycle
c) $Q=1 / 2 \mathrm{WCR}$
d) None
7) A practical current source consists of \qquad .
a) An ideal current source in series with a resistance
b) An ideal current source in parallel with a resistance
c) An ideal current source in parallel with voltage source
d) None of the above
8) In parallel resonance, resonance occurs when susceptance part of admittance is \qquad .
a) Infinite
b) $\quad X_{L}>X_{C}$
c) $X_{C}>X_{L}$
d) Zero
9) In series RLC circuit operating frequency below for \qquad .
a) I leads Vs
b) I lags behind Vs
c) I \&Vs in phase
d) None
10) In Series RLC circuit, at resonance the voltage across capacitor and voltage across inductance are in \qquad -
a) $V_{L}>V_{C}$
b) $V_{C}>V_{L}$
c) $\mathrm{VL}=\mathrm{V}_{\mathrm{C}}$
d) $V_{L}+V_{C}$
11) What is the driving point impedance at port one with port two open circuited for the network shown below ($\left.Z_{a}=1 \Omega, Z_{b}=3 \Omega, \& Z_{c}=2 \Omega\right)$?

a) 4Ω
b) 3Ω
c) 5Ω
d) 2Ω
12) When two port networks are connected in parallel the resultant \qquad .
a) Z parameters are the sum of individual parameters
b) Y parameters are the sum of individual parameters
c) both a \& b
d) None
13) If the number of zeros (n) are greater than the number of poles (m), then there will be \qquad number of zeros at $s=\infty$.
a) n
b) M
c) $n-m$
d) $n+m$
14) If V 1 is the voltage at port 1 and V 2 is the voltage at port 2 , then the attenuation in dB is?
a) $20 \log 10(\mathrm{~V} 1 / \mathrm{V} 2)$
b) $10 \log 10(\mathrm{~V} 1 / \mathrm{V} 2)$
c) $20 \log 10(\mathrm{~V} 2 / \mathrm{V} 1)$
d) $10 \log 10(\mathrm{~V} 2 / \mathrm{V} 1)$

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering NETWORK THEORY \& ANALYSIS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four.
a) For the circuit shown below determine the current in (2+j3) Ω by using superposition theorem.

b) Derive expression for resonant frequency in series RLC circuit. How the value of R will affect on frequency response.
c) Define bandwidth. Derive expression for upper cut off and lower cut off frequencies for series resonant circuit.
d) The parameters of two port n / w are $Z_{11}=10 \Omega, Z_{22}=15 \Omega, Z_{12}=Z_{21}=5 \Omega$. Find the equivalent $T \mathrm{n} / \mathrm{w}$.
e) Find h parameters for the circuit shown below.

Q. 3 Attempt any two.
a) State and verify maximum transfer theorem. A DC voltage source has open circuit voltage of 20 V and internal resistance for of 2Ω. Determine the value of the load resistance that gives maximum power dissipation.
b) Show that $\omega_{\mathrm{r}}=\frac{1}{\sqrt{L C}} \sqrt{\frac{R_{L}^{2}-\left(\frac{L}{C}\right)}{R_{C}^{2}-\left(\frac{L}{C}\right)}}$

For circuit shown below, find the value of L at which the circuit resonates at a frequency of $1000 \mathrm{rda} / \mathrm{sec}$.

c) Explain reciprocity and symmetry for -

1) Z parameters
2) Y parameters

Section - II

Q. 4 Attempt any four
a) Design a π type attenuator to give 20dB attenuation and to have characteristic impedance of 100Ω.
b) Find $\mathrm{Z} 11(\mathrm{~S})=\mathrm{V} 1(\mathrm{~S}) / \mathrm{I} 1(\mathrm{~S})$ and $\mathrm{G} 21(\mathrm{~S})=\mathrm{V} 2(\mathrm{~S}) / \mathrm{V} 1(\mathrm{~S})$ for the Network shown below.

c) In the circuit shown below, the initial charge on the capacitor is 2.5 mC , with the voltage polarity as indicated. The switch is closed at time $t=0$. calculate the current $i(t)$ at a time t after the switch is closed.

d) What is filter? What are applications of filter? Explain types of filters with its ideal attenuation characteristics.
e) Give the definition of poles and zero of the network and significance of pole and zero of the network function.

Q. 5 Attempt any two.

a) Explain the classification of filter in brief. Design T section of m-derived LPF having cut off frequency of 1 Kz , Design impedance of 400Ω and the resonant frequency of 1100 Hz .
b) Show the Pole zero Plot of the given network function $\mathrm{V}(\mathrm{S})$ and hence obtain $\mathrm{V}(\mathrm{t})$.

$$
I(S)=\frac{3 S}{(S+2)\left(S^{2}+2 S+2\right)}
$$

c) Discuss step voltage and Step current response of R-L Circuit.

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
 2) Figures to the right indicate full marks.
 3) Draw neat diagrams.
 4) Assume suitable data if necessary.
 MCQ/Objective Type Questions
 Duration: 30 Minutes
 Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) In a four variable K-map eight adjacent cells give \qquad -
a) Single variable term
b) Two variable term
c) Three variable term
d) Four variable term
2) In a 4 bit full adder how many half adders and $O R$ gates are required?
a) 8 and 4
b) 7 and 4
c) 7 and 3
d) 8 and 3
3) Consider the following statements for a multiplexer \qquad -
i) selects one of the several inputs and steers it to the output
ii) routes the data from a single input to many outputs
iii) converts parallel data into serial data
iv) is a combinational circuit

Which of the above is correct for a Multiplexer?
a) i, ii, iii
b) i, iii, iv
c) i, ii, iv
d) ii, iii, iv
4) Consider the following statements.
i) ECL has least propagation delay
ii) TTL has largest fan out
iii) CMOS has highest noise margin
iv) TTL has lowest power dissipation

Which of the following are correct for above statements?
a) i \& iii
b) ii \& iv
c) iii \& iv
d) i \& ii
5) A JK flip flop can be converted to D flip flop by, \qquad .
a) Connecting both J and K terminals to D
b) Connecting J terminal to D and leaving K open
c) Connecting K terminal to D and leaving J open
d) Connecting J terminal to D and K terminal to D through an inverter
6) How many NAND gates are used to construct Active High S-R flip flop?
a) 5
b) 3
c) 4
d) 8

SLR-FM-230
 Set

7) In comparison with Serial adder the Parallel adder \qquad .
a) is slower
b) has same speed
c) is faster
d) has delayed output
8) Maximum MOD number for a 2-bit binary counter is \qquad .
a) 4
b) 3
c) 8
d) 16
9) To serially shift a 5-bit of data into a shift register, there must be \qquad .
a) 1 clock pulse
b) 4 clock pulses
c) 5 clock pulses
d) 1 clock pulse for each 1
10) To operate correctly, starting a ring counter requires \qquad .
a) presetting all the flip-flops
b) clearing all the flip-flops
c) presetting one flip-flop and clearing all the others
d) none of the above
11) How many minimum number of flip-flops are required to make a MOD-28 binary counter?
a) 32
b) 16
c) 5
d) 4
12) When two counters are cascaded, the overall MOD number is equal to the \qquad of their individual MOD numbers.
a) Product
b) Sum
c) \log
d) Reciprocal
13) Clock signals are used in sequential logic circuits \qquad .
a) To tell current time
b) To tell how propagation delay
c) To carry serial data signals
d) To synchronize events in various parts of the system
14) How many flip-flops are in the IC7495?
a) 1
b) 2
c) 3
d) 4

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Draw neat diagrams.
4) Assume suitable data if necessary.

Section - I

Q. 2 Answer any four.
a) Implement the following Boolean function F, using NOR logic $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,4,8,9,10,11,12,14)$
b) Explain and design a 2-bit magnitude comparator which should compare $x \& y$ and give output as $x>y, x=y$ and $x<y$.
c) Design an Odd Parity Generator for 3 bit binary input.
d) Design and explain 2 input NAND gate using CMOS.
e) Explain 1-bit latch using NAND logic.
Q. 3 Solve any two.
a) Simplify the following functions, and implement using NAND gate $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{AC}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{ABC}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
b) Explain General model for flip-flop conversion and convert D-flip flop to T flip-flop.
c) Define and explain following characteristics of a logic family

1) Fan-out
2) Propagation Delay
3) Power Dissipation
4) Figure of Merit (Speed Power Product)

Section - II
Q. 4 Attempt any four.
a) Explain in detail SIPO Shift register with example \& waveform.
b) Design 2 bit synchronous down counter using T Flip flop.
c) Write VHDL code for Comparator.
d) Explain Mealy machine with block diagram \& example.
e) Design a PROM PLD based 3 bit binary to gray converter.
Q. 5 Attempt any two.
a) Explain in detail ring counter \& twisted ring counter with waveform.
b) Write a short note on IC 7490. Design MOD 7 counter using IC 7490.
c) Explain sequence detector with example.

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
 2) Figures to the right indicate full marks.
 3) Draw neat diagrams.
 4) Assume suitable data if necessary.
 MCQ/Objective Type Questions
 Duration: 30 Minutes
 Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Maximum MOD number for a 2 -bit binary counter is \qquad .
a) 4
b) 3
c) 8
d) 16
2) To serially shift a 5-bit of data into a shift register, there must be \qquad .
a) 1 clock pulse
b) 4 clock pulses
c) 5 clock pulses
d) 1 clock pulse for each 1
3) To operate correctly, starting a ring counter requires \qquad .
a) presetting all the flip-flops
b) clearing all the flip-flops
c) presetting one flip-flop and clearing all the others
d) none of the above
4) How many minimum number of flip-flops are required to make a MOD-28 binary counter?
a) 32
b) 16
c) 5
d) 4
5) When two counters are cascaded, the overall MOD number is equal to the \qquad of their individual MOD numbers.
a) Product
b) Sum
c) \log
d) Reciprocal
6) Clock signals are used in sequential logic circuits \qquad .
a) To tell current time
b) To tell how propagation delay
c) To carry serial data signals
d) To synchronize events in various parts of the system
7) How many flip-flops are in the IC7495?
a) 1
b) 2
c) 3
d) 4
8) In a four variable K-map eight adjacent cells give \qquad .
a) Single variable term
b) Two variable term
c) Three variable term
d) Four variable term
9) In a 4 bit full adder how many half adders and OR gates are required?
a) 8 and 4
b) 7 and 4
c) 7 and 3
d) 8 and 3
10) Consider the following statements for a multiplexer \qquad .
i) selects one of the several inputs and steers it to the output
ii) routes the data from a single input to many outputs
iii) converts parallel data into serial data
iv) is a combinational circuit

Which of the above is correct for a Multiplexer?
a) i, ii, iii
b) i, iii, iv
c) i, ii, iv
d) ii, iii, iv
11) Consider the following statements.
i) ECL has least propagation delay
ii) TTL has largest fan out
iii) CMOS has highest noise margin
iv) TTL has lowest power dissipation

Which of the following are correct for above statements?
a) i \& iii
b) ii \& iv
c) iii \& iv
d) i \& ii
12) A JK flip flop can be converted to D flip flop by, \qquad .
a) Connecting both J and K terminals to D
b) Connecting J terminal to D and leaving K open
c) Connecting K terminal to D and leaving J open
d) Connecting J terminal to D and K terminal to D through an inverter
13) How many NAND gates are used to construct Active High S-R flip flop?
a) 5
b) 3
c) 4
d) 8
14) In comparison with Serial adder the Parallel adder \qquad .
a) is slower
b) has same speed
c) is faster
d) has delayed output

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Draw neat diagrams.
4) Assume suitable data if necessary.

Section - I

Q. 2 Answer any four.
a) Implement the following Boolean function F, using NOR logic $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,4,8,9,10,11,12,14)$
b) Explain and design a 2-bit magnitude comparator which should compare $x \& y$ and give output as $x>y, x=y$ and $x<y$.
c) Design an Odd Parity Generator for 3 bit binary input.
d) Design and explain 2 input NAND gate using CMOS.
e) Explain 1-bit latch using NAND logic.
Q. 3 Solve any two.
a) Simplify the following functions, and implement using NAND gate $F(A, B, C, D)=A C^{\prime} D^{\prime}+A^{\prime} C+A B C+A B^{\prime} C+A^{\prime} C^{\prime} D^{\prime}$
b) Explain General model for flip-flop conversion and convert D-flip flop to T flip-flop.
c) Define and explain following characteristics of a logic family

1) Fan-out
2) Propagation Delay
3) Power Dissipation
4) Figure of Merit (Speed Power Product)

Section - II
Q. 4 Attempt any four.
a) Explain in detail SIPO Shift register with example \& waveform.
b) Design 2 bit synchronous down counter using T Flip flop.
c) Write VHDL code for Comparator.
d) Explain Mealy machine with block diagram \& example.
e) Design a PROM PLD based 3 bit binary to gray converter.
Q. 5 Attempt any two.
a) Explain in detail ring counter \& twisted ring counter with waveform.
b) Write a short note on IC 7490. Design MOD 7 counter using IC 7490.
c) Explain sequence detector with example.

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
 2) Figures to the right indicate full marks.
 3) Draw neat diagrams.
 4) Assume suitable data if necessary.
 MCQ/Objective Type Questions
 Duration: 30 Minutes
 Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) A JK flip flop can be converted to D flip flop by, \qquad .
a) Connecting both J and K terminals to D
b) Connecting J terminal to D and leaving K open
c) Connecting K terminal to D and leaving J open
d) Connecting J terminal to D and K terminal to D through an inverter
2) How many NAND gates are used to construct Active High S-R flip flop?
a) 5
b) 3
c) 4
d) 8
3) In comparison with Serial adder the Parallel adder \qquad .
a) is slower
b) has same speed
c) is faster
d) has delayed output
4) Maximum MOD number for a 2 -bit binary counter is \qquad .
a) 4
b) 3
c) 8
d) 16
5) To serially shift a 5 -bit of data into a shift register, there must be \qquad .
a) 1 clock pulse
b) 4 clock pulses
c) 5 clock pulses
d) 1 clock pulse for each 1
6) To operate correctly, starting a ring counter requires \qquad .
a) presetting all the flip-flops
b) clearing all the flip-flops
c) presetting one flip-flop and clearing all the others
d) none of the above
7) How many minimum number of flip-flops are required to make a MOD-28 binary counter?
a) 32
b) 16
c) 5
d) 4
8) When two counters are cascaded, the overall MOD number is equal to the \qquad of their individual MOD numbers.
a) Product
b) Sum
c) \log
d) Reciprocal

SLR-FM-230
 Set

9) Clock signals are used in sequential logic circuits
a) To tell current time
b) To tell how propagation delay
c) To carry serial data signals
d) To synchronize events in various parts of the system
10) How many flip-flops are in the IC7495?
a) 1
b) 2
c) 3
d) 4
11) In a four variable K-map eight adjacent cells give \qquad .
a) Single variable term
b) Two variable term
c) Three variable term
d) Four variable term
12) In a 4 bit full adder how many half adders and OR gates are required?
a) 8 and 4
b) 7 and 4
c) 7 and 3
d) 8 and 3
13) Consider the following statements for a multiplexer \qquad .
i) selects one of the several inputs and steers it to the output
ii) routes the data from a single input to many outputs
iii) converts parallel data into serial data
iv) is a combinational circuit

Which of the above is correct for a Multiplexer?
a) i, ii, iii
b) i, iii, iv
c) i, ii, iv
d) ii, iii, iv
14) Consider the following statements.
i) ECL has least propagation delay
ii) TTL has largest fan out
iii) CMOS has highest noise margin
iv) TTL has lowest power dissipation

Which of the following are correct for above statements?
a) i \& iii
b) ii \& iv
c) iii \& iv
d) i \& ii

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Draw neat diagrams.
4) Assume suitable data if necessary.

Section - I

Q. 2 Answer any four.
a) Implement the following Boolean function F, using NOR logic $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,4,8,9,10,11,12,14)$
b) Explain and design a 2-bit magnitude comparator which should compare $x \& y$ and give output as $x>y, x=y$ and $x<y$.
c) Design an Odd Parity Generator for 3 bit binary input.
d) Design and explain 2 input NAND gate using CMOS.
e) Explain 1-bit latch using NAND logic.
Q. 3 Solve any two.
a) Simplify the following functions, and implement using NAND gate $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{AC}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{ABC}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
b) Explain General model for flip-flop conversion and convert D-flip flop to T flip-flop.
c) Define and explain following characteristics of a logic family

1) Fan-out
2) Propagation Delay
3) Power Dissipation
4) Figure of Merit (Speed Power Product)

Section - II
Q. 4 Attempt any four.
a) Explain in detail SIPO Shift register with example \& waveform.
b) Design 2 bit synchronous down counter using T Flip flop.
c) Write VHDL code for Comparator.
d) Explain Mealy machine with block diagram \& example.
e) Design a PROM PLD based 3 bit binary to gray converter.
Q. 5 Attempt any two.
a) Explain in detail ring counter \& twisted ring counter with waveform.
b) Write a short note on IC 7490. Design MOD 7 counter using IC 7490.
c) Explain sequence detector with example.

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.
3) Draw neat diagrams.
4) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) To operate correctly, starting a ring counter requires \qquad .
a) presetting all the flip-flops
b) clearing all the flip-flops
c) presetting one flip-flop and clearing all the others
d) none of the above
2) How many minimum number of flip-flops are required to make a MOD-28 binary counter?
a) 32
b) 16
c) 5
d) 4
3) When two counters are cascaded, the overall MOD number is equal to the \qquad of their individual MOD numbers.
a) Product
b) Sum
c) Log
d) Reciprocal
4) Clock signals are used in sequential logic circuits \qquad .
a) To tell current time
b) To tell how propagation delay
c) To carry serial data signals
d) To synchronize events in various parts of the system
5) How many flip-flops are in the IC7495?
a) 1
b) 2
c) 3
d) 4
6) In a four variable K-map eight adjacent cells give \qquad .
a) Single variable term
b) Two variable term
c) Three variable term
d) Four variable term
7) In a 4 bit full adder how many half adders and OR gates are required?
a) 8 and 4
b) 7 and 4
c) 7 and 3
d) 8 and 3
8) Consider the following statements for a multiplexer \qquad .
i) selects one of the several inputs and steers it to the output
ii) routes the data from a single input to many outputs
iii) converts parallel data into serial data
iv) is a combinational circuit

Which of the above is correct for a Multiplexer?
a) i, ii, iii
b) i, iii, iv
c) i, ii, iv
d) ii, iii, iv
9) Consider the following statements.
i) ECL has least propagation delay
ii) TTL has largest fan out
iii) CMOS has highest noise margin
iv) TTL has lowest power dissipation

Which of the following are correct for above statements?
a) i \& iii
b) ii \& iv
c) iii \& iv
d) i \& ii
10) A JK flip flop can be converted to D flip flop by, \qquad .
a) Connecting both J and K terminals to D
b) Connecting J terminal to D and leaving K open
c) Connecting K terminal to D and leaving J open
d) Connecting J terminal to D and K terminal to D through an inverter
11) How many NAND gates are used to construct Active High S-R flip flop?
a) 5
b) 3
c) 4
d) 8
12) In comparison with Serial adder the Parallel adder \qquad .
a) is slower
b) has same speed
c) is faster
d) has delayed output
13) Maximum MOD number for a 2-bit binary counter is \qquad .
a) 4
b) 3
c) 8
d) 16
14) To serially shift a 5 -bit of data into a shift register, there must be \qquad .
a) 1 clock pulse
b) 4 clock pulses
c) 5 clock pulses
d) 1 clock pulse for each 1

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Draw neat diagrams.
4) Assume suitable data if necessary.

Section - I

Q. 2 Answer any four.

a) Implement the following Boolean function F, using NOR logic $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,4,8,9,10,11,12,14)$
b) Explain and design a 2-bit magnitude comparator which should compare $x \& y$ and give output as $x>y, x=y$ and $x<y$.
c) Design an Odd Parity Generator for 3 bit binary input.
d) Design and explain 2 input NAND gate using CMOS.
e) Explain 1-bit latch using NAND logic.

Q. 3 Solve any two.

a) Simplify the following functions, and implement using NAND gate $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{AC}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{ABC}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
b) Explain General model for flip-flop conversion and convert D-flip flop to T flip-flop.
c) Define and explain following characteristics of a logic family

1) Fan-out
2) Propagation Delay
3) Power Dissipation
4) Figure of Merit (Speed Power Product)

Section - II
Q. 4 Attempt any four.
a) Explain in detail SIPO Shift register with example \& waveform.
b) Design 2 bit synchronous down counter using T Flip flop.
c) Write VHDL code for Comparator.
d) Explain Mealy machine with block diagram \& example.
e) Design a PROM PLD based 3 bit binary to gray converter.
Q. 5 Attempt any two.
a) Explain in detail ring counter \& twisted ring counter with waveform.
b) Write a short note on IC 7490. Design MOD 7 counter using IC 7490.
c) Explain sequence detector with example.

Seat
 No.
 S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ANALOG COMMUNICATION

Set

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minute in answer book.
2) All questions are compulsory.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q1 Choose the correct option alternatives from the options.

1) Modulation is done in \qquad .
a) Transmitter
b) Radio receiver
c) Between transmitter and radio receiver
d) None of the above
2) Superhertodyne principle refers to \qquad .
a) Using a large number of amplifier stages
b) Using a push-pull circuit
c) Obtaining lower fixed intermediate frequency
d) None of the above
3) The IF is 455 kHz . If the radio receiver is tuned to 855 kHz , the local oscillator frequency is \qquad .
a) 455 KHz
b) 1310 KHz
c) 1500 KHz
d) 1520 KHz
4) In an AM wave, the majority of the power is in \qquad .
a) Lower Sideband
b) Upper sideband
c) Carrier
d) None of above
5) Low frequency noise is \qquad .
a) Shot Nosie
b) Thermal Nosie
c) Flicker Nosie
d) None of above
6) Nosie figure of an amplifier is always \qquad .
a) Less than one
b) Greater than one
c) Equal to one
d) Equal to 100
7) An AM broadcast transmitter has a carrier power of 50 KW . with 80% modulation, total power that would be produced will be \qquad .
a) 40 KW
b) 50 KW
c) 66 KW
d) 100 KW
8) The amount of frequency deviation in FM signal depends on \qquad .
a) Amplitude of the modulating signal
b) Carrier frequency
c) Modulating frequency
d) Transmitter amplifier
9) Pre emphasis is done \qquad .
a) For boosting of modulating signal voltage
b) For modulating signals at higher frequencies
c) In FM before modulation
d) All of the above
10) Which mode of propagation is adopted in HF antennas?
a) Ionosphere
b) Ground wave
c) Tropospheric
d) All of the above
11) The Nquist sample rate for a maximum analog information frequency of 4 Khz is \qquad .
a) 2 KHz
b) 4 KHz
c) 8 KHz
d) 16 KHz
12) Radiation pattern of half wave dipole antenna is \qquad .
a) Omni-directional
b) Uni-directional
c) Pattern of Eight
d) None
13) What is the maximum modulating frequency allowed in FM broadcastings?
a) 40 KHz
b) 75 KHz
c) 15 KHz
d) 120 KHz
14) Indirect Method of FM generation is \qquad .
a) Reactance modulator
b) Varactor diode modulator
c) Transistorized modulator
d) Armstrong modulator

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering ANALOG COMMUNICATION

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Solve any four of the following.
a) Explain the characteristics of AM receiver.
b) Draw the schematic diagram of VSB modulator and explain.
c) Explain different transmission media used in the communication system.
d) Write a note on filter method of SSB generation.
e) The antenna current of an AM transmitter is 8 A , if only the carrier is sent, but it increases to 8.93 A , if the carrier is modulated by a single sinusoidal wave. Determine the percentage modulation. Also find the antenna current if the percent of modulation changes to 0.8 .
Q. 3 Solve any two of the following.
a) Derive the expression for the total power in the modulated wave and show that 33.33% of the total power is used for information transmission.
b) Derive an expression for Nosie equivalent resistance due to cascading of many amplifier.
c) Draw and explain super heterodyne receiver. What are its advantages and disadvantages over TRF receiver?
Section - II
Q. 4 Solve any four of the following.
a) Compare sky-wave and space-wave propagation.
b) What is pre-emphasis? Why is it used? Sketch a typical pre-emphasis circuit and explain why de-emphasis must be used also.
c) Define Nyquist rate and Nyquist interval.
d) Explain pulse amplitude modulation method.
e) What is ground wave propagation? What are its limitation?
Q. 5 Solve any two of the following.
a) With block diagram, explain the working of the Armstrong method of FM generation.
b) Write a short note on.

1) Half dipole antenna
2) Yagi uda antenna
c) Draw a neat diagram of foster seeley discriminator and explain the working in brief with the help of voltage phasor diagram.

Seat
 No.
 S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ANALOG COMMUNICATION

Set

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minute in answer book.
2) All questions are compulsory.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q1 Choose the correct option alternatives from the options.

1) The amount of frequency deviation in FM signal depends on \qquad .
a) Amplitude of the modulating signal
b) Carrier frequency
c) Modulating frequency
d) Transmitter amplifier
2) Pre emphasis is done \qquad .
a) For boosting of modulating signal voltage
b) For modulating signals at higher frequencies
c) In FM before modulation
d) All of the above
3) Which mode of propagation is adopted in HF antennas?
a) Ionosphere
b) Ground wave
c) Tropospheric
d) All of the above
4) The Nquist sample rate for a maximum analog information frequency of 4

Khz is \qquad -.
a) 2 KHz
b) 4 KHz
c) 8 KHz
d) 16 KHz
5) Radiation pattern of half wave dipole antenna is \qquad .
a) Omni-directional
b) Uni-directional
c) Pattern of Eight
d) None
6) What is the maximum modulating frequency allowed in FM broadcastings?
a) 40 KHz
b) 75 KHz
c) 15 KHz
d) 120 KHz
7) Indirect Method of FM generation is \qquad .
a) Reactance modulator
b) Varactor diode modulator
c) Transistorized modulator
d) Armstrong modulator
8) Modulation is done in \qquad .
a) Transmitter
b) Radio receiver
c) Between transmitter and radio receiver
d) None of the above
9) Superhertodyne principle refers to \qquad .
a) Using a large number of amplifier stages
b) Using a push-pull circuit
c) Obtaining lower fixed intermediate frequency
d) None of the above
10) The IF is 455 kHz . If the radio receiver is tuned to 855 kHz , the local oscillator frequency is \qquad .
a) 455 KHz
b) 1310 KHz
c) 1500 KHz
d) 1520 KHz
11) In an AM wave, the majority of the power is in \qquad -
a) Lower Sideband
b) Upper sideband
c) Carrier
d) None of above
12) Low frequency noise is \qquad .
a) Shot Nosie
b) Thermal Nosie
c) Flicker Nosie
d) None of above
13) Nosie figure of an amplifier is always \qquad .
a) Less than one
b) Greater than one
c) Equal to one
d) Equal to 100
14) An AM broadcast transmitter has a carrier power of 50 KW . with 80% modulation, total power that would be produced will be \qquad .
a) 40 KW
b) 50 KW
c) 66 KW
d) 100 KW

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ANALOG COMMUNICATION

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Solve any four of the following.
a) Explain the characteristics of AM receiver.
b) Draw the schematic diagram of VSB modulator and explain.
c) Explain different transmission media used in the communication system.
d) Write a note on filter method of SSB generation.
e) The antenna current of an AM transmitter is 8 A , if only the carrier is sent, but it increases to 8.93 A , if the carrier is modulated by a single sinusoidal wave. Determine the percentage modulation. Also find the antenna current if the percent of modulation changes to 0.8 .
Q. 3 Solve any two of the following.
a) Derive the expression for the total power in the modulated wave and show that 33.33% of the total power is used for information transmission.
b) Derive an expression for Nosie equivalent resistance due to cascading of many amplifier.
c) Draw and explain super heterodyne receiver. What are its advantages and disadvantages over TRF receiver?

Section - II
Q. 4 Solve any four of the following.
a) Compare sky-wave and space-wave propagation.
b) What is pre-emphasis? Why is it used? Sketch a typical pre-emphasis circuit and explain why de-emphasis must be used also.
c) Define Nyquist rate and Nyquist interval.
d) Explain pulse amplitude modulation method.
e) What is ground wave propagation? What are its limitation?
Q. 5 Solve any two of the following.
a) With block diagram, explain the working of the Armstrong method of FM generation.
b) Write a short note on.

1) Half dipole antenna
2) Yagi uda antenna
c) Draw a neat diagram of foster seeley discriminator and explain the working in brief with the help of voltage phasor diagram.

Seat

No.
Set

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ANALOG COMMUNICATION

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minute in answer book.
2) All questions are compulsory.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q1 Choose the correct option alternatives from the options.

1) Low frequency noise is \qquad .
a) Shot Nosie
b) Thermal Nosie
c) Flicker Nosie
d) None of above
2) Nosie figure of an amplifier is always \qquad .
a) Less than one
b) Greater than one
c) Equal to one
d) Equal to 100
3) An AM broadcast transmitter has a carrier power of 50KW. with 80% modulation, total power that would be produced will be \qquad .
a) 40 KW
b) 50 KW
c) 66 KW
d) 100 KW
4) The amount of frequency deviation in FM signal depends on \qquad .
a) Amplitude of the modulating signal
b) Carrier frequency
c) Modulating frequency
d) Transmitter amplifier
5) Pre emphasis is done \qquad .
a) For boosting of modulating signal voltage
b) For modulating signals at higher frequencies
c) In FM before modulation
d) All of the above
6) Which mode of propagation is adopted in HF antennas?
a) Ionosphere
b) Ground wave
c) Tropospheric
d) All of the above
7) The Nquist sample rate for a maximum analog information frequency of 4 Khz is \qquad .
a) 2 KHz
b) 4 KHz
c) 8 KHz
d) 16 KHz
8) Radiation pattern of half wave dipole antenna is \qquad .
a) Omni-directional
b) Uni-directional
c) Pattern of Eight
d) None
9) What is the maximum modulating frequency allowed in FM broadcastings?
a) 40 KHz
b) 75 KHz
c) 15 KHz
d) 120 KHz
10) Indirect Method of FM generation is \qquad .
a) Reactance modulator
b) Varactor diode modulator
c) Transistorized modulator
d) Armstrong modulator
11) Modulation is done in \qquad .
a) Transmitter
b) Radio receiver
c) Between transmitter and radio receiver
d) None of the above
12) Superhertodyne principle refers to \qquad .
a) Using a large number of amplifier stages
b) Using a push-pull circuit
c) Obtaining lower fixed intermediate frequency
d) None of the above
13) The IF is 455 kHz . If the radio receiver is tuned to 855 kHz , the local oscillator frequency is \qquad .
a) 455 KHz
b) 1310 KHz
c) 1500 KHz
d) 1520 KHz
14) In an AM wave, the majority of the power is in \qquad .
a) Lower Sideband
b) Upper sideband
c) Carrier
d) None of above

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ANALOG COMMUNICATION

Day \& Date: Tuesday, 17-12-2019

Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Solve any four of the following.
a) Explain the characteristics of AM receiver.
b) Draw the schematic diagram of VSB modulator and explain.
c) Explain different transmission media used in the communication system.
d) Write a note on filter method of SSB generation.
e) The antenna current of an AM transmitter is 8 A , if only the carrier is sent, but it increases to 8.93 A , if the carrier is modulated by a single sinusoidal wave. Determine the percentage modulation. Also find the antenna current if the percent of modulation changes to 0.8 .
Q. 3 Solve any two of the following.
a) Derive the expression for the total power in the modulated wave and show that 33.33% of the total power is used for information transmission.
b) Derive an expression for Nosie equivalent resistance due to cascading of many amplifier.
c) Draw and explain super heterodyne receiver. What are its advantages and disadvantages over TRF receiver?

Section - II
Q. 4 Solve any four of the following.
a) Compare sky-wave and space-wave propagation.
b) What is pre-emphasis? Why is it used? Sketch a typical pre-emphasis circuit and explain why de-emphasis must be used also.
c) Define Nyquist rate and Nyquist interval.
d) Explain pulse amplitude modulation method.
e) What is ground wave propagation? What are its limitation?
Q. 5 Solve any two of the following.
a) With block diagram, explain the working of the Armstrong method of FM generation.
b) Write a short note on.

1) Half dipole antenna
2) Yagi uda antenna
c) Draw a neat diagram of foster seeley discriminator and explain the working in brief with the help of voltage phasor diagram.

Seat

No.
Set

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ANALOG COMMUNICATION

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minute in answer book.
2) All questions are compulsory.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q1 Choose the correct option alternatives from the options.

1) Which mode of propagation is adopted in HF antennas?
a) Ionosphere
b) Ground wave
c) Tropospheric
d) All of the above
2) The Nquist sample rate for a maximum analog information frequency of 4 Khz is \qquad .
a) 2 KHz
b) 4 KHz
c) 8 KHz
d) 16 KHz
3) Radiation pattern of half wave dipole antenna is \qquad -
a) Omni-directional
b) Uni-directional
c) Pattern of Eight
d) None
4) What is the maximum modulating frequency allowed in FM broadcastings?
a) 40 KHz
b) 75 KHz
c) 15 KHz
d) 120 KHz
5) Indirect Method of FM generation is \qquad .
a) Reactance modulator
b) Varactor diode modulator
c) Transistorized modulator
d) Armstrong modulator
6) Modulation is done in \qquad .
a) Transmitter
b) Radio receiver
c) Between transmitter and radio receiver
d) None of the above
7) Superhertodyne principle refers to \qquad .
a) Using a large number of amplifier stages
b) Using a push-pull circuit
c) Obtaining lower fixed intermediate frequency
d) None of the above
8) The IF is 455 kHz . If the radio receiver is tuned to 855 kHz , the local oscillator frequency is \qquad .
a) 455 KHz
b) 1310 KHz
c) 1500 KHz
d) 1520 KHz
9) In an AM wave, the majority of the power is in \qquad .
a) Lower Sideband
b) Upper sideband
c) Carrier
d) None of above
10) Low frequency noise is \qquad .
a) Shot Nosie
b) Thermal Nosie
c) Flicker Nosie
d) None of above
11) Nosie figure of an amplifier is always \qquad .
a) Less than one
b) Greater than one
c) Equal to one
d) Equal to 100
12) An AM broadcast transmitter has a carrier power of 50KW. with 80% modulation, total power that would be produced will be \qquad _.
a) 40 KW
b) 50 KW
c) 66 KW
d) 100 KW
13) The amount of frequency deviation in FM signal depends on \qquad .
a) Amplitude of the modulating signal
b) Carrier frequency
c) Modulating frequency
d) Transmitter amplifier
14) Pre emphasis is done \qquad .
a) For boosting of modulating signal voltage
b) For modulating signals at higher frequencies
c) In FM before modulation
d) All of the above

S.E. (Part - I) (New/Old) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ANALOG COMMUNICATION

Day \& Date: Tuesday, 17-12-2019

Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Solve any four of the following.
a) Explain the characteristics of AM receiver.
b) Draw the schematic diagram of VSB modulator and explain.
c) Explain different transmission media used in the communication system.
d) Write a note on filter method of SSB generation.
e) The antenna current of an AM transmitter is 8 A , if only the carrier is sent, but it increases to 8.93 A , if the carrier is modulated by a single sinusoidal wave. Determine the percentage modulation. Also find the antenna current if the percent of modulation changes to 0.8 .
Q. 3 Solve any two of the following.
a) Derive the expression for the total power in the modulated wave and show that 33.33% of the total power is used for information transmission.
b) Derive an expression for Nosie equivalent resistance due to cascading of many amplifier.
c) Draw and explain super heterodyne receiver. What are its advantages and disadvantages over TRF receiver?

Section - II
Q. 4 Solve any four of the following.
a) Compare sky-wave and space-wave propagation.
b) What is pre-emphasis? Why is it used? Sketch a typical pre-emphasis circuit and explain why de-emphasis must be used also.
c) Define Nyquist rate and Nyquist interval.
d) Explain pulse amplitude modulation method.
e) What is ground wave propagation? What are its limitation?
Q. 5 Solve any two of the following.
a) With block diagram, explain the working of the Armstrong method of FM generation.
b) Write a short note on.

1) Half dipole antenna
2) Yagi uda antenna
c) Draw a neat diagram of foster seeley discriminator and explain the working in brief with the help of voltage phasor diagram.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if necessary
3) Figures to the right indicate full marks
4) Use of datasheet and non programmable calculator is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct Answer

1) Output resistance of current series negative feedback amplifier \qquad .
a) Increases
b) Decreases
c) Does not change
d) Becomes Unpredictable
2) When multistage amplifier is used to amplify DC signal then the coupling used is \qquad .
a) Direct
b) Transformer
c) $\mathrm{R}-\mathrm{C}$
d) R-L
3) If the transistor is operated in such a way that output current flows for 60° of the input signal then its \qquad operation.
a) Class A
b) Class B
c) Class C
d) Class D
4) For Wein bridge oscillator a variable capacitor with 47 pF and upper limit 470 pF is used, what should be the value of fixed resistance required to provide upper frequency limit of 200 KHz .
a) 16.92 ohm
b) 20.92 ohm
c) 30.92 ohm
d) None of the these
5) When no signal is applied the approximate collector efficiency of Class A power amplifier is \qquad .
a) 10%
b) 0%
c) 25%
d) 50%
6) The frequency response of transformer coupled amplifier is \qquad .
a) Good
b) Very Good
c) Excellent
d) Poor
7) Cascading two amplifier stages will result in \qquad .
a) reduction in gain and increase in bandwidth
b) reduction in gain and reduction in bandwidth
c) increase in gain and reduction in bandwidth
d) increase in gain and increase in bandwidth
8) A pre-regulator is used with a transistor series regulator in order to \qquad .
a) Increase the input resistance of series transistor
b) Decrease the input resistance of series transistor
c) Increase the output resistance of series transistor
d) Increase the current gain of series transistor
9) Schmitt trigger is \qquad .
a) Oscillator
b) Amplifier
c) Comparator
d) All of these
10) Sine wave can be converted by \qquad .
a) Rectifier
b) Schmitt trigger
c) Astable multivibrator
d) All of these
11) In monostable multivibrator quasi stable state duration is \qquad .
a) RC
b) 0.7 RC
c) 1.4 RC
d) None of these
12) For selecting transistor in multi vibrator design, transistor used should have \qquad .
a) less td
b) moretf
c) less td and tr
d) less td, tr, tf, ts
13) For IC regulators output capacitor is required for \qquad .
a) Improving stability
b) Short circuit protection
c) Improve transient response
d) Over voltage protection
14) In IC 555 discharge pin is \qquad .
a) $\mathrm{Pin} \mathrm{No}_{2}$
b) Pin No 7
c) $\quad \mathrm{Pin} \mathrm{No} 4$
d) Pin No 6

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if necessary
3) Figures to the right indicate full marks
4) Use of datasheet and non programmable calculator is allowed.

Section - I

Q. 2 Attempt Any Four

a) How overall low frequency response of n identical cascaded amplifier stage can be calculated? What will be overall lower 3dB frequency if three identical amplifier stages having lower cutoff frequency of 64 Hz are cascaded?
b) Discuss R-C coupled Multistage amplifier with its advantages and disadvantage. Draw its frequency response.
c) What is Piezo electric effect? Explain the crystal oscillator circuit with its advantages.
d) How power amplifiers are classified based on location of Q point on load line?
e) Three amplifier stages are working in cascade with 0.05 V peak to peak input providing 150 Vpp output. If voltage gain of first stage is 20 and input to the third stage is $15 \mathrm{~V} p \mathrm{p}$ Determine.
i) Overall voltage gain
ii) Voltage gain of second and third stage
iii) Input voltage of second stage
f) A sinusoidal signal $V s=1.95 \sin 400 t$ is applied to the power amplifier. The resulting current is
$10=12 \sin 400 t+1.2 \sin 800 t+0.9 \sin 1200 t+0.4 \sin 1600 t$
Calculate the total harmonic distortion and the percentage increase in power because of distortion.
Q. 3 Attempt Any Two
a) Design a wein bridge oscillator to provide peak to peak output voltage of 5 V at the frequency of 5 V at the frequency of 15 KHz . Use VCC=12V.
b) Design a class A transformer coupled amplifier to deliver 45 mW to the load resistance of 40 hm . Use supply voltage of 9 Volts .
c) What is the advantage of negative feedback in amplifiers? Discuss the effect of negative feedback on stability, Band width, noise, distortion, i / p resistance and o / p resistance for different types of negative feedback.

Section - II

Q. 4 Attempt Any Four
a) Derive a frequency of oscillation for Astable multivibrator using IC 555.
b) Design an adjustable voltage regulator using LM-317 to satisfy following conditions-Vo $=5 \mathrm{~V}$ to 12 V at output current of 1 A .
c) Explain different triggering methods in transistorized multivibrator circuits.
d) Design a constant current source using IC 7805 to source a current variation from 100 mA to 200 mA to the load variation of 10Ω to 30Ω.
e) Explain Thermal Shutdown concept in IC Regulator.

Q. 5 Attempt Any Two

12
a) Design a Transistorized series voltage regulator for given requirement $\mathrm{Vo}=25 \mathrm{~V}$, at 50 mA , $\mathrm{Vin}=30 \mathrm{~V}$
Assume for Q1, $\mathrm{h}_{\mathrm{f} 1}=100, \mathrm{~h}_{\mathrm{ie} 1}=12 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{BE} 1}=0.6 \mathrm{~V}$
For Q2, $\mathrm{h}_{\mathrm{fe} 2}=150, \mathrm{~h}_{\mathrm{ie} 2}=3 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{BE} 2}=0.65 \mathrm{~V}$
b) What are the features of IC regulator? Explain dual tracking voltage regulator.
c) Design a circuit to switch the system ON-OFF repeatedly for varying ON-OFF periods as follows -

1) ON time variation $=1 \mathrm{msec}$ to 3 msec
2) OFF time variation $=0.5 \mathrm{msec}$ to 2 msec

System draws a current of 1.5A from 230V mains.
Use Proper IC to drive a relay of $12 \mathrm{~V}, 40 \Omega$.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if necessary
3) Figures to the right indicate full marks
4) Use of datasheet and non programmable calculator is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct Answer 14

1) A pre-regulator is used with a transistor series regulator in order to \qquad .
a) Increase the input resistance of series transistor
b) Decrease the input resistance of series transistor
c) Increase the output resistance of series transistor
d) Increase the current gain of series transistor
2) Schmitt trigger is \qquad .
a) Oscillator
b) Amplifier
c) Comparator
d) All of these
3) Sine wave can be converted by \qquad -.
a) Rectifier
b) Schmitt trigger
c) Astable multivibrator
d) All of these
4) In monostable multivibrator quasi stable state duration is \qquad .
a) RC
b) 0.7 RC
c) 1.4 RC
d) None of these
5) For selecting transistor in multi vibrator design, transistor used should have \qquad .
a) less td
b) moretf
c) less td and tr
d) less td, tr, tf, ts
6) For IC regulators output capacitor is required for \qquad .
a) Improving stability
b) Short circuit protection
c) Improve transient response
d) Over voltage protection
7) In IC 555 discharge pin is \qquad .
a) $\mathrm{Pin} \mathrm{No}_{2}$
b) Pin No 7
c) Pin No 4
d) Pin No 6
8) Output resistance of current series negative feedback amplifier \qquad .
a) Increases
b) Decreases
c) Does not change
d) Becomes Unpredictable
9) When multistage amplifier is used to amplify DC signal then the coupling used is \qquad .
a) Direct
b) Transformer
c) $\mathrm{R}-\mathrm{C}$
d) $R-L$
10) If the transistor is operated in such a way that output current flows for 60° of the input signal then its \qquad operation.
a) Class A
b) Class B
c) Class C
d) Class D
11) For Wein bridge oscillator a variable capacitor with 47 pF and upper limit 470 pF is used, what should be the value of fixed resistance required to provide upper frequency limit of 200 KHz .
a) 16.92 ohm
b) 20.92 ohm
c) 30.92 ohm
d) None of the these
12) When no signal is applied the approximate collector efficiency of Class A power amplifier is \qquad —.
a) 10%
b) 0%
c) 25%
d) 50%
13) The frequency response of transformer coupled amplifier is \qquad .
a) Good
b) Very Good
c) Excellent
d) Poor
14) Cascading two amplifier stages will result in \qquad .
a) reduction in gain and increase in bandwidth
b) reduction in gain and reduction in bandwidth
c) increase in gain and reduction in bandwidth
d) increase in gain and increase in bandwidth

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if necessary
3) Figures to the right indicate full marks
4) Use of datasheet and non programmable calculator is allowed.

Section - I

Q. 2 Attempt Any Four

a) How overall low frequency response of n identical cascaded amplifier stage can be calculated? What will be overall lower 3dB frequency if three identical amplifier stages having lower cutoff frequency of 64 Hz are cascaded?
b) Discuss R-C coupled Multistage amplifier with its advantages and disadvantage. Draw its frequency response.
c) What is Piezo electric effect? Explain the crystal oscillator circuit with its advantages.
d) How power amplifiers are classified based on location of Q point on load line?
e) Three amplifier stages are working in cascade with 0.05 V peak to peak input providing 150Vpp output. If voltage gain of first stage is 20 and input to the third stage is $15 \mathrm{~V} p \mathrm{p}$ Determine.
i) Overall voltage gain
ii) Voltage gain of second and third stage
iii) Input voltage of second stage
f) A sinusoidal signal $\mathrm{Vs}=1.95 \sin 400 \mathrm{t}$ is applied to the power amplifier. The resulting current is
$10=12 \sin 400 t+1.2 \sin 800 t+0.9 \sin 1200 t+0.4 \sin 1600 t$
Calculate the total harmonic distortion and the percentage increase in power because of distortion.

Q. 3 Attempt Any Two

a) Design a wein bridge oscillator to provide peak to peak output voltage of 5 V at the frequency of 5 V at the frequency of 15 KHz . Use VCC=12V.
b) Design a class A transformer coupled amplifier to deliver 45 mW to the load resistance of 40 hm . Use supply voltage of 9 Volts .
c) What is the advantage of negative feedback in amplifiers? Discuss the effect of negative feedback on stability, Band width, noise, distortion, i/p resistance and o / p resistance for different types of negative feedback.

Section - II

Q. 4 Attempt Any Four
a) Derive a frequency of oscillation for Astable multivibrator using IC 555.
b) Design an adjustable voltage regulator using LM-317 to satisfy following conditions-Vo $=5 \mathrm{~V}$ to 12 V at output current of 1 A .
c) Explain different triggering methods in transistorized multivibrator circuits.
d) Design a constant current source using IC 7805 to source a current variation from 100 mA to 200 mA to the load variation of 10Ω to 30Ω.
e) Explain Thermal Shutdown concept in IC Regulator.

Q. 5 Attempt Any Two

a) Design a Transistorized series voltage regulator for given requirement $\mathrm{Vo}=25 \mathrm{~V}$, at 50 mA , $\mathrm{Vin}=30 \mathrm{~V}$
Assume for Q1, $\mathrm{h}_{\mathrm{fe} 1}=100, \mathrm{~h}_{\mathrm{ie} 1}=12 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{BE} 1}=0.6 \mathrm{~V}$
For Q2, $\mathrm{h}_{\mathrm{fe} 2}=150, \mathrm{~h}_{\mathrm{ie} 2}=3 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{BE} 2}=0.65 \mathrm{~V}$
b) What are the features of IC regulator? Explain dual tracking voltage regulator.
c) Design a circuit to switch the system ON-OFF repeatedly for varying ON-OFF periods as follows -

1) ON time variation $=1 \mathrm{msec}$ to 3 msec
2) OFF time variation $=0.5 \mathrm{msec}$ to 2 msec

System draws a current of 1.5A from 230V mains.
Use Proper IC to drive a relay of $12 \mathrm{~V}, 40 \Omega$.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if necessary
3) Figures to the right indicate full marks
4) Use of datasheet and non programmable calculator is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct Answer

1) When no signal is applied the approximate collector efficiency of Class A power amplifier is \qquad .
a) 10%
b) 0%
c) 25%
d) 50%
2) The frequency response of transformer coupled amplifier is \qquad .
a) Good
b) Very Good
c) Excellent
d) Poor
3) Cascading two amplifier stages will result in \qquad .
a) reduction in gain and increase in bandwidth
b) reduction in gain and reduction in bandwidth
c) increase in gain and reduction in bandwidth
d) increase in gain and increase in bandwidth
4) A pre-regulator is used with a transistor series regulator in order to \qquad .
a) Increase the input resistance of series transistor
b) Decrease the input resistance of series transistor
c) Increase the output resistance of series transistor
d) Increase the current gain of series transistor
5) Schmitt trigger is \qquad .
a) Oscillator
b) Amplifier
c) Comparator
d) All of these
6) Sine wave can be converted by \qquad .
a) Rectifier
b) Schmitt trigger
c) Astable multivibrator
d) All of these
7) In monostable multivibrator quasi stable state duration is \qquad .
a) RC
b) 0.7 RC
c) 1.4 RC
d) None of these
8) For selecting transistor in multi vibrator design, transistor used should have \qquad .
a) less td
b) moretf
c) less td and tr
d) less td, tr, tf, ts
9) For IC regulators output capacitor is required for \qquad .
a) Improving stability
b) Short circuit protection
c) Improve transient response
d) Over voltage protection
10) In IC 555 discharge pin is \qquad .
a) $\mathrm{Pin} \mathrm{No}_{2}$
b) $\quad \mathrm{Pin} \mathrm{No} 7$
c) $\quad \mathrm{Pin} \mathrm{No} 4$
d) Pin No 6
11) Output resistance of current series negative feedback amplifier \qquad .
a) Increases
b) Decreases
c) Does not change
d) Becomes Unpredictable
12) When multistage amplifier is used to amplify DC signal then the coupling used is \qquad .
a) Direct
b) Transformer
c) $\mathrm{R}-\mathrm{C}$
d) R-L
13) If the transistor is operated in such a way that output current flows for 60° of the input signal then its \qquad operation.
a) Class A
b) Class B
c) Class C
d) Class D
14) For Wein bridge oscillator a variable capacitor with 47pF and upper limit 470 pF is used, what should be the value of fixed resistance required to provide upper frequency limit of 200 KHz .
a) 16.92 ohm
b) 20.92 ohm
c) 30.92 ohm
d) None of the these

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if necessary
3) Figures to the right indicate full marks
4) Use of datasheet and non programmable calculator is allowed.

Section - I

Q. 2 Attempt Any Four

a) How overall low frequency response of n identical cascaded amplifier stage can be calculated? What will be overall lower 3dB frequency if three identical amplifier stages having lower cutoff frequency of 64 Hz are cascaded?
b) Discuss R-C coupled Multistage amplifier with its advantages and disadvantage. Draw its frequency response.
c) What is Piezo electric effect? Explain the crystal oscillator circuit with its advantages.
d) How power amplifiers are classified based on location of Q point on load line?
e) Three amplifier stages are working in cascade with 0.05 V peak to peak input providing 150 Vpp output. If voltage gain of first stage is 20 and input to the third stage is $15 \mathrm{~V} p \mathrm{p}$ Determine.
i) Overall voltage gain
ii) Voltage gain of second and third stage
iii) Input voltage of second stage
f) A sinusoidal signal $\mathrm{Vs}=1.95 \sin 400 \mathrm{t}$ is applied to the power amplifier. The resulting current is
$10=12 \sin 400 t+1.2 \sin 800 t+0.9 \sin 1200 t+0.4 \sin 1600 t$
Calculate the total harmonic distortion and the percentage increase in power because of distortion.

Q. 3 Attempt Any Two

a) Design a wein bridge oscillator to provide peak to peak output voltage of 5 V at the frequency of 5 V at the frequency of 15 KHz . Use VCC=12V.
b) Design a class A transformer coupled amplifier to deliver 45 mW to the load resistance of 40 hm . Use supply voltage of 9 Volts .
c) What is the advantage of negative feedback in amplifiers? Discuss the effect of negative feedback on stability, Band width, noise, distortion, i/p resistance and o / p resistance for different types of negative feedback.

Section - II

Q. 4 Attempt Any Four
a) Derive a frequency of oscillation for Astable multivibrator using IC 555.
b) Design an adjustable voltage regulator using LM-317 to satisfy following conditions-Vo $=5 \mathrm{~V}$ to 12 V at output current of 1 A .
c) Explain different triggering methods in transistorized multivibrator circuits.
d) Design a constant current source using IC 7805 to source a current variation from 100 mA to 200 mA to the load variation of 10Ω to 30Ω.
e) Explain Thermal Shutdown concept in IC Regulator.

Q. 5 Attempt Any Two

a) Design a Transistorized series voltage regulator for given requirement $\mathrm{Vo}=25 \mathrm{~V}$, at 50 mA , $\mathrm{Vin}=30 \mathrm{~V}$
Assume for Q1, $\mathrm{h}_{\mathrm{fe} 1}=100, \mathrm{~h}_{\mathrm{ie} 1}=12 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{BE} 1}=0.6 \mathrm{~V}$
For Q2, $\mathrm{h}_{\mathrm{fe} 2}=150, \mathrm{~h}_{\mathrm{ie} 2}=3 \mathrm{~K} \Omega, \mathrm{~V}_{\text {BE2 }}=0.65 \mathrm{~V}$
b) What are the features of IC regulator? Explain dual tracking voltage regulator.
c) Design a circuit to switch the system ON-OFF repeatedly for varying ON-OFF periods as follows -

1) ON time variation $=1 \mathrm{msec}$ to 3 msec
2) OFF time variation $=0.5 \mathrm{msec}$ to 2 msec

System draws a current of 1.5A from 230V mains.
Use Proper IC to drive a relay of $12 \mathrm{~V}, 40 \Omega$.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if necessary
3) Figures to the right indicate full marks
4) Use of datasheet and non programmable calculator is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct Answer

1) Sine wave can be converted by \qquad .
a) Rectifier
b) Schmitt trigger
c) Astable multivibrator
d) All of these
2) In monostable multivibrator quasi stable state duration is \qquad .
a) RC
b) 0.7 RC
c) 1.4 RC
d) None of these
3) For selecting transistor in multi vibrator design, transistor used should have \qquad .
a) less td
b) moretf
c) less td and tr
d) less td, tr, tf, ts
4) For IC regulators output capacitor is required for \qquad .
a) Improving stability
b) Short circuit protection
c) Improve transient response
d) Over voltage protection
5) In IC 555 discharge pin is \qquad .
a) $\mathrm{Pin} \mathrm{No}_{2}$
b) Pin No 7
c) $\quad \mathrm{Pin} \mathrm{No} 4$
d) Pin No 6
6) Output resistance of current series negative feedback amplifier \qquad .
a) Increases
b) Decreases
c) Does not change
d) Becomes Unpredictable
7) When multistage amplifier is used to amplify DC signal then the coupling used is \qquad .
a) Direct
b) Transformer
c) $R-C$
d) R-L
8) If the transistor is operated in such a way that output current flows for 60° of the input signal then its \qquad operation.
a) Class A
b) Class B
c) Class C
d) Class D
9) For Wein bridge oscillator a variable capacitor with 47pF and upper limit 470 pF is used, what should be the value of fixed resistance required to provide upper frequency limit of 200 KHz .
a) 16.92 ohm
b) 20.92 ohm
c) 30.92 ohm
d) None of the these
10) When no signal is applied the approximate collector efficiency of Class A power amplifier is \qquad .
a) 10%
b) 0%
c) 25%
d) 50%
11) The frequency response of transformer coupled amplifier is \qquad .
a) Good
b) Very Good
c) Excellent
d) Poor
12) Cascading two amplifier stages will result in \qquad .
a) reduction in gain and increase in bandwidth
b) reduction in gain and reduction in bandwidth
c) increase in gain and reduction in bandwidth
d) increase in gain and increase in bandwidth
13) A pre-regulator is used with a transistor series regulator in order to \qquad .
a) Increase the input resistance of series transistor
b) Decrease the input resistance of series transistor
c) Increase the output resistance of series transistor
d) Increase the current gain of series transistor
14) Schmitt trigger is \qquad .
a) Oscillator
b) Amplifier
c) Comparator
d) All of these

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if necessary
3) Figures to the right indicate full marks
4) Use of datasheet and non programmable calculator is allowed.

Section - I

Q. 2 Attempt Any Four

a) How overall low frequency response of n identical cascaded amplifier stage can be calculated? What will be overall lower 3dB frequency if three identical amplifier stages having lower cutoff frequency of 64 Hz are cascaded?
b) Discuss R-C coupled Multistage amplifier with its advantages and disadvantage. Draw its frequency response.
c) What is Piezo electric effect? Explain the crystal oscillator circuit with its advantages.
d) How power amplifiers are classified based on location of Q point on load line?
e) Three amplifier stages are working in cascade with 0.05 V peak to peak input providing 150 Vpp output. If voltage gain of first stage is 20 and input to the third stage is $15 \mathrm{~V} p \mathrm{p}$ Determine.
i) Overall voltage gain
ii) Voltage gain of second and third stage
iii) Input voltage of second stage
f) A sinusoidal signal $\mathrm{Vs}=1.95 \sin 400 \mathrm{t}$ is applied to the power amplifier. The resulting current is
$10=12 \sin 400 t+1.2 \sin 800 t+0.9 \sin 1200 t+0.4 \sin 1600 t$
Calculate the total harmonic distortion and the percentage increase in power because of distortion.

Q. 3 Attempt Any Two

a) Design a wein bridge oscillator to provide peak to peak output voltage of 5 V at the frequency of 5 V at the frequency of 15 KHz . Use VCC=12V.
b) Design a class A transformer coupled amplifier to deliver 45 mW to the load resistance of 40 hm . Use supply voltage of 9 Volts .
c) What is the advantage of negative feedback in amplifiers? Discuss the effect of negative feedback on stability, Band width, noise, distortion, i/p resistance and o / p resistance for different types of negative feedback.

Section - II

Q. 4 Attempt Any Four
a) Derive a frequency of oscillation for Astable multivibrator using IC 555.
b) Design an adjustable voltage regulator using LM-317 to satisfy following conditions-Vo $=5 \mathrm{~V}$ to 12 V at output current of 1 A .
c) Explain different triggering methods in transistorized multivibrator circuits.
d) Design a constant current source using IC 7805 to source a current variation from 100 mA to 200 mA to the load variation of 10Ω to 30Ω.
e) Explain Thermal Shutdown concept in IC Regulator.

Q. 5 Attempt Any Two

a) Design a Transistorized series voltage regulator for given requirement $\mathrm{Vo}=25 \mathrm{~V}$, at 50 mA , $\mathrm{Vin}=30 \mathrm{~V}$
Assume for Q1, $\mathrm{h}_{\mathrm{f} 1}=100, \mathrm{~h}_{\mathrm{ie} 1}=12 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{BE} 1}=0.6 \mathrm{~V}$
For Q2, $\mathrm{h}_{\mathrm{fe} 2}=150, \mathrm{~h}_{\mathrm{ie} 2}=3 \mathrm{~K} \Omega, \mathrm{~V}_{\text {BE2 }}=0.65 \mathrm{~V}$
b) What are the features of IC regulator? Explain dual tracking voltage regulator.
c) Design a circuit to switch the system ON-OFF repeatedly for varying ON-OFF periods as follows -

1) ON time variation $=1 \mathrm{msec}$ to 3 msec
2) OFF time variation $=0.5 \mathrm{msec}$ to 2 msec

System draws a current of 1.5A from 230V mains.
Use Proper IC to drive a relay of $12 \mathrm{~V}, 40 \Omega$.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATA STRUCTURE

Day \& Date: Saturday, 23-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a \qquad .
a) Queue
b) Stack
c) Tree
d) Linked list
2) In a circular linked list \qquad .
a) Components are all linked together in some sequential manner
b) There is no beginning and no end
c) Components are arranged hierarchically
d) Forward and backward traversal within the list is permitted
3) Pverflow condition of stack is \qquad .
a) front=rear=max-1
b) front=rear=0
c) top=max-1
d) none of the above
4) The postfix form of $A * B+C / D$ is?
a) ${ }^{*} A B / C D+$
b) $\quad \mathrm{AB}^{*} \mathrm{CD} /+$
c) $A^{*} B C+/ D$
d) $\mathrm{ABCD}+$ /* *
5) Which data structure is used for implementing recursion?
a) Queue
b) Stack
c) Array
d) List
6) Factorial (0) is \qquad .
a) 0
b) 1
c) infinity
d) Undefined
7) Linked lists are not suitable for \qquad .
a) Insertion sort
b) Binary search
c) Radix Sort
d) Polynominal manipulation
8) Binary trees can have how many children?
a) 2
b) any number of children
c) 0 or 1 or 2
d) 0 or 1
9) The Data structure used in standard implementation of Breadth First Search is \qquad .
a) Stack
b) Queue
c) Linked List
d) none of the mentioned
10) What is the worst case for linear search?
a) O (nlogn)
b) $O(\log n)$
c) $O(n)$
d) $\mathrm{O}(1)$
11) The complexity of Binary search algorithm is \qquad .
a) $\mathrm{O}(\mathrm{n} 2)$
b) O (log)
c) $\mathrm{O}(\mathrm{n})$
d) $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
12) \qquad is putting an element in the appropriate place in a sorted list yields a larger sorted order list.
a) Distribution
b) Extraction
c) Selection
d) Insertion
13) Partition and exchange sort is \qquad .
a) quick sort
b) tree sort
c) heap sort
d) bubble sort
14) Merge sort uses \qquad .
a) Greedy approach
b) Backtracking
c) Heuristic approach
d) Divide-and-conquer

No.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATA STRUCTURE

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four of the following questions.16
a) Explain the representation of doubly linked list with example.
b) What is double ended queue? Explain with neat diagram.
c) Write a C program to find the multiplication of two natural number with recursion function.
d) Explain difference between static memory allocation and dynamic memory allocation
e) Convert the following infix expression to postfix expression

$$
A-B /\left(C^{*} \mathrm{D} \wedge \mathrm{E}\right)
$$

Q. 3 Attempt any two of the following questions.
a) Write a C program to implement following operation on singly link list.
i) Creation of list
ii) Insertion of element at end
iii) Deletion of given element from the list
iv) Display
b) Write an algorithm for Enqueue and Dequeue operation performed on Circular Queue.
c) Write a C program of stack using array.

Q. 4 Attempt any four of the following questions.

a) Explain various tree traversal methods with example.
b) Write a short note on B Tree and B+ Tree.
c) Explain bubble sort. Sort the following using bubble sort 36, 20, 68, 55, 94, 18, 41. Show the steps for each iteration.
d) Explain Binary search algorithm with example.
e) Differentiate between DFS and BFS.
Q. 5 Attempt any two of the following questions.
a) Define Graph and explain various graph representation techniques.
b) Write a C program to search an element from an array using linear search.
c) What is hash collision? Explain collision resolving techniques.

Seat

No.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATA STRUCTURE

Day \& Date: Saturday, 23-11-2019
Max. Marks: 70

Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
 2) Figures to the right indicate full marks.
 MCQ/Objective Type Questions
 Duration: 30 Minutes
 Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the sentence.
 14

1) Binary trees can have how many children?
a) 2
b) any number of children
c) 0 or 1 or 2
d) 0 or 1
2) The Data structure used in standard implementation of Breadth First Search is \qquad .
a) Stack
b) Queue
c) Linked List
d) none of the mentioned
3) What is the worst case for linear search?
a) $\mathrm{O}(\mathrm{nlogn})$
b) $\mathrm{O}(\log n)$
c) $O(n)$
d) $\mathrm{O}(1)$
4) The complexity of Binary search algorithm is \qquad .
a) O (n 2)
b) $\mathrm{O}(\mathrm{log})$
c) $\mathrm{O}(\mathrm{n})$
d) $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
5) ___ is putting an element in the appropriate place in a sorted list yields a larger sorted order list.
a) Distribution
b) Extraction
c) Selection
d) Insertion
6) Partition and exchange sort is \qquad .
a) quick sort
b) tree sort
c) heap sort
d) bubble sort
7) Merge sort uses \qquad .
a) Greedy approach
b) Backtracking
c) Heuristic approach
d) Divide-and-conquer
8) A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a \qquad .
a) Queue
b) Stack
c) Tree
d) Linked list
9) In a circular linked list \qquad .
a) Components are all linked together in some sequential manner
b) There is no beginning and no end
c) Components are arranged hierarchically
d) Forward and backward traversal within the list is permitted
10) Pverflow condition of stack is \qquad
a) front=rear=max-1
b) front=rear=0
c) top=max-1
d) none of the above
11) The postfix form of $A^{*} B+C / D$ is?
a) * $A B / C D+$
b) $\quad \mathrm{AB}{ }^{*} \mathrm{CD} /+$
c) $A^{*} B C+/ D$
d) $\mathrm{ABCD}+{ }^{*}$
12) Which data structure is used for implementing recursion?
a) Queue
b) Stack
c) Array
d) List
13) Factorial (0) is \qquad .
a) 0
b) 1
c) infinity
d) Undefined
14) Linked lists are not suitable for \qquad
a) Insertion sort
b) Binary search
c) Radix Sort
d) Polynominal manipulation

SLR-FM-233

Seat

No.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATA STRUCTURE

Day \& Date: Saturday, 23-11-2019

Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four of the following questions.
a) Explain the representation of doubly linked list with example.
b) What is double ended queue? Explain with neat diagram.
c) Write a C program to find the multiplication of two natural number with recursion function.
d) Explain difference between static memory allocation and dynamic memory allocation
e) Convert the following infix expression to postfix expression

$$
A-B /\left(C^{*} \mathrm{D} \wedge \mathrm{E}\right)
$$

Q. 3 Attempt any two of the following questions.
a) Write a C program to implement following operation on singly link list.
i) Creation of list
ii) Insertion of element at end
iii) Deletion of given element from the list
iv) Display
b) Write an algorithm for Enqueue and Dequeue operation performed on Circular Queue.
c) Write a C program of stack using array.
Q. 4 Attempt any four of the following questions.
a) Explain various tree traversal methods with example.
b) Write a short note on B Tree and B+ Tree.
c) Explain bubble sort. Sort the following using bubble sort 36, 20, 68, 55, 94, 18,41 . Show the steps for each iteration.
d) Explain Binary search algorithm with example.
e) Differentiate between DFS and BFS.
Q. 5 Attempt any two of the following questions.
a) Define Graph and explain various graph representation techniques.
b) Write a C program to search an element from an array using linear search.
c) What is hash collision? Explain collision resolving techniques.

Seat

No.
Set
R

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATA STRUCTURE

Day \& Date: Saturday, 23-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Which data structure is used for implementing recursion?
a) Queue
b) Stack
c) Array
d) List
2) Factorial (0) is \qquad .
a) 0
b) 1
c) infinity
d) Undefined
3) Linked lists are not suitable for \qquad .
a) Insertion sort
b) Binary search
c) Radix Sort
d) Polynominal manipulation
4) Binary trees can have how many children?
a) 2
b) any number of children
c) 0 or 1 or 2
d) 0 or 1
5) The Data structure used in standard implementation of Breadth First Search is \qquad .
a) Stack
b) Queue
c) Linked List
d) none of the mentioned
6) What is the worst case for linear search?
a) $\mathrm{O}(\mathrm{nlogn})$
b) $\mathrm{O}(\log n)$
c) $O(n)$
d) $\mathrm{O}(1)$
7) The complexity of Binary search algorithm is \qquad .
a) $\mathrm{O}(\mathrm{n} 2)$
b) O (log)
c) $\mathrm{O}(\mathrm{n})$
d) $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
8) yields a larger sorted order list.
a) Distribution
b) Extraction
c) Selection
d) Insertion
9) Partition and exchange sort is \qquad .
a) quick sort
b) tree sort
c) heap sort
d) bubble sort
10) Merge sort uses \qquad .
a) Greedy approach
b) Backtracking
c) Heuristic approach
d) Divide-and-conquer
11) A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a \qquad .
a) Queue
b) Stack
c) Tree
d) Linked list
12) In a circular linked list \qquad .
a) Components are all linked together in some sequential manner
b) There is no beginning and no end
c) Components are arranged hierarchically
d) Forward and backward traversal within the list is permitted
13) Pverflow condition of stack is \qquad .
a) front=rear=max-1
b) front=rear=0
c) top=max-1
d) none of the above
14) The postfix form of $A^{*} B+C / D$ is?
a) ${ }^{*} A B / C D+$
b) $\quad \mathrm{AB}{ }^{*} \mathrm{CD} /+$
c) $A^{*} B C+/ D$
d) $\mathrm{ABCD}+{ }^{*}$

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATA STRUCTURE

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four of the following questions.16
a) Explain the representation of doubly linked list with example.
b) What is double ended queue? Explain with neat diagram.
c) Write a C program to find the multiplication of two natural number with recursion function.
d) Explain difference between static memory allocation and dynamic memory allocation
e) Convert the following infix expression to postfix expression

$$
A-B /\left(C^{*} \mathrm{D} \wedge \mathrm{E}\right)
$$

Q. 3 Attempt any two of the following questions.
a) Write a C program to implement following operation on singly link list.
i) Creation of list
ii) Insertion of element at end
iii) Deletion of given element from the list
iv) Display
b) Write an algorithm for Enqueue and Dequeue operation performed on Circular Queue.
c) Write a C program of stack using array.

Q. 4 Attempt any four of the following questions.

a) Explain various tree traversal methods with example.
b) Write a short note on B Tree and B+ Tree.
c) Explain bubble sort. Sort the following using bubble sort 36, 20, 68, 55, 94, 18, 41. Show the steps for each iteration.
d) Explain Binary search algorithm with example.
e) Differentiate between DFS and BFS.
Q. 5 Attempt any two of the following questions.
a) Define Graph and explain various graph representation techniques.
b) Write a C program to search an element from an array using linear search.
c) What is hash collision? Explain collision resolving techniques.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATA STRUCTURE

Day \& Date: Saturday, 23-11-2019
Max. Marks: 70

Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) What is the worst case for linear search?
a) $\mathrm{O}(\mathrm{nlogn})$
b) $O(\log n)$
c) $O(n)$
d) $\mathrm{O}(1)$
2) The complexity of Binary search algorithm is \qquad .
a) O (n2)
b) O (\log)
c) $\mathrm{O}(\mathrm{n})$
d) $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
3) \qquad is putting an element in the appropriate place in a sorted list yields a larger sorted order list.
a) Distribution
b) Extraction
c) Selection
d) Insertion
4) Partition and exchange sort is \qquad .
a) quick sort
b) tree sort
c) heap sort
d) bubble sort
5) Merge sort uses \qquad .
a) Greedy approach
b) Backtracking
c) Heuristic approach
d) Divide-and-conquer
6) A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a \qquad .
a) Queue
b) Stack
c) Tree
d) Linked list
7) In a circular linked list \qquad .
a) Components are all linked together in some sequential manner
b) There is no beginning and no end
c) Components are arranged hierarchically
d) Forward and backward traversal within the list is permitted
8) Pverflow condition of stack is \qquad .
a) front=rear=max-1
b) front=rear=0
c) top=max-1
d) none of the above
9) The postfix form of $A * B+C / D$ is?
a) ${ }^{*} A B / C D+$
b) $\quad \mathrm{AB}{ }^{*} \mathrm{CD} /+$
c) $A * B C+/ D$
d) $\mathrm{ABCD}+{ }^{*}$
10) Which data structure is used for implementing recursion?
a) Queue
b) Stack
c) Array
d) List
11) Factorial (0) is \qquad .
a) 0
b) 1
c) infinity
d) Undefined
12) Linked lists are not suitable for \qquad
a) Insertion sort
b) Binary search
c) Radix Sort
d) Polynominal manipulation
13) Binary trees can have how many children?
a) 2
b) any number of children
c) 0 or 1 or 2
d) 0 or 1
14) The Data structure used in standard implementation of Breadth First Search is \qquad .
a) Stack
b) Queue
c) Linked List
d) none of the mentioned

Seat
No.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATA STRUCTURE

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I
Q. 2 Attempt any four of the following questions. 16
a) Explain the representation of doubly linked list with example.
b) What is double ended queue? Explain with neat diagram.
c) Write a C program to find the multiplication of two natural number with recursion function.
d) Explain difference between static memory allocation and dynamic memory allocation
e) Convert the following infix expression to postfix expression

$$
A-B /\left(C^{*} \mathrm{D} \wedge \mathrm{E}\right)
$$

Q. 3 Attempt any two of the following questions.
a) Write a C program to implement following operation on singly link list.
i) Creation of list
ii) Insertion of element at end
iii) Deletion of given element from the list
iv) Display
b) Write an algorithm for Enqueue and Dequeue operation performed on Circular Queue.
c) Write a C program of stack using array.

Q. 4 Attempt any four of the following questions.

a) Explain various tree traversal methods with example.
b) Write a short note on B Tree and B+ Tree.
c) Explain bubble sort. Sort the following using bubble sort 36, 20, 68, 55, 94, 18, 41. Show the steps for each iteration.
d) Explain Binary search algorithm with example.
e) Differentiate between DFS and BFS.
Q. 5 Attempt any two of the following questions.
a) Define Graph and explain various graph representation techniques.
b) Write a C program to search an element from an array using linear search.
c) What is hash collision? Explain collision resolving techniques.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CONTROL SYSTEMS

Day \& Date: Monday, 25-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Which of the following is closed loop system?
a) Electric switch
b) D-C generator
c) car starter
d) Autopiolet for an air craft
2) The current in electrical circuit is analogous to \qquad in mechanical translational system.
a) Mass (M)
b) displacement (x)
c) velocity
d) force (F)
3) A control system in which control action is dependent on output is known as \qquad .
a) Open loop system
b) semiclosed system
c) closed system
d) indeterminist
4) The characteristics equation $(S+1)(S+2)(S-3)$ represents a \qquad .
a) Stable system
b) unstable system
c) marginally stable
d) indeterminist
5) The transfer function $P(S)=\frac{(2 S+1)}{\left(S^{2}+S+1\right)}$ represents.
a) Stable system
b) unstable system
c) marginally stable
d) indeterminist
6) Which of following element is not used in automatic control system?
a) Sensor
b) error detector
c) Oscillator
d) final control element
7) From the signal flow graph shown in figure below, $x 6=$

a) $(a x 1+b x 2+c x 3)(d+e)$
b) $(a+b+c)(x 1+x 2+x 3)(d+e)$
c) $\mathrm{de}(\mathrm{ax} 1+\mathrm{bx} 2+\mathrm{cx} 3)$
d) \quad abcde $(x 1+x 2+x 3)$
8) Which of the following compensator will be used to increase the bandwidth of a control system?
a) phase lag
b) phase lag lead
c) phase lead
d) none of above
9) For making an unstable system stable \qquad .
a) gain of system should be increased
b) gain of system should be decreased
c) the number of zeros to the open loop transfer function should be increased
d) the number of poles to the open loop transfer function should be increased
10) What will be nature of system, if the poles of system are lying on the imaginary axis in S-plane?
a) marginally stable
b) conditionally stable
c) stable
d) Zero
11) Damping is proportional to \qquad .
a) gain
b) $\frac{1}{\text { gain }}$
c) $\sqrt{\text { gain }}$
d) $\frac{1}{\sqrt{\text { gain }}}$
12) The type 1 system has \qquad at the origin.
a) no pole
b) no zero
c) simple pole
d) two poles
13) Lag compensator reduces \qquad .
a) bandwidth
b) rise time
c) transient response
d) all of these
14) If both gain and phase margin are positive then the system is \qquad .
a) stable
b) unstable
c) indeterminist
d) marginally stable

Seat	
No.	

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CONTROL SYSTEMS

Day \& Date: Monday, 25-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four questions.
a) Define control system. Explain types of control system
b) Find transfer function of following system.

c) Check stability of $2 S^{4}+2 S^{3}+S^{2}+3 S+2=0$
d) What is translation motion? Explain the forces that resists translational motion.
e) When a system is said to be stable? What is effect of location of poles on stability when

1) poles on negative real axis
2) poles on positive axis
3) poles at origin
Q. 3 a) Find transfer function of system given in figure.

b) By means of Routh criterion, determine the stability of system given by characteristic equation

$$
S^{6}+3 S^{5}+5 S^{4}+9 S^{3}+8 S^{2}+6 S+4=0
$$

b) Find transfer function of signal flow graph given in figure by using Masson gain formula.

Section - II

Q. 4 Attempt any four questions.

a) Determine different error constants for a system having
$G(S)=\frac{K}{S\left(S^{2}+2 S+5\right)}$
$H(S)=\frac{10}{S+4}$

Also determine steady state error if input is $r(t)=5+10 t+t^{2}$
b) Explain lead compensator.
c) What is type of system and order of system? Explain type 0 and type 1 system.
d) Define terms-
a) delay time (td)
b) rise time (tr)
c) peak overshoot (Mp)
d) settling time (ts)
e) Explain rules for construction of root locus.

Q. 5 Attempt any two

a) The forward path transfer function of unity feedback is given as
$G(S)=\frac{K}{S(S+4)(S+5)}$
Sketch root locus as K varies from zero to infinity.
b) A unity feedback system $\operatorname{hasG}(S)=\frac{10}{S(S+4)}$ If step input is applied calculate.

1) natural frequency of oscillation
2) damping factor
3) damping frequency
4) peak time tp
5) delay time td
6) peak overshoot Mp
c) Sketch Bode plot for transfer function
$G(S)=\frac{1000}{(1+0.1 S)(1+0.001 S)}$
Determine
7) Phase Margin
8) Gain Margin
9) Comment on stability of system

Seat
 No.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CONTROL SYSTEMS

Day \& Date: Monday, 25-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Which of the following compensator will be used to increase the bandwidth of a control system?
a) phase lag
b) phase lag lead
c) phase lead
d) none of above
2) For making an unstable system stable \qquad .
a) gain of system should be increased
b) gain of system should be decreased
c) the number of zeros to the open loop transfer function should be increased
d) the number of poles to the open loop transfer function should be increased
3) What will be nature of system, if the poles of system are lying on the imaginary axis in S-plane?
a) marginally stable
b) conditionally stable
c) stable
d) Zero
4) Damping is proportional to \qquad .
a) gain
b) $\frac{1}{\text { gain }}$
c) $\sqrt{\text { gain }}$
d) $\frac{1}{\sqrt{\text { gain }}}$
5) The type 1 system has \qquad at the origin.
a) no pole
b) no zero
c) simple pole
d) two poles
6) Lag compensator reduces \qquad .
a) bandwidth
b) rise time
c) transient response
d) all of these
7) If both gain and phase margin are positive then the system is \qquad .
a) stable
b) unstable
c) indeterminist
d) marginally stable

Set
8) Which of the following is closed loop system?
a) Electric switch
b) D-C generator
c) car starter
d) Autopiolet for an air craft
9) The current in electrical circuit is analogous to \qquad in mechanical translational system.
a) Mass (M)
b) displacement (x)
c) velocity
d) force (F)
10) A control system in which control action is dependent on output is known as \qquad .
a) Open loop system
b) semiclosed system
c) closed system
d) indeterminist
11) The characteristics equation $(S+1)(S+2)(S-3)$ represents a \qquad .
a) Stable system
b) unstable system
c) marginally stable
d) indeterminist
12) The transfer function $P(S)=\frac{(2 S+1)}{\left(S^{2}+S+1\right)}$ represents.
a) Stable system
b) unstable system
c) marginally stable
d) indeterminist
13) Which of following element is not used in automatic control system?
a) Sensor
b) error detector
c) Oscillator
d) final control element
14) From the signal flow graph shown in figure below, $x 6=$

a) $(a x 1+b x 2+c x 3)(d+e)$
b) $(a+b+c)(x 1+x 2+x 3)(d+e)$
c) $\mathrm{de}(\mathrm{ax} 1+\mathrm{bx} 2+\mathrm{cx} 3)$
d) abcde (x1 + x2 + x3)

Seat	
No.	

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CONTROL SYSTEMS

Day \& Date: Monday, 25-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four questions.
a) Define control system. Explain types of control system
b) Find transfer function of following system.

c) Check stability of $2 S^{4}+2 S^{3}+S^{2}+3 S+2=0$
d) What is translation motion? Explain the forces that resists translational motion.
e) When a system is said to be stable? What is effect of location of poles on stability when

1) poles on negative real axis
2) poles on positive axis
3) poles at origin
Q. 3 a) Find transfer function of system given in figure.

b) By means of Routh criterion, determine the stability of system given by characteristic equation

$$
S^{6}+3 S^{5}+5 S^{4}+9 S^{3}+8 S^{2}+6 S+4=0
$$

b) Find transfer function of signal flow graph given in figure by using Masson gain formula.

Section - II

Q. 4 Attempt any four questions.
a) Determine different error constants for a system having
$G(S)=\frac{K}{S\left(S^{2}+2 S+5\right)}$
$H(S)=\frac{10}{S+4}$

Also determine steady state error if input is $r(t)=5+10 t+t^{2}$
b) Explain lead compensator.
c) What is type of system and order of system? Explain type 0 and type 1 system.
d) Define terms-
a) delay time (td)
b) rise time (tr)
c) peak overshoot (Mp)
d) settling time (ts)
e) Explain rules for construction of root locus.

Q. 5 Attempt any two

a) The forward path transfer function of unity feedback is given as
$G(S)=\frac{K}{S(S+4)(S+5)}$
Sketch root locus as K varies from zero to infinity.
b) A unity feedback system $\operatorname{hasG}(S)=\frac{10}{S(S+4)}$ If step input is applied calculate.

1) natural frequency of oscillation
2) damping factor
3) damping frequency
4) peak time tp
5) delay time td
6) peak overshoot Mp
c) Sketch Bode plot for transfer function
$G(S)=\frac{1000}{(1+0.1 S)(1+0.001 S)}$
Determine
7) Phase Margin
8) Gain Margin
9) Comment on stability of system

Seat
 No.

Set R

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CONTROL SYSTEMS

Day \& Date: Monday, 25-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The transfer function $P(S)=\frac{(2 S+1)}{\left(S^{2}+S+1\right)}$ represents.
a) Stable system
b) unstable system
c) marginally stable
d) indeterminist
2) Which of following element is not used in automatic control system?
a) Sensor
b) error detector
c) Oscillator
d) final control element
3) From the signal flow graph shown in figure below, $x 6=$

a) $(a x 1+b x 2+c x 3)(d+e)$
b) $(a+b+c)(x 1+x 2+x 3)(d+e)$
c) $\mathrm{de}(\mathrm{ax} 1+\mathrm{bx} 2+\mathrm{cx} 3)$
d) \quad abcde $(x 1+x 2+x 3)$
4) Which of the following compensator will be used to increase the bandwidth of a control system?
a) phase lag
b) phase lag lead
c) phase lead
d) none of above
5) For making an unstable system stable \qquad .
a) gain of system should be increased
b) gain of system should be decreased
c) the number of zeros to the open loop transfer function should be increased
d) the number of poles to the open loop transfer function should be increased
6) What will be nature of system, if the poles of system are lying on the imaginary axis in S-plane?
a) marginally stable
b) conditionally stable
c) stable
d) Zero
7) Damping is proportional to \qquad .
a) gain
b) $\frac{1}{\text { gain }}$
c) $\sqrt{\text { gain }}$
d) $\frac{1}{\sqrt{\text { gain }}}$
8) The type 1 system has \qquad at the origin.
a) no pole
b) no zero
c) simple pole
d) two poles
9) Lag compensator reduces \qquad .
a) bandwidth
b) rise time
c) transient response
d) all of these
10) If both gain and phase margin are positive then the system is \qquad .
a) stable
b) unstable
c) indeterminist
d) marginally stable
11) Which of the following is closed loop system?
a) Electric switch
b) D-C generator
c) car starter
d) Autopiolet for an air craft
12) The current in electrical circuit is analogous to \qquad in mechanical translational system.
a) Mass (M)
b) displacement (x)
c) velocity
d) force (F)
13) A control system in which control action is dependent on output is known as \qquad .
a) Open loop system
b) semiclosed system
c) closed system
d) indeterminist
14) The characteristics equation $(S+1)(S+2)(S-3)$ represents a \qquad .
a) Stable system
b) unstable system
c) marginally stable
d) indeterminist

Seat	
No.	

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CONTROL SYSTEMS

Day \& Date: Monday, 25-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four questions.
a) Define control system. Explain types of control system
b) Find transfer function of following system.

c) Check stability of $2 S^{4}+2 S^{3}+S^{2}+3 S+2=0$
d) What is translation motion? Explain the forces that resists translational motion.
e) When a system is said to be stable? What is effect of location of poles on stability when

1) poles on negative real axis
2) poles on positive axis
3) poles at origin
Q. 3 a) Find transfer function of system given in figure.

b) By means of Routh criterion, determine the stability of system given by characteristic equation

$$
S^{6}+3 S^{5}+5 S^{4}+9 S^{3}+8 S^{2}+6 S+4=0
$$

b) Find transfer function of signal flow graph given in figure by using Masson gain formula.

Section - II

Q. 4 Attempt any four questions.
a) Determine different error constants for a system having
$\mathrm{G}(\mathrm{S})=\frac{\mathrm{K}}{\mathrm{S}\left(\mathrm{S}^{2}+2 \mathrm{~S}+5\right)}$
$H(S)=\frac{10}{S+4}$

Also determine steady state error if input is $r(t)=5+10 t+t^{2}$
b) Explain lead compensator.
c) What is type of system and order of system? Explain type 0 and type 1 system.
d) Define terms-
a) delay time (td)
b) rise time (tr)
c) peak overshoot (Mp)
d) settling time (ts)
e) Explain rules for construction of root locus.

Q. 5 Attempt any two

a) The forward path transfer function of unity feedback is given as
$G(S)=\frac{K}{S(S+4)(S+5)}$
Sketch root locus as K varies from zero to infinity.
b) A unity feedback system hasG $(S)=\frac{10}{S(S+4)}$ If step input is applied calculate.

1) natural frequency of oscillation
2) damping factor
3) damping frequency
4) peak time tp
5) delay time td
6) peak overshoot Mp
c) Sketch Bode plot for transfer function
$G(S)=\frac{1000}{(1+0.1 S)(1+0.001 S)}$
Determine
7) Phase Margin
8) Gain Margin
9) Comment on stability of system

Seat
 No.

Set

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CONTROL SYSTEMS

Day \& Date: Monday, 25-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) What will be nature of system, if the poles of system are lying on the imaginary axis in S-plane?
a) marginally stable
b) conditionally stable
c) stable
d) Zero
2) Damping is proportional to \qquad .
a) gain
b) $\frac{1}{\text { gain }}$
c) $\sqrt{\text { gain }}$
d) $\frac{1}{\sqrt{\text { gain }}}$
3) The type 1 system has \qquad at the origin.
a) no pole
b) no zero
c) simple pole
d) two poles
4) Lag compensator reduces \qquad .
a) bandwidth
b) rise time
c) transient response
d) all of these
5) If both gain and phase margin are positive then the system is \qquad .
a) stable
b) unstable
c) indeterminist
d) marginally stable
6) Which of the following is closed loop system?
a) Electric switch
b) D-C generator
c) car starter
d) Autopiolet for an air craft
7) The current in electrical circuit is analogous to \qquad in mechanical translational system.
a) Mass (M)
b) displacement (x)
c) velocity
d) force (F)
8) A control system in which control action is dependent on output is known as \qquad .
a) Open loop system
b) semiclosed system
c) closed system
d) indeterminist
9) The characteristics equation $(S+1)(S+2)(S-3)$ represents a \qquad .
a) Stable system
b) unstable system
c) marginally stable
d) indeterminist
10) The transfer function $P(S)=\frac{(2 S+1)}{\left(S^{2}+S+1\right)}$ represents.
a) Stable system
b) unstable system
c) marginally stable
d) indeterminist
11) Which of following element is not used in automatic control system?
a) Sensor
b) error detector
c) Oscillator
d) final control element
12) From the signal flow graph shown in figure below, $x 6=$

a) $(a x 1+b x 2+c x 3)(d+e)$
b) $(a+b+c)(x 1+x 2+x 3)(d+e)$
c) $\mathrm{de}(\mathrm{ax} 1+\mathrm{bx} 2+\mathrm{cx} 3)$
d) $\operatorname{abcde}(x 1+x 2+x 3)$
13) Which of the following compensator will be used to increase the bandwidth of a control system?
a) phase lag
b) phase lag lead
c) phase lead
d) none of above
14) For making an unstable system stable \qquad .
a) gain of system should be increased
b) gain of system should be decreased
c) the number of zeros to the open loop transfer function should be increased
d) the number of poles to the open loop transfer function should be increased

Seat	
No.	

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CONTROL SYSTEMS

Day \& Date: Monday, 25-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four questions.
a) Define control system. Explain types of control system
b) Find transfer function of following system.

c) Check stability of $2 S^{4}+2 S^{3}+S^{2}+3 S+2=0$
d) What is translation motion? Explain the forces that resists translational motion.
e) When a system is said to be stable? What is effect of location of poles on stability when

1) poles on negative real axis
2) poles on positive axis
3) poles at origin
Q. 3 a) Find transfer function of system given in figure.

b) By means of Routh criterion, determine the stability of system given by characteristic equation

$$
S^{6}+3 S^{5}+5 S^{4}+9 S^{3}+8 S^{2}+6 S+4=0
$$

b) Find transfer function of signal flow graph given in figure by using Masson gain formula.

Section - II

Q. 4 Attempt any four questions.
a) Determine different error constants for a system having
$G(S)=\frac{K}{S\left(S^{2}+2 S+5\right)}$
$H(S)=\frac{10}{S+4}$

Also determine steady state error if input is $r(t)=5+10 t+t^{2}$
b) Explain lead compensator.
c) What is type of system and order of system? Explain type 0 and type 1 system.
d) Define terms-
a) delay time (td)
b) rise time (tr)
c) peak overshoot (Mp)
d) settling time (ts)
e) Explain rules for construction of root locus.

Q. 5 Attempt any two

a) The forward path transfer function of unity feedback is given as
$G(S)=\frac{K}{S(S+4)(S+5)}$
Sketch root locus as K varies from zero to infinity.
b) A unity feedback system $\operatorname{hasG}(S)=\frac{10}{S(S+4)}$ If step input is applied calculate.

1) natural frequency of oscillation
2) damping factor
3) damping frequency
4) peak time tp
5) delay time td
6) peak overshoot Mp
c) Sketch Bode plot for transfer function
$G(S)=\frac{1000}{(1+0.1 S)(1+0.001 S)}$
Determine
7) Phase Margin
8) Gain Margin
9) Comment on stability of system

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronic \& Telecommunication Engineering LINEAR INTEGRATED CIRCUIT

Day \& Date: Tuesday, 26-11-2019Max. Marks: 70Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) $\quad A_{f}=1+\left(R_{f} / R_{1}\right)$ represents \qquad .
a) open loop gain of Non-Inverting Amplifier
b) closed loop gain of Non-Inverting Amplifier
c) open loop gain of Inverting Amplifier
d) none of these
2) For summing amplifier ratio of R_{f} / R should be \qquad .
a) less than one
b) greater than one
c) zero
d) one
3) Introduction of negative feedback \qquad .
a) makes gain infinite
b) make bandwidth infinite
c) stabilizes gain
d) none of these
4) Gain bandwidth product of IC741 is \qquad .
a) 10 MHz
b) 1 MHz
c) Infinite
d) 1 KHz
5) $\quad \mathrm{Vo}_{\mathrm{cm}} / \mathrm{V}_{\mathrm{cm}}$ represents \qquad .
a) CMRR
b) open loop voltage gain
c) A_{cm}
d) voltage rejection ratio
6) Maximum value of $d V_{o} / d t$ is called \qquad -
a) voltage ratio
b) voltage rate
c) slew rate
d) transient response
7) The gain of the basic differentiator increases with increase in frequency till it touches open loop response \qquad .
a) True
b) False
8) What is the purpose of the op amp within active filters?
a) Impedance matching
b) to alleviate filter losses
c) Easy adjustment over a wide frequency range
d) all of above
9) For peak detector which of the following is true \qquad .
a) $C R_{d} \leq T / 10$
b) $\quad C R_{L} \geq 10 T$
c) Both a and b
d) None of these

SLR-FM-235

Set
10) \qquad circuit converts irregular shape into square wave or pulse.
a) Schmitt Trigger
b) Clamper
c) Peak Detector
d) Window Detector
11) Which of the following circuit is called as dc inserter?
a) dc amplifier
b) Schmitt trigger
c) Clampers
d) Zero crossing Detector
12) Which block of PLL provides flywheel action for smoothing as dc inserter?
a) Filter
b) VCO
c) Phase Detector
d) Level Shifter
13) Active filters offers below advantages over passive filters \qquad -.
a) Flexibility in design
b) Gain adjustment
c) Both a and b
d) None of these
14) For a quadrature oscillator, If fo $=1.59 \mathrm{KHz}$ and $\mathrm{C}=0.01 \mu \mathrm{~F}$ then $\mathrm{R}=$?
a) $10 \mathrm{~K} \Omega$
b) $100 \mathrm{~K} \Omega$
c) $1 \mathrm{~K} \Omega$
d) $15.9 \mathrm{~K} \Omega$

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronic \& Telecommunication Engineering LINEAR INTEGRATED CIRCUIT

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.
a) Consider an inverting amplifier with feedback with $R_{f}=5 K \Omega, R_{1}=100 \Omega$, $A_{f}=50$, slew rate $=0.5 \mathrm{~V} / \mu \mathrm{sec}$. Calculate Vp .
b) Prove that for a Non-inverting amplifier with feedback, $f_{f}=f_{0}(1+A B)$
c) For an AC inverting amplifier, derive equation for lower cut-off frequency.
d) Explain V to I converter with floating load.
e) Design a Inverting amplifier using op-amp 741 for closed loop gain of 7.
Q. 3 Attempt any two.
a) Derive the $\mathrm{I}_{\text {CEQ }}$ and $\mathrm{V}_{\text {CEQ }}$ for DIBO differential amplifier.
b) Design a differentiator to differentiate an input signal that varies in frequency from 10 Hz to 1 KHz .
c) State any six specifications of IC 741.

Section - II

Q. 4 Attempt any four.
a) Explain positive clipper using op amp.
b) Explain Log amplifier.
c) Draw and explain Sample and Hold Circuit.
d) Draw and explain quadrature oscillator.
e) Design a Second order low pass Butterworth filter with $\mathrm{f}_{\mathrm{H}}=1.5 \mathrm{KHz}$.
Q. 5 Attempt any two.
a) Draw and explain Wein bridge Oscillator with a proof of $f_{0}=1 / 2 \pi R C$.
b) Explain Frequency Multiplier using PLL.
c) Explain Half Wave precision rectifier with waveforms.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronic \& Telecommunication Engineering LINEAR INTEGRATED CIRCUIT

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) What is the purpose of the op amp within active filters?
a) Impedance matching
b) to alleviate filter losses
c) Easy adjustment over a wide frequency range
d) all of above
2) For peak detector which of the following is true \qquad .
a) $\mathrm{CR}_{\mathrm{d}} \leq \mathrm{T} / 10$
b) $\quad C R_{L} \geq 10 T$
c) Both a and b
d) None of these
3) \qquad circuit converts irregular shape into square wave or pulse.
a) Schmitt Trigger
b) Clamper
c) Peak Detector
d) Window Detector
4) Which of the following circuit is called as dc inserter?
a) dc amplifier
b) Schmitt trigger
c) Clampers
d) Zero crossing Detector
5) Which block of PLL provides flywheel action for smoothing as dc inserter?
a) Filter
b) VCO
c) Phase Detector
d) Level Shifter
6) Active filters offers below advantages over passive filters \qquad .
a) Flexibility in design
b) Gain adjustment
c) Both a and b
d) None of these
7) For a quadrature oscillator, If fo $=1.59 \mathrm{KHz}$ and $\mathrm{C}=0.01 \mu \mathrm{~F}$ then $\mathrm{R}=$?
a) $10 \mathrm{~K} \Omega$
b) $100 \mathrm{~K} \Omega$
c) $1 \mathrm{~K} \Omega$
d) $15.9 \mathrm{~K} \Omega$
8) $\quad A_{f}=1+\left(R_{f} / R_{1}\right)$ represents \qquad .
a) open loop gain of Non-Inverting Amplifier
b) closed loop gain of Non-Inverting Amplifier
c) open loop gain of Inverting Amplifier
d) none of these
9) For summing amplifier ratio of R_{f} / R should be \qquad .
a) less than one
b) greater than one
c) zero
d) one
10) Introduction of negative feedback \qquad .
a) makes gain infinite
b) make bandwidth infinite
c) stabilizes gain
d) none of these
11) Gain bandwidth product of IC741 is \qquad .
a) 10 MHz
b) 1 MHz
c) Infinite
d) 1 KHz
12) $\mathrm{Vo}_{\mathrm{cm}} / \mathrm{V}_{\mathrm{cm}}$ represents \qquad .
a) CMRR
b) open loop voltage gain
c) A_{cm}
d) voltage rejection ratio
13) Maximum value of $d V_{o} / d t$ is called \qquad .
a) voltage ratio
b) voltage rate
c) slew rate
d) transient response
14) The gain of the basic differentiator increases with increase in frequency till it touches open loop response \qquad .
a) True
b) False

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronic \& Telecommunication Engineering LINEAR INTEGRATED CIRCUIT

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.

a) Consider an inverting amplifier with feedback with $R_{f}=5 K \Omega, R_{1}=100 \Omega$, $A_{f}=50$, slew rate $=0.5 \mathrm{~V} / \mu \mathrm{sec}$. Calculate Vp .
b) Prove that for a Non-inverting amplifier with feedback, $f_{f}=f_{0}(1+A B)$
c) For an AC inverting amplifier, derive equation for lower cut-off frequency.
d) Explain V to I converter with floating load.
e) Design a Inverting amplifier using op-amp 741 for closed loop gain of 7.
Q. 3 Attempt any two.
a) Derive the $\mathrm{I}_{\text {CEQ }}$ and $\mathrm{V}_{\text {CEQ }}$ for DIBO differential amplifier.
b) Design a differentiator to differentiate an input signal that varies in frequency from 10 Hz to 1 KHz .
c) State any six specifications of IC 741 .

Section - II

Q. 4 Attempt any four.
a) Explain positive clipper using op amp.
b) Explain Log amplifier.
c) Draw and explain Sample and Hold Circuit.
d) Draw and explain quadrature oscillator.
e) Design a Second order low pass Butterworth filter with $\mathrm{f}_{\mathrm{H}}=1.5 \mathrm{KHz}$.
Q. 5 Attempt any two.
a) Draw and explain Wein bridge Oscillator with a proof of $f_{0}=1 / 2 \pi R C$.
b) Explain Frequency Multiplier using PLL.
c) Explain Half Wave precision rectifier with waveforms.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronic \& Telecommunication Engineering LINEAR INTEGRATED CIRCUIT

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options and rewrite the 14
sentence.

1) $\quad \mathrm{Vo}_{\mathrm{cm}} / \mathrm{V}_{\mathrm{cm}}$ represents \qquad .
a) CMRR
b) open loop voltage gain
c) A_{cm}
d) voltage rejection ratio
2) Maximum value of $d V_{o} / d t$ is called \qquad -
a) voltage ratio
b) voltage rate
c) slew rate
d) transient response
3) The gain of the basic differentiator increases with increase in frequency till it touches open loop response \qquad .
a) True
b) False
4) What is the purpose of the op amp within active filters?
a) Impedance matching
b) to alleviate filter losses
c) Easy adjustment over a wide frequency range
d) all of above
5) For peak detector which of the following is true \qquad .
a) $\mathrm{CR}_{\mathrm{d}} \leq \mathrm{T} / 10$
b) $\quad C R_{L} \geq 10 T$
c) Both a and b
d) None of these
6)

a) Schmitt Trigger
b) Clamper
c) Peak Detector
d) Window Detector
7) Which of the following circuit is called as dc inserter?
a) dc amplifier
b) Schmitt trigger
c) Clampers
d) Zero crossing Detector
8) Which block of PLL provides flywheel action for smoothing as dc inserter?
a) Filter
b) VCO
c) Phase Detector
d) Level Shifter
9) Active filters offers below advantages over passive filters \qquad .
a) Flexibility in design
b) Gain adjustment
c) Both a and b
d) None of these
10) For a quadrature oscillator, If fo $=1.59 \mathrm{KHz}$ and $\mathrm{C}=0.01 \mu \mathrm{~F}$ then $\mathrm{R}=$?
a) $10 \mathrm{~K} \Omega$
b) $100 \mathrm{~K} \Omega$
c) $1 \mathrm{~K} \Omega$
d) $15.9 \mathrm{~K} \Omega$
11) $\quad A_{f}=1+\left(R_{f} / R_{1}\right)$ represents \qquad .
a) open loop gain of Non-Inverting Amplifier
b) closed loop gain of Non-Inverting Amplifier
c) open loop gain of Inverting Amplifier
d) none of these
12) For summing amplifier ratio of R_{f} / R should be \qquad .
a) less than one
b) greater than one
c) zero
d) one
13) Introduction of negative feedback \qquad .
a) makes gain infinite
b) make bandwidth infinite
c) stabilizes gain
d) none of these
14) Gain bandwidth product of IC741 is \qquad
a) 10 MHz
b) 1 MHz
c) Infinite
d) 1 KHz

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronic \& Telecommunication Engineering LINEAR INTEGRATED CIRCUIT

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.
a) Consider an inverting amplifier with feedback with $R_{f}=5 K \Omega, R_{1}=100 \Omega$, $A_{f}=50$, slew rate $=0.5 \mathrm{~V} / \mu \mathrm{sec}$. Calculate Vp .
b) Prove that for a Non-inverting amplifier with feedback, $f_{f}=f_{0}(1+A B)$
c) For an AC inverting amplifier, derive equation for lower cut-off frequency.
d) Explain V to I converter with floating load.
e) Design a Inverting amplifier using op-amp 741 for closed loop gain of 7.
Q. 3 Attempt any two.
a) Derive the $\mathrm{I}_{\text {CEQ }}$ and $\mathrm{V}_{\text {CEQ }}$ for DIBO differential amplifier.
b) Design a differentiator to differentiate an input signal that varies in frequency from 10 Hz to 1 KHz .
c) State any six specifications of IC 741.

Section - II

Q. 4 Attempt any four.
a) Explain positive clipper using op amp.
b) Explain Log amplifier.
c) Draw and explain Sample and Hold Circuit.
d) Draw and explain quadrature oscillator.
e) Design a Second order low pass Butterworth filter with $\mathrm{f}_{\mathrm{H}}=1.5 \mathrm{KHz}$.
Q. 5 Attempt any two.
a) Draw and explain Wein bridge Oscillator with a proof of $f_{0}=1 / 2 \pi R C$.
b) Explain Frequency Multiplier using PLL.
c) Explain Half Wave precision rectifier with waveforms.

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronic \& Telecommunication Engineering LINEAR INTEGRATED CIRCUIT

Day \& Date: Tuesday, 26-11-2019Max. Marks: 70Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary
MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.
1)
a) Schmitt Trigger
b) Clamper
c) Peak Detector
d) Window Detector
2) Which of the following circuit is called as dc inserter?
a) dc amplifier
b) Schmitt trigger
c) Clampers
d) Zero crossing Detector
3) Which block of PLL provides flywheel action for smoothing as dc inserter?
a) Filter
b) VCO
c) Phase Detector
d) Level Shifter
4) Active filters offers below advantages over passive filters \qquad .
a) Flexibility in design
b) Gain adjustment
c) Both a and b
d) None of these
5) For a quadrature oscillator, If fo $=1.59 \mathrm{KHz}$ and $\mathrm{C}=0.01 \mu \mathrm{~F}$ then $\mathrm{R}=$?
a) $10 \mathrm{~K} \Omega$
b) $100 \mathrm{~K} \Omega$
c) $1 \mathrm{~K} \Omega$
d) $15.9 \mathrm{~K} \Omega$
6) $\quad A_{f}=1+\left(R_{f} / R_{1}\right)$ represents \qquad .
a) open loop gain of Non-Inverting Amplifier
b) closed loop gain of Non-Inverting Amplifier
c) open loop gain of Inverting Amplifier
d) none of these
7) For summing amplifier ratio of R_{f} / R should be \qquad .
a) less than one
b) greater than one
c) zero
d) one
8) Introduction of negative feedback \qquad .
a) makes gain infinite
b) make bandwidth infinite
c) stabilizes gain
d) none of these
9) Gain bandwidth product of IC741 is \qquad .
a) 10 MHz
b) 1 MHz
c) Infinite
d) 1 KHz
10) $\mathrm{Vo}_{\mathrm{cm}} / \mathrm{V}_{\mathrm{cm}}$ represents \qquad .
a) CMRR
b) open loop voltage gain
c) $A_{c m}$
d) voltage rejection ratio
11) Maximum value of $d V_{o} / d t$ is called \qquad .
a) voltage ratio
b) voltage rate
c) slew rate
d) transient response
12) The gain of the basic differentiator increases with increase in frequency till it touches open loop response \qquad -.
a) True
b) False
13) What is the purpose of the op amp within active filters?
a) Impedance matching
b) to alleviate filter losses
c) Easy adjustment over a wide frequency range
d) all of above
14) For peak detector which of the following is true \qquad .
a) $\mathrm{CR}_{\mathrm{d}} \leq \mathrm{T} / 10$
b) $\quad C R_{L} \geq 10 T$
c) Both a and b
d) None of these

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronic \& Telecommunication Engineering LINEAR INTEGRATED CIRCUIT

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.

a) Consider an inverting amplifier with feedback with $R_{f}=5 K \Omega, R_{1}=100 \Omega$, $A_{f}=50$, slew rate $=0.5 \mathrm{~V} / \mu \mathrm{sec}$. Calculate Vp .
b) Prove that for a Non-inverting amplifier with feedback, $f_{f}=f_{0}(1+A B)$
c) For an AC inverting amplifier, derive equation for lower cut-off frequency.
d) Explain V to I converter with floating load.
e) Design a Inverting amplifier using op-amp 741 for closed loop gain of 7.
Q. 3 Attempt any two.
a) Derive the $\mathrm{I}_{\text {CEQ }}$ and $\mathrm{V}_{\text {CEQ }}$ for DIBO differential amplifier.
b) Design a differentiator to differentiate an input signal that varies in frequency from 10 Hz to 1 KHz .
c) State any six specifications of IC 741 .

Section - II

Q. 4 Attempt any four.
a) Explain positive clipper using op amp.
b) Explain Log amplifier.
c) Draw and explain Sample and Hold Circuit.
d) Draw and explain quadrature oscillator.
e) Design a Second order low pass Butterworth filter with $f_{\mathrm{H}}=1.5 \mathrm{KHz}$.
Q. 5 Attempt any two.
a) Draw and explain Wein bridge Oscillator with a proof of $f_{0}=1 / 2 \pi R C$.
b) Explain Frequency Multiplier using PLL.
c) Explain Half Wave precision rectifier with waveforms.

SLR-FM-236

Seat
 No.
 S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Set

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if necessary

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) If $x[4-n]$ is derived from the $x[n]$ by which transformation?
a) Reversal and shift
b) reversal only
c) Scaling
d) scaling and shifting
2) Mathematically unit impulse is a derivative of \qquad .
a) Unit step
b) unit ramp
c) Unit parabola
d) None
3) With $u(n)$ as unit step function, $u(n)-u(n-2)$ is.
a) $\delta(\mathrm{n})$
b) $\delta(\mathrm{n})+\delta(\mathrm{n}-1)$
c) $\delta(\mathrm{n})+\delta(\mathrm{n}-2)$
d) $\delta(\mathrm{n})+\delta(\mathrm{n}+1)$
4) Which system is non-causal system?
a) $y(t)=x(t+1)$
b) $y(t)=x(t-1)$
c) $y(t)=x(t)+c$
d) $y(t)=x(t)-c$
5) Find the convolution of $x(n)=\{1,2,3\} h(n)=\{1,2\}$.
a) $\{1,2,5,6\}$
b) $\{0,4,3,1\}$
c) $\{1,4,7,6\}$
d) $\{4,2,3,1\}$
6) Time transformations are \qquad .
a) Time shifting
b) Time scaling
c) Time reversal
d) All
7) Find the time period of $x(t)=\sin (50 t)$ \qquad .
a) 25π
b) 50
c) $\pi / 2$
d) $\pi / 25$
8) For the successful reconstruction of signals \qquad .
a) Sampling frequency must be equal to the message signal
b) Sampling frequency must be greater to the message signal
c) Sampling frequency must be less to the message signal
d) Sampling frequency must be greater than or equal to the message signal
9) What is the z-transform of the finite duration signal \qquad .
$x(n)=\{2,4,5,7,0,1\}$?
a) $2+4 z+5 z^{2}+7 z^{3}+z^{4}$
b) $2+4 z+5 z^{2}+7 z^{3}+z^{5}$
c) $2+4 z^{-1}+5 z^{-2}+7 z^{-3}+z^{-5}$
d) $2 z^{2}+4 z+5+7 z^{-1}+z^{-3}$
10) If $x(n)=u(n)-u(n-4)$ then ROC is \qquad .
a) Entire Z plane
b) Entire Z plane, expect $z=0$
c) Entire Z plane, expect $z=\infty$
d) Entire Z plane, expect $\mathrm{z}=0$ and expect $\mathrm{z}=\infty$
11) Which of the following justifies the linearity property of z-transform? $[\mathrm{x}(\mathrm{n}) \leftrightarrow \mathrm{X}(\mathrm{z})]$.
a) $\quad a x(n)+b y(n) \leftrightarrow a X(z) b Y(z)$
b) $\quad \mathrm{ax}(\mathrm{n})+\mathrm{by}(\mathrm{n}) \leftrightarrow \mathrm{aX}(\mathrm{z})+\mathrm{bY}(\mathrm{z})$
c) $\quad a x(n) b y(n) \leftrightarrow a X(z)+b Y(z)$
d) $\quad \mathrm{ax}(\mathrm{n}) \mathrm{by}(\mathrm{n}) \leftrightarrow \mathrm{aX}(\mathrm{z}) \mathrm{bY}(\mathrm{z})$
12) Duality property is \qquad .
a) $\quad \mathrm{X}(\mathrm{t}) \leftrightarrow 2 \pi \mathrm{x}(-\mathrm{w})$
b) $X(-t) \leftrightarrow 2 x(-w)$
c) $\quad \mathrm{X}(\mathrm{at}) \leftrightarrow 1 / \mathrm{a}(\mathrm{w} / \mathrm{a})$
d) $(-j t) X(t) \leftrightarrow 2 x \pi(-w)$
13) Fourier transform of $\operatorname{Sgn}(\mathrm{t})$ is \qquad .
a) 1
b) $-2 / \mathrm{jw}$
c) $2 / \mathrm{jw}$
d) 0
14) What does the first term ' $a 0$ ' in the below stated expression of a line spectrum indicate?
$\mathrm{x}(\mathrm{t})=\mathrm{a} 0+\mathrm{a} 1 \cos \mathrm{w} 0 \mathrm{t}+\mathrm{a} 2 \cos 2 \mathrm{w} 0 \mathrm{t}+\cdots+\mathrm{b} 1 \sin \mathrm{w} 0 \mathrm{t}+\mathrm{b} 2 \sin \mathrm{w} 0 \mathrm{t}+\ldots$
a) DC component
b) Fundamental component
c) Second harmonic component
d) All of the above

Seat
 No.
 S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Set
P

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if necessary

Section - I
Q. 2 Attempt any three of the following questions.
a) For the signal shown in fig. find following.

1) $x(2 t+2)$
2) $x(3-t / 2)$

b) Check the causal/non-causal and Linear/Non-linear $Y(t)=e^{x(t)}$.
c) Find the convolution using graphical method $x(n)=\{1,2,3,3\} h(n)=\{1,2,2\}$.
d) Find the step response if the impulse response is $e^{-2 t} u(t)$.
Q. 3 Attempt any two of the following questions.
a) Explain the transformations on independent variables with examples.
b) Determine following system is $y(t)=$ even $\{x(t)\}$.
3) Causal/non-causal
4) Linear/Non-linear
5) Time Variant- invariant
c) Find even and odd part of the given signal $x(n)=\{3,2,1,1,1,2,1,1\}$.

Section - II

Q. 4 Attempt any three of the following questions.
a) Define Aliasing error. Explain how it can be avoided?
b) Find Z-transform with its ROC of $x(n)=(2)^{n} \cdot u(n)+(3)^{n} \cdot u(-n-1)$.
c) Find inverse Z- transform $X(Z)=\frac{Z^{2}+Z}{(Z-1)^{2}}$, Right sided sequence using partial fraction expansion method.
d) Find Fourier transform of $\mathrm{x}(\mathrm{t})=\operatorname{CosW}_{\mathrm{o}} \mathrm{t}$.
Q. 5 Attempt any two of the following questions.
a) Consider the analog signal
$X(t)=3 \cos 2000 \pi t+5 \sin 6000 \pi t+10 \cos 1000 \pi t$

1) What is Nyquist sampling rate?
2) The signal is sampled using fs $=5000 \mathrm{~Hz}$. What is DT signal?
b) Determine the sequence $\times(\mathrm{n})$ associated with Z.T given below using power series method.

$$
X[Z]=\frac{Z^{2}+Z}{Z^{3}-3 Z^{2}+3 Z-1} ;|z|>1 \text { ROC }
$$

c) Find the exponential Fourier series \& plot the magnitude \& phase spectrum of full wave rectified time domain signal having amplitude Em and $\mathrm{T}_{0}=\pi$

SLR-FM-236

Sea	
t	
No.	

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if necessary

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) For the successful reconstruction of signals \qquad .
a) Sampling frequency must be equal to the message signal
b) Sampling frequency must be greater to the message signal
c) Sampling frequency must be less to the message signal
d) Sampling frequency must be greater than or equal to the message signal
2) What is the z-transform of the finite duration signal \qquad .
$x(n)=\{2,4,5,7,0,1\}$?
a) $2+4 z+5 z^{2}+7 z^{3}+z^{4}$
b) $2+4 z+5 z^{2}+7 z^{3}+z^{5}$
c) $2+4 z^{-1}+5 z^{-2}+7 z^{-3}+z^{-5}$
d) $2 z^{2}+4 z+5+7 z^{-1}+z^{-3}$
3) If $x(n)=u(n)-u(n-4)$ then ROC is \qquad .
a) Entire Z plane
b) Entire Z plane, expect $\mathrm{z}=0$
c) Entire Z plane, expect $\mathrm{z}=\infty$
d) Entire Z plane, expect $\mathrm{z}=0$ and expect $\mathrm{z}=\infty$
4) Which of the following justifies the linearity property of z-transform? $[\mathrm{x}(\mathrm{n}) \leftrightarrow \mathrm{X}(\mathrm{z})]$.
a) $a x(n)+b y(n) \leftrightarrow a X(z) b Y(z)$
b) $\mathrm{ax}(\mathrm{n})+\mathrm{by}(\mathrm{n}) \leftrightarrow \mathrm{aX}(\mathrm{z})+\mathrm{bY}(\mathrm{z})$
c) $\quad a x(n) b y(n) \leftrightarrow a X(z)+b Y(z)$
d) $\quad \mathrm{ax}(\mathrm{n}) \mathrm{by}(\mathrm{n}) \leftrightarrow \mathrm{aX}(\mathrm{z}) \mathrm{bY}(\mathrm{z})$
5) Duality property is \qquad .
a) $X(\mathrm{t}) \leftrightarrow 2 \pi \mathrm{x}(-\mathrm{w})$
b) $\quad X(-t) \leftrightarrow 2 x(-w)$
c) $\quad \mathrm{X}(\mathrm{at}) \leftrightarrow 1 / \mathrm{a} \mathrm{X}(\mathrm{w} / \mathrm{a})$
d) $(-\mathrm{jt}) \mathrm{X}(\mathrm{t}) \leftrightarrow 2 \mathrm{x} \pi(-\mathrm{w})$
6) Fourier transform of $\operatorname{Sgn}(\mathrm{t})$ is \qquad .
a) 1
b) $-2 / \mathrm{jw}$
c) $2 / \mathrm{jw}$
d) 0
7) What does the first term 'a0' in the below stated expression of a line spectrum indicate?
$\mathrm{x}(\mathrm{t})=\mathrm{a} 0+\mathrm{a} 1 \cos \mathrm{w} 0 \mathrm{t}+\mathrm{a} 2 \cos 2 \mathrm{w} 0 \mathrm{t}+\cdots+\mathrm{b} 1 \sin \mathrm{w} 0 \mathrm{t}+\mathrm{b} 2 \sin \mathrm{w} 0 \mathrm{t}+\ldots$
a) DC component
b) Fundamental component
c) Second harmonic component
d) All of the above
8) If $x[4-n]$ is derived from the $x[n]$ by which transformation?
a) Reversal and shift
b) reversal only
c) Scaling
d) scaling and shifting
9) Mathematically unit impulse is a derivative of \qquad .
a) Unit step
b) unit ramp
c) Unit parabola
d) None
10) With $u(n)$ as unit step function, $u(n)-u(n-2)$ is.
a) $\delta(\mathrm{n})$
b) $\delta(\mathrm{n})+\delta(\mathrm{n}-1)$
c) $\delta(\mathrm{n})+\delta(\mathrm{n}-2)$
d) $\delta(\mathrm{n})+\delta(\mathrm{n}+1)$
11) Which system is non-causal system?
a) $y(t)=x(t+1)$
b) $y(t)=x(t-1)$
c) $y(t)=x(t)+c$
d) $y(t)=x(t)-c$
12) Find the convolution of $x(n)=\{1,2,3\} h(n)=\{1,2\}$.
a) $\{1,2,5,6\}$
b) $\{0,4,3,1\}$
c) $\{1,4,7,6\}$
d) $\{4,2,3,1\}$
13) Time transformations are \qquad .
a) Time shifting
b) Time scaling
c) Time reversal
d) All
14) Find the time period of $x(t)=\sin (50 t)$ \qquad .
a) 25π
b) 50
c) $\pi / 2$
d) $\pi / 25$

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Day \& Date: Wednesday, 27-11-2019

Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if necessary

Section - I
Q. 2 Attempt any three of the following questions.
a) For the signal shown in fig. find following.

1) $x(2 t+2)$
2) $x(3-t / 2)$

b) Check the causal/non-causal and Linear/Non-linear $Y(t)=e^{x(t)}$.
c) Find the convolution using graphical method $x(n)=\{1,2,3,3\} h(n)=\{1,2,2\}$.
d) Find the step response if the impulse response is $e^{-2 t} u(t)$.
Q. 3 Attempt any two of the following questions.
a) Explain the transformations on independent variables with examples.
b) Determine following system is $\mathrm{y}(\mathrm{t})=$ even $\{\mathrm{x}(\mathrm{t})\}$.
3) Causal/non-causal
4) Linear/Non-linear
5) Time Variant- invariant
c) Find even and odd part of the given signal $x(n)=\{3,2,1,1,1,2,1,1\}$.

Section - II

Q. 4 Attempt any three of the following questions.
a) Define Aliasing error. Explain how it can be avoided?
b) Find Z-transform with its ROC of $x(n)=(2)^{n} \cdot u(n)+(3)^{n} \cdot u(-n-1)$.
c) Find inverse Z - transform $X(Z)=\frac{Z^{2}+Z}{(Z-1)^{2}}$, Right sided sequence using partial fraction expansion method.
d) Find Fourier transform of $\mathrm{x}(\mathrm{t})=\operatorname{CosW}_{\mathrm{o}} \mathrm{t}$.
Q. 5 Attempt any two of the following questions.
a) Consider the analog signal
$X(t)=3 \cos 2000 \pi t+5 \sin 6000 \pi t+10 \cos 1000 \pi t$

1) What is Nyquist sampling rate?
2) The signal is sampled using fs $=5000 \mathrm{~Hz}$. What is DT signal?
b) Determine the sequence $\times(n)$ associated with Z.T given below using power series method.

$$
X[Z]=\frac{Z^{2}+Z}{Z^{3}-3 Z^{2}+3 Z-1} ;|z|>1 \text { ROC }
$$

c) Find the exponential Fourier series \& plot the magnitude \& phase spectrum of full wave rectified time domain signal having amplitude Em and $\mathrm{T}_{0}=\pi$

| Seat |
| :--- | :--- |
| No. |

Set

S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if necessary

MCQ/Objective Type Questions

Duration: 30 Minutes

Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Find the convolution of $x(n)=\{1,2,3\} h(n)=\{1,2\}$.
a) $\{1,2,5,6\}$
b) $\{0,4,3,1\}$
c) $\{1,4,7,6\}$
d) $\{4,2,3,1\}$
2) Time transformations are \qquad .
a) Time shifting
b) Time scaling
c) Time reversal
d) All
3) Find the time period of $x(t)=\sin (50 t)$ \qquad .
a) 25π
b) 50
c) $\pi / 2$
d) $\pi / 25$
4) For the successful reconstruction of signals \qquad .
a) Sampling frequency must be equal to the message signal
b) Sampling frequency must be greater to the message signal
c) Sampling frequency must be less to the message signal
d) Sampling frequency must be greater than or equal to the message signal
5) What is the z-transform of the finite duration signal \qquad .
$x(n)=\{2,4,5,7,0,1\}$?
a) $2+4 z+5 z^{2}+7 z^{3}+z^{4}$
b) $2+4 z+5 z^{2}+7 z^{3}+z^{5}$
c) $2+4 z^{-1}+5 z^{-2}+7 z^{-3}+z^{-5}$
d) $2 z^{2}+4 z+5+7 z^{-1}+z^{-3}$
6) If $x(n)=u(n)-u(n-4)$ then ROC is \qquad .
a) Entire Z plane
b) Entire Z plane, expect $z=0$
c) Entire Z plane, expect $z=\infty$
d) Entire Z plane, expect $\mathrm{z}=0$ and expect $\mathrm{z}=\infty$
7) Which of the following justifies the linearity property of z-transform?
$[\mathrm{x}(\mathrm{n}) \leftrightarrow \mathrm{X}(\mathrm{z})]$.
a) $a x(n)+b y(n) \leftrightarrow a X(z) b Y(z)$
b) $\mathrm{ax}(\mathrm{n})+\mathrm{by}(\mathrm{n}) \leftrightarrow \mathrm{aX}(\mathrm{z})+\mathrm{bY}(\mathrm{z})$
c) $\quad \mathrm{ax}(\mathrm{n}) \mathrm{by}(\mathrm{n}) \leftrightarrow \mathrm{aX}(\mathrm{z})+\mathrm{bY}(\mathrm{z})$
d) $\quad a x(n) b y(n) \leftrightarrow a X(z) b Y(z)$
8) Duality property is \qquad .
a) $X(t) \leftrightarrow 2 \pi x(-w)$
b) $\quad X(-t) \leftrightarrow 2 x(-w)$
c) $\quad \mathrm{X}(\mathrm{at}) \leftrightarrow 1 / \mathrm{a} \mathrm{X}(\mathrm{w} / \mathrm{a})$
d) $(-\mathrm{jt}) \mathrm{X}(\mathrm{t}) \leftrightarrow 2 \mathrm{x} \pi(-\mathrm{w})$
9) Fourier transform of $\operatorname{Sgn}(\mathrm{t})$ is \qquad
a) 1
b) $-2 / \mathrm{jw}$
c) $2 / \mathrm{jw}$
d) 0
10) What does the first term ' a 0 ' in the below stated expression of a line spectrum indicate?
$x(t)=a 0+a 1 \cos w 0 t+a 2 \cos 2 w 0 t+\cdots+b 1 \sin w 0 t+b 2 \sin w 0 t+\ldots$
a) DC component
b) Fundamental component
c) Second harmonic component
d) All of the above
11) If $x[4-n]$ is derived from the $x[n]$ by which transformation?
a) Reversal and shift
b) reversal only
c) Scaling
d) scaling and shifting
12) Mathematically unit impulse is a derivative of \qquad .
a) Unit step
b) unit ramp
c) Unit parabola
d) None
13) With $u(n)$ as unit step function, $u(n)-u(n-2)$ is.
a) $\delta(\mathrm{n})$
b) $\delta(\mathrm{n})+\delta(\mathrm{n}-1)$
c) $\delta(\mathrm{n})+\delta(\mathrm{n}-2)$
d) $\delta(\mathrm{n})+\delta(\mathrm{n}+1)$
14) Which system is non-causal system?
a) $y(t)=x(t+1)$
b) $y(t)=x(t-1)$
c) $y(t)=x(t)+c$
d) $y(t)=x(t)-c$

Seat
 No.
 S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Set R

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if necessary

Section - I
Q. 2 Attempt any three of the following questions.
a) For the signal shown in fig. find following.

1) $x(2 t+2)$
2) $x(3-t / 2)$

b) Check the causal/non-causal and Linear/Non-linear $Y(t)=e^{x(t)}$.
c) Find the convolution using graphical method $x(n)=\{1,2,3,3\} h(n)=\{1,2,2\}$.
d) Find the step response if the impulse response is $e^{-2 t} u(t)$.
Q. 3 Attempt any two of the following questions.
a) Explain the transformations on independent variables with examples.
b) Determine following system is $y(t)=$ even $\{x(t)\}$.
3) Causal/non-causal
4) Linear/Non-linear
5) Time Variant- invariant
c) Find even and odd part of the given signal $x(n)=\{3,2,1,1,1,2,1,1\}$.

Section - II

Q. 4 Attempt any three of the following questions.
a) Define Aliasing error. Explain how it can be avoided?
b) Find Z-transform with its ROC of $x(n)=(2)^{n} \cdot u(n)+(3)^{n} \cdot u(-n-1)$.
c) Find inverse Z- transform $X(Z)=\frac{Z^{2}+Z}{(Z-1)^{2}}$, Right sided sequence using partial fraction expansion method.
d) Find Fourier transform of $\mathrm{x}(\mathrm{t})=\operatorname{CosW}_{\mathrm{o}} \mathrm{t}$.
Q. 5 Attempt any two of the following questions.
a) Consider the analog signal
$X(t)=3 \cos 2000 \pi t+5 \sin 6000 \pi t+10 \cos 1000 \pi t$

1) What is Nyquist sampling rate?
2) The signal is sampled using fs $=5000 \mathrm{~Hz}$. What is DT signal?
b) Determine the sequence $\times(\mathrm{n})$ associated with Z.T given below using power series method.

$$
X[Z]=\frac{Z^{2}+Z}{Z^{3}-3 Z^{2}+3 Z-1} ;|z|>1 \text { ROC }
$$

c) Find the exponential Fourier series \& plot the magnitude \& phase spectrum of full wave rectified time domain signal having amplitude Em and $\mathrm{T}_{0}=\pi$

SLR-FM-236

Seat
 No.

 S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019

 S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

 SIGNALS AND SYSTEMS}Set

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if necessary

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) If $x(n)=u(n)-u(n-4)$ then ROC is \qquad .
a) Entire Z plane
b) Entire Z plane, expect $z=0$
c) Entire Z plane, expect $z=\infty$
d) Entire Z plane, expect $\mathrm{z}=0$ and expect $\mathrm{z}=\infty$
2) Which of the following justifies the linearity property of z-transform? $[\mathrm{x}(\mathrm{n}) \leftrightarrow \mathrm{X}(\mathrm{z})]$.
a) $\quad a x(n)+b y(n) \leftrightarrow a X(z) b Y(z)$
b) $\quad \mathrm{ax}(\mathrm{n})+\mathrm{by}(\mathrm{n}) \leftrightarrow \mathrm{aX}(\mathrm{z})+\mathrm{bY}(\mathrm{z})$
c) $\quad a x(n) b y(n) \leftrightarrow a X(z)+b Y(z)$
d) $\quad a x(n) b y(n) \leftrightarrow a X(z) b Y(z)$
3) Duality property is \qquad .
a) $X(\mathrm{t}) \leftrightarrow 2 \pi \mathrm{x}(-\mathrm{w})$
b) $\quad X(-t) \leftrightarrow 2 x(-w)$
c) $\quad \mathrm{X}(\mathrm{at}) \leftrightarrow 1 / \mathrm{a} \mathrm{X}(\mathrm{w} / \mathrm{a})$
d) $(-\mathrm{jt}) \mathrm{X}(\mathrm{t}) \leftrightarrow 2 \mathrm{x} \pi(-\mathrm{w})$
4) Fourier transform of $\operatorname{Sgn}(\mathrm{t})$ is \qquad .
a) 1
b) $-2 / \mathrm{jw}$
c) $2 / \mathrm{jw}$
d) 0
5) What does the first term 'a0' in the below stated expression of a line spectrum indicate?

$$
x(t)=a 0+a 1 \cos w 0 t+a 2 \cos 2 w 0 t+\cdots+b 1 \sin w 0 t+b 2 \sin w 0 t+\ldots
$$

a) DC component
b) Fundamental component
c) Second harmonic component
d) All of the above
6) If $x[4-n]$ is derived from the $x[n]$ by which transformation?
a) Reversal and shift
b) reversal only
c) Scaling
d) scaling and shifting
7) Mathematically unit impulse is a derivative of \qquad .
a) Unit step
b) unit ramp
c) Unit parabola
d) None
8) With $u(n)$ as unit step function, $u(n)-u(n-2)$ is.
a) $\delta(\mathrm{n})$
b) $\delta(\mathrm{n})+\delta(\mathrm{n}-1)$
c) $\delta(\mathrm{n})+\delta(\mathrm{n}-2)$
d) $\delta(\mathrm{n})+\delta(\mathrm{n}+1)$
9) Which system is non-causal system?
a) $y(t)=x(t+1)$
b) $y(t)=x(t-1)$
c) $y(t)=x(t)+c$
d) $y(t)=x(t)-c$
10) Find the convolution of $x(n)=\{1,2,3\} h(n)=\{1,2\}$.
a) $\{1,2,5,6\}$
b) $\{0,4,3,1\}$
c) $\{1,4,7,6\}$
d) $\{4,2,3,1\}$
11) Time transformations are \qquad .
a) Time shifting
b) Time scaling
c) Time reversal
d) All
12) Find the time period of $x(t)=\sin (50 t)$ \qquad .
a) 25π
b) 50
C) $\pi / 2$
d) $\pi / 25$
13) For the successful reconstruction of signals \qquad .
a) Sampling frequency must be equal to the message signal
b) Sampling frequency must be greater to the message signal
c) Sampling frequency must be less to the message signal
d) Sampling frequency must be greater than or equal to the message signal
14) What is the z-transform of the finite duration signal \qquad .
$x(n)=\{2,4,5,7,0,1\}$?
a) $2+4 z+5 z^{2}+7 z^{3}+z^{4}$
b) $2+4 z+5 z^{2}+7 z^{3}+z^{5}$
c) $2+4 z^{-1}+5 z^{-2}+7 z^{-3}+z^{-5}$
d) $2 z^{2}+4 z+5+7 z^{-1}+z^{-3}$

Seat
 No.
 S.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if necessary

Section - I
Q. 2 Attempt any three of the following questions.
a) For the signal shown in fig. find following.

1) $x(2 t+2)$
2) $x(3-t / 2)$

b) Check the causal/non-causal and Linear/Non-linear $Y(t)=e^{x(t)}$.
c) Find the convolution using graphical method $x(n)=\{1,2,3,3\} h(n)=\{1,2,2\}$.
d) Find the step response if the impulse response is $e^{-2 t} u(t)$.
Q. 3 Attempt any two of the following questions.
a) Explain the transformations on independent variables with examples.
b) Determine following system is $\mathrm{y}(\mathrm{t})=\mathrm{even}\{\mathrm{x}(\mathrm{t})\}$.
3) Causal/non-causal
4) Linear/Non-linear
5) Time Variant- invariant
c) Find even and odd part of the given signal $x(n)=\{3,2,1,1,1,2,1,1\}$.

Section - II

Q. 4 Attempt any three of the following questions.
a) Define Aliasing error. Explain how it can be avoided?
b) Find Z-transform with its ROC of $x(n)=(2)^{n} \cdot u(n)+(3)^{n} \cdot u(-n-1)$.
c) Find inverse Z- transform $X(Z)=\frac{Z^{2}+Z}{(Z-1)^{2}}$, Right sided sequence using partial fraction expansion method.
d) Find Fourier transform of $\mathrm{x}(\mathrm{t})=\operatorname{CosW}_{\mathrm{o}} \mathrm{t}$.
Q. 5 Attempt any two of the following questions.
a) Consider the analog signal
$X(t)=3 \cos 2000 \pi t+5 \sin 6000 \pi t+10 \cos 1000 \pi t$

1) What is Nyquist sampling rate?
2) The signal is sampled using fs $=5000 \mathrm{~Hz}$. What is DT signal?
b) Determine the sequence $\times(n)$ associated with Z.T given below using power series method.

$$
X[Z]=\frac{Z^{2}+Z}{Z^{3}-3 Z^{2}+3 Z-1} ;|z|>1 \text { ROC }
$$

c) Find the exponential Fourier series \& plot the magnitude \& phase spectrum of full wave rectified time domain signal having amplitude Em and $\mathrm{T}_{0}=\pi$

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019

 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEMDay \& Date: Friday, 06-12-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Use of non-programmable calculator is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) A point is obtained by intersection of \qquad in spherical co-ordinates.
a) 3 planes
b) 2 planes and circle
c) plane, circle and a cone
d) none of these
2) Which of the following is meaningless combination?
a) grad div
b) curl div
c) curl grad
d) none of these
3) If the direction of Coulomb's Force on a unit charge is $\overline{\mathrm{ax}}$, the direction of electric field intensity is \qquad -
a) $\overline{\mathrm{ay}}$
b) $-\overline{a x}$
c) $\overline{\mathrm{az}}$
d) $\overline{a x}$
4) If pair of $+v e \&-v e$ charges of 2 C separated by distance $3 \mu \mathrm{~m}$ then the magnitude of dipole moment is \qquad .
a) $2 C-\mu m$
b) $1.5 C-m$
C) $6 C-\mu m$
d) $3 C-\mu m$
5) If E is a vector then $\nabla . \nabla \times E$ is \qquad .
a) 1
b) 0
c) ∞
d) doesn't exist
6) The unit of Electric field Intensity is \qquad .
a) N / C
b) V-m
c) $\mathrm{J}-\mathrm{C} / \mathrm{m}$
d) All of these
7) If the voltage applied across the capacitor is increased, the capacitance value \qquad _.
a) increases
b) Decreases
c) remains constant
d) becomes infinity
8) A quantitative relation between induced emf and rate of change of flux linkage is known as \qquad .
a) Maxwell's law
b) Stoke's law
c) Lenz's law
d) Faraday's law
9) What is the flux density of a magnetic field whose flux is $3000 \mu \mathrm{~Wb}$ and cross-sectional area is $0.25 \mathrm{~m}^{2}$?
a) $12,000 \mu \mathrm{~T}$
b) 83330 T
c) 0 T
d) insufficient information provided
10) When the speed at which a conductor is moved through a magnetic field is increased, the induced voltage
a) increases
b) Decreases
c) remains constant
d) reaches zero
11) One of this is NOT the source of magnetic fields \qquad .
a) a DC current in wire
b) a permanent magnet
c) an accelerated charge
d) an electric field linearly changing with time
12) Two identical coaxial circular coils carry the same current I but in opposite directions. The magnitude of magnetic field B at a point midway between coils is \qquad .
a) Zero
b) same as that produced by one coil
c) twice that produced by one coil
d) half of that produced by one coil
13) Poynting vector is \qquad .
a) $P=\bar{E} . \bar{H}$
b) $\quad \mathrm{P}=1 / 2(\overline{\mathrm{E}} \times \overline{\mathrm{H}})$
c) $P=\bar{E} \times \bar{H}$
d) $\quad P=\nabla \cdot(\bar{E} \times \bar{H})$
14) Two media are characterized as \qquad .
15) $\mu \mathrm{r}=1, \varepsilon \mathrm{r}=4$ and $\sigma=0$
16) $\mu \mathrm{r}=4, \varepsilon \mathrm{r}=4$ and $\sigma=0$

Where: $\varepsilon r=$ relative permittivity, $\mu \mathrm{r}=$ relative permeability and $\sigma=$ conductivity
The ratio of the intrinsic impedance of the media 2 to media 1 is \qquad .
a) $2: 1$
b) $1: 2$
c) $1: 1$
d) $2: 2$

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019

 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEMDay \& Date: Friday, 06-12-2019

Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicates full marks.

Section - I

Q. 2 Attempt any three.

a) State and prove Gauss' law.
b) Determine the total charge inside the volume indicated by $\rho \nu=4 \mathrm{xyz}^{2}$ if $0 \leq \rho \leq 2,0 \leq \Phi \leq \frac{\pi}{2}, 0 \leq z \leq 3$
c) A point charge of 6 nC located at origin in free space. Find $V_{P Q}$ if point P is located at $(0.2,-0.4,0.4) \& Q$ is at $(-0.5,1,-1)$. Also find V_{P} if $V=20 \mathrm{~V}$ at point Q.
d) Electric dipole located at origin in free space has dipole moment $\overline{\mathrm{p}}=3 \overline{\mathrm{ax}}-2 \overline{\mathrm{ay}}+\overline{\mathrm{az}} \mathrm{nC}-\mathrm{m}$. Find V at $P(2,3,4)$.
Q. 3 Attempt any two.
a) Find $\overline{\mathrm{E}}$ at $\mathrm{P}(1,5,2)$ in free space due to

1) A point charge of $6 \mu C$ is located at $Q(0,0,1)$.
2) uniform line charge of $180 \mathrm{nC} / \mathrm{m}$ lies along x axis.
3) a sheet charge of $20 \mathrm{nC} / \mathrm{m}^{2}$ is placed at $y=3$.
b) Derive the equation for $\overline{\mathrm{E}}$ due to infinite sheet charge placed in $\mathrm{z}=0$ plane.
c) Establish the boundary condition for dielectric boundary having permeability ε_{1} and ε_{2}.

Section - II

Q. 4 Attempt any three.
a) State and explain Ampere's circuital law.
b) Write a note on antenna field zones.
c) In a medium if $\overline{\mathrm{E}}=\mathrm{Em} \sin \propto \cos (\mathrm{wt}-\beta \mathrm{z}) \overline{\mathrm{ay}} \mathrm{V} / \mathrm{m}$ find $\overline{\mathrm{H}}$.
d) If magnetic field intensity in a region is $\bar{H}=x^{2} \overline{a x}+2 y z \overline{a y}-x^{2} \overline{a z}$ find current density at point $P(2,3,4)$.
Q. 5 Attempt any two.
a) Derive Maxwell's equations in point and integral form for time varying field.
b) Evaluate both sides of Stroke's theorem for the field
$\overline{\mathrm{H}}=\left(\frac{y^{2} \mathrm{z}}{\mathrm{x}}\right) \overline{\mathrm{ax}}+\left(0.5 \frac{\mathrm{y}^{2} \mathrm{z}^{2}}{\mathrm{x}^{2}}\right) \overline{\mathrm{az}}$ crossing the square surface in the plane $\mathrm{y}=2$ bounded by $\mathrm{x}=\mathrm{z}=1$ and $\mathrm{x}=\mathrm{z}=2$.
c) With a neat diagram explain Broadside, End fire and Yagi-Uda array.

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019

 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEM book.2) Use of non-programmable calculator is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) A quantitative relation between induced emf and rate of change of flux linkage is known as \qquad -.
a) Maxwell's law
b) Stoke's law
c) Lenz's law
d) Faraday's law
2) What is the flux density of a magnetic field whose flux is $3000 \mu \mathrm{~Wb}$ and cross-sectional area is $0.25 \mathrm{~m}^{2}$?
a) $12,000 \mu \mathrm{~T}$
b) 83330 T
c) 0 T
d) insufficient information provided
3) When the speed at which a conductor is moved through a magnetic field is increased, the induced voltage \qquad
a) increases
b) Decreases
c) remains constant
d) reaches zero
4) One of this is NOT the source of magnetic fields \qquad .
a) a DC current in wire
b) a permanent magnet
c) an accelerated charge
d) an electric field linearly changing with time
5) Two identical coaxial circular coils carry the same current I but in opposite directions. The magnitude of magnetic field B at a point midway between coils is \qquad .
a) Zero
b) same as that produced by one coil
c) twice that produced by one coil
d) half of that produced by one coil
6) Poynting vector is \qquad .
a) $P=\overline{\mathrm{E}} \cdot \overline{\mathrm{H}}$
b) $\quad P=1 / 2(\bar{E} \times \bar{H})$
c) $P=\bar{E} \times \bar{H}$
d) $\quad P=\nabla \cdot(\overline{\mathrm{E}} \times \overline{\mathrm{H}})$

Set
7) Two media are characterized as \qquad .

1) $\mu \mathrm{r}=1, \varepsilon \mathrm{r}=4$ and $\sigma=0$
2) $\mu \mathrm{r}=4, \varepsilon \mathrm{r}=4$ and $\sigma=0$

Where: $\varepsilon r=$ relative permittivity, $\mu r=$ relative permeability and $\sigma=$ conductivity The ratio of the intrinsic impedance of the media 2 to media 1 is \qquad .
а) $2: 1$
b) $1: 2$
c) $1: 1$
d) $2: 2$
8) A point is obtained by intersection of \qquad in spherical co-ordinates.
a) 3 planes
b) 2 planes and circle
c) plane, circle and a cone
d) none of these
9) Which of the following is meaningless combination?
a) grad div
b) curl div
c) curl grad
d) none of these
10) If the direction of Coulomb's Force on a unit charge is $\overline{\mathrm{ax}}$, the direction of electric field intensity is \qquad .
a) $\overline{\mathrm{ay}}$
b) $-\overline{a x}$
c) $\overline{\mathrm{az}}$
d) $\overline{a x}$
11) If pair of $+v e \&-v e$ charges of 2 C separated by distance $3 \mu \mathrm{~m}$ then the magnitude of dipole moment is \qquad -
a) $2 C-\mu m$
b) $1.5 C-m$
c) $6 C-\mu m$
d) $3 C-\mu m$
12) If E is a vector then $\nabla . \nabla \times E$ is \qquad .
a) 1
b) 0
c) $\quad \infty$
d) doesn't exist
13) The unit of Electric field Intensity is \qquad .
a) N / C
b) V-m
c) $\mathrm{J}-\mathrm{C} / \mathrm{m}$
d) All of these
14) If the voltage applied across the capacitor is increased, the capacitance value \qquad _.
a) increases
b) Decreases
c) remains constant
d) becomes infinity

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEM

Section - I

Q. 2 Attempt any three.

a) State and prove Gauss' law.
b) Determine the total charge inside the volume indicated by $\rho \nu=4 \mathrm{x} \mathrm{y} \mathrm{z}^{2}$ if $0 \leq \rho \leq 2,0 \leq \Phi \leq \frac{\pi}{2}, 0 \leq z \leq 3$
c) A point charge of 6 nC located at origin in free space. Find $V_{P Q}$ if point P is located at $(0.2,-0.4,0.4) \& Q$ is at $(-0.5,1,-1)$. Also find V_{P} if $V=20 \mathrm{~V}$ at point Q.
d) Electric dipole located at origin in free space has dipole moment $\overline{\mathrm{p}}=3 \overline{\mathrm{ax}}-2 \overline{\mathrm{ay}}+\overline{\mathrm{az}} \mathrm{nC}-\mathrm{m}$. Find V at $P(2,3,4)$.
Q. 3 Attempt any two.
a) Find $\overline{\mathrm{E}}$ at $\mathrm{P}(1,5,2)$ in free space due to

1) A point charge of $6 \mu C$ is located at $Q(0,0,1)$.
2) uniform line charge of $180 \mathrm{nC} / \mathrm{m}$ lies along x axis.
3) a sheet charge of $20 \mathrm{nC} / \mathrm{m}^{2}$ is placed at $y=3$.
b) Derive the equation for $\overline{\mathrm{E}}$ due to infinite sheet charge placed in $\mathrm{z}=0$ plane.
c) Establish the boundary condition for dielectric boundary having permeability ε_{1} and ε_{2}.

Section - II

Q. 4 Attempt any three.
a) State and explain Ampere's circuital law.
b) Write a note on antenna field zones.
c) In a medium if $\overline{\mathrm{E}}=\mathrm{Em} \sin \propto \cos (\mathrm{wt}-\beta \mathrm{z}) \overline{\mathrm{ay}} \mathrm{V} / \mathrm{m}$ find $\overline{\mathrm{H}}$.
d) If magnetic field intensity in a region is $\bar{H}=x^{2} \overline{a x}+2 y z \overline{a y}-x^{2} \overline{\mathrm{az}}$ find current density at point $P(2,3,4)$.
Q. 5 Attempt any two.
a) Derive Maxwell's equations in point and integral form for time varying field.
b) Evaluate both sides of Stroke's theorem for the field
$\overline{\mathrm{H}}=\left(\frac{\mathrm{y}^{2} \mathrm{z}}{\mathrm{x}}\right) \overline{\mathrm{ax}}+\left(0.5 \frac{\mathrm{y}^{2} \mathrm{z}^{2}}{\mathrm{x}^{2}}\right) \overline{\mathrm{az}}$ crossing the square surface in the plane $\mathrm{y}=2$ bounded by $\mathrm{x}=\mathrm{z}=1$ and $\mathrm{x}=\mathrm{z}=2$.
c) With a neat diagram explain Broadside, End fire and Yagi-Uda array.

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019

 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEMDay \& Date: Friday, 06-12-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Use of non-programmable calculator is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) If E is a vector then $\nabla . \nabla \times E$ is \qquad .
a) 1
b) 0
c) $\quad \infty$
d) doesn't exist
2) The unit of Electric field Intensity is \qquad .
a) N / C
b) V-m
c) $\mathrm{J}-\mathrm{C} / \mathrm{m}$
d) All of these
3) If the voltage applied across the capacitor is increased, the capacitance value \qquad .
a) increases
b) Decreases
c) remains constant
d) becomes infinity
4) A quantitative relation between induced emf and rate of change of flux linkage is known as \qquad .
a) Maxwell's law
b) Stoke's law
c) Lenz's law
d) Faraday's law
5) What is the flux density of a magnetic field whose flux is $3000 \mu \mathrm{~Wb}$ and cross-sectional area is $0.25 \mathrm{~m}^{2}$?
a) $12,000 \mu \mathrm{~T}$
b) 83330 T
c) 0 T
d) insufficient information provided
6) When the speed at which a conductor is moved through a magnetic field is increased, the induced voltage
a) increases
b) Decreases
c) remains constant
d) reaches zero
7) One of this is NOT the source of magnetic fields \qquad .
a) a DC current in wire
b) a permanent magnet
c) an accelerated charge
d) an electric field linearly changing with time
8) Two identical coaxial circular coils carry the same current I but in opposite directions. The magnitude of magnetic field B at a point midway between coils is \qquad .
a) Zero
b) same as that produced by one coil
c) twice that produced by one coil
d) half of that produced by one coil
9) Poynting vector is \qquad .
a) $P=\bar{E} . \bar{H}$
b) $\quad \mathrm{P}=1 / 2(\overline{\mathrm{E}} \times \overline{\mathrm{H}})$
c) $\quad \mathrm{P}=\overline{\mathrm{E}} \times \overline{\mathrm{H}}$
d) $\quad \mathrm{P}=\nabla \cdot(\overline{\mathrm{E}} \times \overline{\mathrm{H}})$
10) Two media are characterized as \qquad .
11) $\mu r=1, \varepsilon r=4$ and $\sigma=0$
12) $\mu \mathrm{r}=4, \varepsilon \mathrm{\varepsilon r}=4$ and $\sigma=0$

Where: $\varepsilon r=$ relative permittivity, $\mu \mathrm{r}=$ relative permeability and $\sigma=$ conductivity
The ratio of the intrinsic impedance of the media 2 to media 1 is \qquad .
a) $2: 1$
b) $1: 2$
c) $1: 1$
d) $2: 2$
11) A point is obtained by intersection of \qquad in spherical co-ordinates.
a) 3 planes
b) 2 planes and circle
c) plane, circle and a cone
d) none of these
12) Which of the following is meaningless combination?
a) grad div
b) curl div
c) curl grad
d) none of these
13) If the direction of Coulomb's Force on a unit charge is $\overline{\mathrm{ax}}$, the direction of electric field intensity is \qquad .
a) $\overline{\mathrm{ay}}$
b) $-\overline{a x}$
c) $\overline{\mathrm{az}}$
d) $\overline{a x}$
14) If pair of $+v e \&-v e$ charges of $2 C$ separated by distance $3 \mu \mathrm{~m}$ then the magnitude of dipole moment is \qquad -
a) $2 C-\mu m$
b) $1.5 \mathrm{C}-\mathrm{m}$
c) $6 C-\mu m$
d) $3 C-\mu m$

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019

 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEMDay \& Date: Friday, 06-12-2019

Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicates full marks.

Section - I

Q. 2 Attempt any three.

a) State and prove Gauss' law.
b) Determine the total charge inside the volume indicated by $\rho \nu=4 \mathrm{xyz}^{2}$ if $0 \leq \rho \leq 2,0 \leq \Phi \leq \frac{\pi}{2}, 0 \leq z \leq 3$
c) A point charge of 6 nC located at origin in free space. Find $V_{P Q}$ if point P is located at $(0.2,-0.4,0.4) \& Q$ is at $(-0.5,1,-1)$. Also find V_{P} if $V=20 \mathrm{~V}$ at point Q.
d) Electric dipole located at origin in free space has dipole moment $\overline{\mathrm{p}}=3 \overline{\mathrm{ax}}-2 \overline{\mathrm{ay}}+\overline{\mathrm{az}} \mathrm{nC}-\mathrm{m}$. Find V at $P(2,3,4)$.
Q. 3 Attempt any two.
a) Find $\overline{\mathrm{E}}$ at $\mathrm{P}(1,5,2)$ in free space due to

1) A point charge of $6 \mu C$ is located at $Q(0,0,1)$.
2) uniform line charge of $180 \mathrm{nC} / \mathrm{m}$ lies along x axis.
3) a sheet charge of $20 \mathrm{nC} / \mathrm{m}^{2}$ is placed at $y=3$.
b) Derive the equation for $\overline{\mathrm{E}}$ due to infinite sheet charge placed in $\mathrm{z}=0$ plane.
c) Establish the boundary condition for dielectric boundary having permeability ε_{1} and ε_{2}.

Section - II

Q. 4 Attempt any three.
a) State and explain Ampere's circuital law.
b) Write a note on antenna field zones.
c) In a medium if $\overline{\mathrm{E}}=\mathrm{Em} \sin \propto \cos (\mathrm{wt}-\beta \mathrm{z}) \overline{\mathrm{ay}} \mathrm{V} / \mathrm{m}$ find $\overline{\mathrm{H}}$.
d) If magnetic field intensity in a region is $\bar{H}=x^{2} \overline{a x}+2 y z \overline{a y}-x^{2} \overline{a z}$ find current density at point $P(2,3,4)$.
Q. 5 Attempt any two.
a) Derive Maxwell's equations in point and integral form for time varying field.
b) Evaluate both sides of Stroke's theorem for the field
$\overline{\mathrm{H}}=\left(\frac{y^{2} \mathrm{z}}{\mathrm{x}}\right) \overline{\mathrm{ax}}+\left(0.5 \frac{\mathrm{y}^{2} \mathrm{z}^{2}}{\mathrm{x}^{2}}\right) \overline{\mathrm{az}}$ crossing the square surface in the plane $\mathrm{y}=2$ bounded by $\mathrm{x}=\mathrm{z}=1$ and $\mathrm{x}=\mathrm{z}=2$.
c) With a neat diagram explain Broadside, End fire and Yagi-Uda array.

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEM

 book.2) Use of non-programmable calculator is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) When the speed at which a conductor is moved through a magnetic field is increased, the induced voltage \qquad
a) increases
b) Decreases
c) remains constant
d) reaches zero
2) One of this is NOT the source of magnetic fields \qquad .
a) a DC current in wire
b) a permanent magnet
c) an accelerated charge
d) an electric field linearly changing with time
3) Two identical coaxial circular coils carry the same current I but in opposite directions. The magnitude of magnetic field B at a point midway between coils is \qquad .
a) Zero
b) same as that produced by one coil
c) twice that produced by one coil
d) half of that produced by one coil
4) Poynting vector is \qquad .
a) $\mathrm{P}=\overline{\mathrm{E}} \cdot \overline{\mathrm{H}}$
b) $\quad \mathrm{P}=1 / 2(\overline{\mathrm{E}} \times \overline{\mathrm{H}})$
c) $P=\bar{E} \times \bar{H}$
d) $\quad P=\nabla \cdot(\overline{\mathrm{E}} \times \overline{\mathrm{H}})$
5) Two media are characterized as \qquad .
6) $\mu \mathrm{r}=1, \varepsilon \mathrm{r}=4$ and $\sigma=0$
7) $\mu \mathrm{r}=4, \varepsilon \mathrm{r}=4$ and $\sigma=0$

Where: $\varepsilon r=$ relative permittivity, $\mu \mathrm{r}=$ relative permeability and $\sigma=$ conductivity
The ratio of the intrinsic impedance of the media 2 to media 1 is \qquad .
a) $2: 1$
b) $1: 2$
c) $1: 1$
d) 2:2
6) A point is obtained by intersection of \qquad in spherical co-ordinates.
a) 3 planes
b) 2 planes and circle
c) plane, circle and a cone
d) none of these
7) Which of the following is meaningless combination?
a) grad div
b) curl div
c) curl grad
d) none of these
8) If the direction of Coulomb's Force on a unit charge is $\overline{\mathrm{ax}}$, the direction of electric field intensity is \qquad .
a) $\overline{\mathrm{ay}}$
b) $-\overline{a x}$
c) $\overline{\mathrm{az}}$
d) $\overline{\mathrm{ax}}$
9) If pair of $+v e \&-v e$ charges of 2C separated by distance $3 \mu \mathrm{~m}$ then the magnitude of dipole moment is \qquad -
a) $2 C-\mu m$
b) $1.5 C-m$
c) $6 C-\mu m$
d) $3 C-\mu m$
10) If E is a vector then $\nabla . \nabla \times E$ is \qquad .
a) 1
b) 0
c) $\quad \infty$
d) doesn't exist
11) The unit of Electric field Intensity is \qquad .
a) N / C
b) V-m
c) $\mathrm{J}-\mathrm{C} / \mathrm{m}$
d) All of these
12) If the voltage applied across the capacitor is increased, the capacitance value \qquad .
a) increases
b) Decreases
c) remains constant
d) becomes infinity
13) A quantitative relation between induced emf and rate of change of flux linkage is known as \qquad .
a) Maxwell's law
b) Stoke's law
c) Lenz's law
d) Faraday's law
14) What is the flux density of a magnetic field whose flux is $3000 \mu \mathrm{~Wb}$ and cross-sectional area is $0.25 \mathrm{~m}^{2}$?
a) $12,000 \mu \mathrm{~T}$
b) 83330 T
c) 0 T
d) insufficient information provided

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019

 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEM2) Figures to the right indicates full marks.

Section - I

Q. 2 Attempt any three.

a) State and prove Gauss' law.
b) Determine the total charge inside the volume indicated by $\rho \nu=4 \mathrm{xyz}^{2}$ if $0 \leq \rho \leq 2,0 \leq \Phi \leq \frac{\pi}{2}, 0 \leq z \leq 3$
c) A point charge of 6 nC located at origin in free space. Find $V_{P Q}$ if point P is located at $(0.2,-0.4,0.4) \& Q$ is at $(-0.5,1,-1)$. Also find V_{P} if $V=20 \mathrm{~V}$ at point Q.
d) Electric dipole located at origin in free space has dipole moment $\overline{\mathrm{p}}=3 \overline{\mathrm{ax}}-2 \overline{\mathrm{ay}}+\overline{\mathrm{az}} \mathrm{nC}-\mathrm{m}$. Find V at $P(2,3,4)$.
Q. 3 Attempt any two.
a) Find $\overline{\mathrm{E}}$ at $\mathrm{P}(1,5,2)$ in free space due to

1) A point charge of $6 \mu C$ is located at $Q(0,0,1)$.
2) uniform line charge of $180 \mathrm{nC} / \mathrm{m}$ lies along x axis.
3) a sheet charge of $20 \mathrm{nC} / \mathrm{m}^{2}$ is placed at $y=3$.
b) Derive the equation for $\overline{\mathrm{E}}$ due to infinite sheet charge placed in $\mathrm{z}=0$ plane.
c) Establish the boundary condition for dielectric boundary having permeability ε_{1} and ε_{2}.

Section - II

Q. 4 Attempt any three.
a) State and explain Ampere's circuital law.
b) Write a note on antenna field zones.
c) In a medium if $\overline{\mathrm{E}}=\mathrm{Em} \sin \propto \cos (\mathrm{wt}-\beta \mathrm{z}) \overline{\mathrm{ay}} \mathrm{V} / \mathrm{m}$ find $\overline{\mathrm{H}}$.
d) If magnetic field intensity in a region is $\bar{H}=x^{2} \overline{a x}+2 y z \overline{a y}-x^{2} \overline{a z}$ find current density at point $P(2,3,4)$.
Q. 5 Attempt any two.
a) Derive Maxwell's equations in point and integral form for time varying field.
b) Evaluate both sides of Stroke's theorem for the field
$\overline{\mathrm{H}}=\left(\frac{\mathrm{y}^{2} \mathrm{z}}{\mathrm{x}}\right) \overline{\mathrm{ax}}+\left(0.5 \frac{\mathrm{y}^{2} \mathrm{z}^{2}}{\mathrm{x}^{2}}\right) \overline{\mathrm{az}}$ crossing the square surface in the plane $\mathrm{y}=2$ bounded by $\mathrm{x}=\mathrm{z}=1$ and $\mathrm{x}=\mathrm{z}=2$.
c) With a neat diagram explain Broadside, End fire and Yagi-Uda array.

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Assume suitable data whenever necessary.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Which of the following is not a unit of information?
a) Bit
b) Decit
c) Nat
d) Hz
2) The phase difference between two possible transmitted signals in BPSK is \qquad .
a) Π
b) $\Pi / 2$
c) $\Pi / 4$
d) $\Pi / 8$
3) According to Shannon's theorem the output from any source of rate R can be coded and transmitted over a channel of capacity C with the condition that \qquad .
a) $C<R$
b) $C>R$
c) $\mathrm{C}<\mathrm{R}^{2}$
d) $\mathrm{C}>\mathrm{R}^{2}$
4) Frequency shift keying is used mostly in \qquad .
a) Radio transmission
b) Telegraphy
c) Telephony
d) None of these
5) Companding is used in PCM to \qquad .
a) Reduce bandwidth
b) Reduce power
c) Increase S / N ratio
d) Get almost uniform S / N ratio
6) Duo binary signaling makes use of \qquad .
a) Two binary
b) A matched filter
c) Controlled ISI introduction
d) Correlation receiver
7) Equalizers are used for \qquad .
a) Frame synchronization
b) Symbol synchronization
c) Carrier synchronization
d) Minimizing ISI
8) Which of the following is more vulnerable to noise?
a) Binary PSK
b) Quadrature PSK
c) 8-ary PSK
d) 16-ary PSK
9) QAM has \qquad .
a) Variation of phase only with four values of phases
b) Variation of amplitude only with four values of phases
c) Variation of phase as well as amplitude
d) None of these
10) For a BPSK scheme, the bit error probability is given by \qquad .
a) $\frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_{b}}{2 \eta_{0}}}$
b) $\frac{1}{2} \operatorname{erfc} \frac{1}{2} \sqrt{\frac{E_{b}}{2 \eta_{0}}}$
c) $\frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_{b}}{\eta_{0}}}$
d) $\frac{1}{2} \operatorname{erfc} \frac{1}{2} \sqrt{\frac{E_{b}}{\eta_{0}}}$
11) A rectangular pulse of duration T is applied to a filter matched to the input.

The output of filter is \qquad .
a) Rectangular pulse of duration T
b) Rectangular pulse of duration 2 T
c) Triangular pulse
d) Sine function
12) Which of the following operations is not performed in a Multicarrier communication transmitter?
a) Add Cyclic prefix
b) Serial to parallel convert
c) Fast Fourier Transform
d) Autocorrelation
13) The minimum distance of a block code is defined as the \qquad f.
a) the number of bits in which two successive code words differ
b) the smallest hamming distance between any pair of code words
c) the minimum weight of any of the code words
d) the distance which can detect and correct one bit error
14) A linear block code has following property \qquad .
a) It is always systematic code
b) When two valid codewords are added, the resultant is also a valid codeword
c) It can detect one bit error and correct two bit errors
d) both a) and b) above

Seat	
No.	

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data whenever necessary.

Section - I

Q. 2 Answer any Four.

a) An event has six possible outcomes with probabilities $1 / 2,1 / 4,1 / 8,1 / 16$, $1 / 32$ and $1 / 32$ respectively. Find the entropy of the system. Also find the rate of information if there are16 outcomes per second.
b) Explain symbol synchronization technique.
c) Compare BPSK and BFSK modulation schemes.
d) With block diagram explain working of DPCM.
e) Explain the operation of a scrambler and un scrambler.

Q. 3 Answer any Two.

a) Apply Huffman coding procedure for the following message ensemble. Calculate the efficiency. Also find redundancy. Take $\mathrm{M}=2$.
$[\mathrm{X}]=\left[\begin{array}{lllllll}\mathrm{X} 1 & \mathrm{X} 2 & \mathrm{X} 3 & \mathrm{X} 4 & \mathrm{X} 5 & \mathrm{X} 6 & \mathrm{X} 7\end{array}\right]$
$[\mathrm{P}]=\left[\begin{array}{lllll}0.4 & 0.2 & 0.12 & 0.08 & 0.08 \\ 0.08 & 0.04\end{array}\right]$
b) Find the mutual information and channel capacity of the channel shown in fig below.
Given $p(x 1)=0.6$ and $p(x 2)=0.4$

c) 1) Derive the expression of PCM bandwidth.
2) 24 telephone channels, each band limited to 3.4 KHz , are to be time division multiplexed by using PCM. Calculate the bandwidth of the PCM system for 128 quantization levels and an 8 KHz sampling frequency.

Section - II

Q. 4 Attempt any four questions.

a) Explain the operation of QPSK transmitter. What is the advantage of offset QPSK over non offset QPSK?
b) Explain the operation of an integrate and dump receiver.
c) Write a note on FFT based multicarrier system.
d) Explain the operation of a carrier recovery system.
e) Explain the operation of a syndrome decoder for a (n, k) block code.

Q. 5 Attempt any two questions.

a) Explain the operation of M-ary PSK transmitter and Receiver. Also draw the phasor diagram and comment on the trade off between value of M and the noise performance.
b) What is matched filter? Derive the expression for impulse response of matched filter and explain with the example.
c) The error control code has the following Generator matrix.

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Determine.

1) All code words
2) Error detection and error correction capabilities.
3) Decode the received codeword [111110110]

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Assume suitable data whenever necessary.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Which of the following is more vulnerable to noise?
a) Binary PSK
b) Quadrature PSK
c) 8-ary PSK
d) 16-ary PSK
2) QAM has \qquad .
a) Variation of phase only with four values of phases
b) Variation of amplitude only with four values of phases
c) Variation of phase as well as amplitude
d) None of these
3) For a BPSK scheme, the bit error probability is given by \qquad .
a) $\frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_{b}}{2 \eta_{0}}}$
b) $\frac{1}{2} \operatorname{erfc} \frac{1}{2} \sqrt{\frac{E_{b}}{2 \eta_{0}}}$
c) $\frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_{b}}{\eta_{0}}}$
d) $\frac{1}{2} \operatorname{erfc} \frac{1}{2} \sqrt{\frac{E_{b}}{\eta_{0}}}$
4) A rectangular pulse of duration T is applied to a filter matched to the input.

The output of filter is \qquad .
a) Rectangular pulse of duration T
b) Rectangular pulse of duration 2 T
c) Triangular pulse
d) Sine function
5) Which of the following operations is not performed in a Multicarrier communication transmitter?
a) Add Cyclic prefix
b) Serial to parallel convert
c) Fast Fourier Transform
d) Autocorrelation
6) The minimum distance of a block code is defined as the \qquad .
a) the number of bits in which two successive code words differ
b) the smallest hamming distance between any pair of code words
c) the minimum weight of any of the code words
d) the distance which can detect and correct one bit error
7) A linear block code has following property \qquad .
a) It is always systematic code
b) When two valid codewords are added, the resultant is also a valid codeword
c) It can detect one bit error and correct two bit errors
d) both a) and b) above
8) Which of the following is not a unit of information?
a) Bit
b) Decit
c) Nat
d) Hz
9) The phase difference between two possible transmitted signals in BPSK is \qquad .
a) Π
b) $\Pi / 2$
c) $\Pi / 4$
d) $\Pi / 8$
10) According to Shannon's theorem the output from any source of rate R can be coded and transmitted over a channel of capacity C with the condition that \qquad -.
a) $\mathrm{C}<\mathrm{R}$
b) $\mathrm{C}>\mathrm{R}$
c) $\mathrm{C}<\mathrm{R}^{2}$
d) $\mathrm{C}>\mathrm{R}^{2}$
11) Frequency shift keying is used mostly in \qquad .
a) Radio transmission
b) Telegraphy
c) Telephony
d) None of these
12) Companding is used in PCM to \qquad .
a) Reduce bandwidth
b) Reduce power
c) Increase S / N ratio
d) Get almost uniform S / N ratio
13) Duo binary signaling makes use of \qquad
a) Two binary
b) A matched filter
c) Controlled ISI introduction
d) Correlation receiver
14) Equalizers are used for \qquad .
a) Frame synchronization
b) Symbol synchronization
c) Carrier synchronization
d) Minimizing ISI

| Seat |
| :--- | :--- |
| No. |

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data whenever necessary.

Section - I

Q. 2 Answer any Four.

a) An event has six possible outcomes with probabilities $1 / 2,1 / 4,1 / 8,1 / 16$, $1 / 32$ and $1 / 32$ respectively. Find the entropy of the system. Also find the rate of information if there are16 outcomes per second.
b) Explain symbol synchronization technique.
c) Compare BPSK and BFSK modulation schemes.
d) With block diagram explain working of DPCM.
e) Explain the operation of a scrambler and un scrambler.

Q. 3 Answer any Two.

a) Apply Huffman coding procedure for the following message ensemble. Calculate the efficiency. Also find redundancy. Take $\mathrm{M}=2$.
$[\mathrm{X}]=\left[\begin{array}{lllllll}\mathrm{X} 1 & \mathrm{X} 2 & \mathrm{X} 3 & \mathrm{X} 4 & \mathrm{X} 5 & \mathrm{X} 6 & \mathrm{X} 7\end{array}\right]$
$[\mathrm{P}]=\left[\begin{array}{lllll}0.4 & 0.2 & 0.12 & 0.08 & 0.08 \\ 0.08 & 0.04\end{array}\right]$
b) Find the mutual information and channel capacity of the channel shown in fig below.
Given $p(x 1)=0.6$ and $p(x 2)=0.4$

c) 1) Derive the expression of PCM bandwidth.
2) 24 telephone channels, each band limited to 3.4 KHz , are to be time division multiplexed by using PCM. Calculate the bandwidth of the PCM system for 128 quantization levels and an 8 KHz sampling frequency.

Section - II

Q. 4 Attempt any four questions.

a) Explain the operation of QPSK transmitter. What is the advantage of offset QPSK over non offset QPSK?
b) Explain the operation of an integrate and dump receiver.
c) Write a note on FFT based multicarrier system.
d) Explain the operation of a carrier recovery system.
e) Explain the operation of a syndrome decoder for a (n, k) block code.
Q. 5 Attempt any two questions.
a) Explain the operation of M-ary PSK transmitter and Receiver. Also draw the phasor diagram and comment on the trade off between value of M and the noise performance.
b) What is matched filter? Derive the expression for impulse response of matched filter and explain with the example.
c) The error control code has the following Generator matrix.

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Determine.

1) All code words
2) Error detection and error correction capabilities.
3) Decode the received codeword [111110110]

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Assume suitable data whenever necessary.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Companding is used in PCM to \qquad
a) Reduce bandwidth
b) Reduce power
c) Increase S / N ratio
d) Get almost uniform S / N ratio
2) Duo binary signaling makes use of \qquad .
a) Two binary
b) A matched filter
c) Controlled ISI introduction
d) Correlation receiver
3) Equalizers are used for \qquad .
a) Frame synchronization
b) Symbol synchronization
c) Carrier synchronization
d) Minimizing ISI
4) Which of the following is more vulnerable to noise?
a) Binary PSK
b) Quadrature PSK
c) 8-ary PSK
d) 16-ary PSK
5) QAM has \qquad .
a) Variation of phase only with four values of phases
b) Variation of amplitude only with four values of phases
c) Variation of phase as well as amplitude
d) None of these
6) For a BPSK scheme, the bit error probability is given by \qquad .
a) $\frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_{b}}{2 \eta_{0}}}$
b) $\frac{1}{2} \operatorname{erfc} \frac{1}{2} \sqrt{\frac{E_{b}}{2 \eta_{0}}}$
c) $\frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_{b}}{\eta_{0}}}$
d) $\frac{1}{2} \operatorname{erfc} \frac{1}{2} \sqrt{\frac{E_{b}}{\eta_{0}}}$
7) A rectangular pulse of duration T is applied to a filter matched to the input.

The output of filter is \qquad .
a) Rectangular pulse of duration T
b) Rectangular pulse of duration 2 T
c) Triangular pulse
d) Sine function
8) Which of the following operations is not performed in a Multicarrier communication transmitter?
a) Add Cyclic prefix
b) Serial to parallel convert
c) Fast Fourier Transform
d) Autocorrelation
9) The minimum distance of a block code is defined as the \qquad .
a) the number of bits in which two successive code words differ
b) the smallest hamming distance between any pair of code words
c) the minimum weight of any of the code words
d) the distance which can detect and correct one bit error
10) A linear block code has following property \qquad .
a) It is always systematic code
b) When two valid codewords are added, the resultant is also a valid codeword
c) It can detect one bit error and correct two bit errors
d) both a) and b) above
11) Which of the following is not a unit of information?
a) Bit
b) Decit
c) Nat
d) Hz
12) The phase difference between two possible transmitted signals in BPSK is \qquad .
a) Π
b) $\Pi / 2$
c) $\Pi / 4$
d) $\Pi / 8$
13) According to Shannon's theorem the output from any source of rate R can be coded and transmitted over a channel of capacity C with the condition that -.
a) $\mathrm{C}<\mathrm{R}$
b) $\mathrm{C}>\mathrm{R}$
c) $\mathrm{C}<\mathrm{R}^{2}$
d) $\mathrm{C}>\mathrm{R}^{2}$
14) Frequency shift keying is used mostly in \qquad .
a) Radio transmission
b) Telegraphy
c) Telephony
d) None of these

Seat	
No.	

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data whenever necessary.

Section - I

Q. 2 Answer any Four.

a) An event has six possible outcomes with probabilities $1 / 2,1 / 4,1 / 8,1 / 16$, $1 / 32$ and $1 / 32$ respectively. Find the entropy of the system. Also find the rate of information if there are16 outcomes per second.
b) Explain symbol synchronization technique.
c) Compare BPSK and BFSK modulation schemes.
d) With block diagram explain working of DPCM.
e) Explain the operation of a scrambler and un scrambler.

Q. 3 Answer any Two.

a) Apply Huffman coding procedure for the following message ensemble. Calculate the efficiency. Also find redundancy. Take $\mathrm{M}=2$.
$[\mathrm{X}]=\left[\begin{array}{lllllll}\mathrm{X} 1 & \mathrm{X} 2 & \mathrm{X} 3 & \mathrm{X} 4 & \mathrm{X} 5 & \mathrm{X} 6 & \mathrm{X} 7\end{array}\right]$
$[\mathrm{P}]=\left[\begin{array}{lllll}0.4 & 0.2 & 0.12 & 0.08 & 0.08 \\ 0.08 & 0.04\end{array}\right]$
b) Find the mutual information and channel capacity of the channel shown in fig below.
Given $p(x 1)=0.6$ and $p(x 2)=0.4$

c) 1) Derive the expression of PCM bandwidth.
2) 24 telephone channels, each band limited to 3.4 KHz , are to be time division multiplexed by using PCM. Calculate the bandwidth of the PCM system for 128 quantization levels and an 8 KHz sampling frequency.

Section - II

Q. 4 Attempt any four questions.

a) Explain the operation of QPSK transmitter. What is the advantage of offset QPSK over non offset QPSK?
b) Explain the operation of an integrate and dump receiver.
c) Write a note on FFT based multicarrier system.
d) Explain the operation of a carrier recovery system.
e) Explain the operation of a syndrome decoder for a (n, k) block code.
Q. 5 Attempt any two questions.
a) Explain the operation of M-ary PSK transmitter and Receiver. Also draw the phasor diagram and comment on the trade off between value of M and the noise performance.
b) What is matched filter? Derive the expression for impulse response of matched filter and explain with the example.
c) The error control code has the following Generator matrix.

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Determine.

1) All code words
2) Error detection and error correction capabilities.
3) Decode the received codeword [111110110]

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Assume suitable data whenever necessary.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) For a BPSK scheme, the bit error probability is given by \qquad .
a) $\frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_{b}}{2 \eta_{0}}}$
b) $\frac{1}{2} \operatorname{erfc} \frac{1}{2} \sqrt{\frac{E_{b}}{2 \eta_{0}}}$
c) $\frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_{b}}{\eta_{0}}}$
d) $\frac{1}{2} \operatorname{erfc} \frac{1}{2} \sqrt{\frac{E_{b}}{\eta_{0}}}$
2) A rectangular pulse of duration T is applied to a filter matched to the input.

The output of filter is \qquad .
a) Rectangular pulse of duration T
b) Rectangular pulse of duration 2 T
c) Triangular pulse
d) Sine function
3) Which of the following operations is not performed in a Multicarrier communication transmitter?
a) Add Cyclic prefix
b) Serial to parallel convert
c) Fast Fourier Transform
d) Autocorrelation
4) The minimum distance of a block code is defined as the \qquad .
a) the number of bits in which two successive code words differ
b) the smallest hamming distance between any pair of code words
c) the minimum weight of any of the code words
d) the distance which can detect and correct one bit error
5) A linear block code has following property \qquad .
a) It is always systematic code
b) When two valid codewords are added, the resultant is also a valid codeword
c) It can detect one bit error and correct two bit errors
d) both a) and b) above
6) Which of the following is not a unit of information?
a) Bit
b) Decit
c) Nat
d) Hz
7) The phase difference between two possible transmitted signals in BPSK is \qquad .
a) Π
b) $\Pi / 2$
c) $\Pi / 4$
d) $\Pi / 8$
8) According to Shannon's theorem the output from any source of rate R can be coded and transmitted over a channel of capacity C with the condition that \qquad .
a) $\mathrm{C}<\mathrm{R}$
b) $\mathrm{C}>\mathrm{R}$
c) $\mathrm{C}<\mathrm{R}^{2}$
d) $\mathrm{C}>\mathrm{R}^{2}$
9) Frequency shift keying is used mostly in \qquad -.
a) Radio transmission
b) Telegraphy
c) Telephony
d) None of these
10) Companding is used in PCM to \qquad .
a) Reduce bandwidth
b) Reduce power
c) Increase S / N ratio
d) Get almost uniform S / N ratio
11) Duo binary signaling makes use of \qquad .
a) Two binary
b) A matched filter
c) Controlled ISI introduction
d) Correlation receiver
12) Equalizers are used for \qquad .
a) Frame synchronization
b) Symbol synchronization
c) Carrier synchronization
d) Minimizing ISI
13) Which of the following is more vulnerable to noise?
a) Binary PSK
b) Quadrature PSK
c) 8-ary PSK
d) 16-ary PSK
14) QAM has \qquad .
a) Variation of phase only with four values of phases
b) Variation of amplitude only with four values of phases
c) Variation of phase as well as amplitude
d) None of these

| Seat |
| :--- | :--- |
| No. |

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data whenever necessary.

Section - I

Q. 2 Answer any Four.

a) An event has six possible outcomes with probabilities $1 / 2,1 / 4,1 / 8,1 / 16$, $1 / 32$ and $1 / 32$ respectively. Find the entropy of the system. Also find the rate of information if there are16 outcomes per second.
b) Explain symbol synchronization technique.
c) Compare BPSK and BFSK modulation schemes.
d) With block diagram explain working of DPCM.
e) Explain the operation of a scrambler and un scrambler.

Q. 3 Answer any Two.

a) Apply Huffman coding procedure for the following message ensemble. Calculate the efficiency. Also find redundancy. Take $\mathrm{M}=2$.
$[\mathrm{X}]=\left[\begin{array}{lllllll}\mathrm{X} 1 & \mathrm{X} 2 & \mathrm{X} 3 & \mathrm{X} 4 & \mathrm{X} 5 & \mathrm{X} 6 & \mathrm{X} 7\end{array}\right]$
$[\mathrm{P}]=\left[\begin{array}{lllll}0.4 & 0.2 & 0.12 & 0.08 & 0.08 \\ 0.08 & 0.04\end{array}\right]$
b) Find the mutual information and channel capacity of the channel shown in fig below.
Given $p(x 1)=0.6$ and $p(x 2)=0.4$

c) 1) Derive the expression of PCM bandwidth.
2) 24 telephone channels, each band limited to 3.4 KHz , are to be time division multiplexed by using PCM. Calculate the bandwidth of the PCM system for 128 quantization levels and an 8 KHz sampling frequency.

Section - II

Q. 4 Attempt any four questions.

a) Explain the operation of QPSK transmitter. What is the advantage of offset QPSK over non offset QPSK?
b) Explain the operation of an integrate and dump receiver.
c) Write a note on FFT based multicarrier system.
d) Explain the operation of a carrier recovery system.
e) Explain the operation of a syndrome decoder for a (n, k) block code.
Q. 5 Attempt any two questions.
a) Explain the operation of M-ary PSK transmitter and Receiver. Also draw the phasor diagram and comment on the trade off between value of M and the noise performance.
b) What is matched filter? Derive the expression for impulse response of matched filter and explain with the example.
c) The error control code has the following Generator matrix.

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Determine.

1) All code words
2) Error detection and error correction capabilities.
3) Decode the received codeword [111110110]

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM

Day \& Date: Wednesday, 11-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) State-Transition diagram is \qquad .
a) Stimulus-response model
b) Data-flow model
c) Architectural model
d) Composition model
2) The goals of software testing leads to \qquad .
a) Defect testing
b) Violation testing
c) Both 'a' and 'b'
d) None
3) Release testing is also known as \qquad .
a) Functional testing
b) Regression testing
c) Alfa testing
d) None
4) Activity planning starts from \qquad .
a) State 0
b) Selection of project
c) Stage 1
d) Both a and b
5) Advantages of CBSE \qquad .
a) Reduced software cost
b) Faster delivery
c) Reduced risk
d) All
6) Which of the below is risk identification approach?
a) Network analysis
b) Forward tracking
c) Checklist
d) All
7) Testing helps us to \qquad of product by finding defects in product.
a) Fix defect
b) Improve quality
c) Measure quality
d) All of the above
8) Organizing step is about \qquad .
a) Group activities
b) Distinguishing of activities
c) Identifying of activities
d) All
9) Functional requirement specification of a system should be \qquad .
a) Complete
b) Consistent
c) Both a) and b)
d) None of these
10) \qquad provides a more striking visual indication of those activities that are not progressing to schedule.
a) Slip chart
b) Time line
c) Gantt chart
d) Ball chart
11) What are the different types of risk may occur when you develop software?
a) Project risks
b) Technical risks
c) Business risks
d) All of the above
12) Risk exposure for each risk can be estimated as Risk Exposure $=$ \qquad * probability of occurrence.
a) Potential damage
b) Cost of risk reduction
c) Risk reduction leverage
d) Risk avoidance
13) The Gantt chart is used for \qquad _.
a) Tracking project progress
b) Knowing the activities
c) Knowing starting date of project
d) Knowing end date of project
14) The base line budget is based on \qquad .
a) Activity network
b) Cost monitoring
c) Proposed plan
d) None

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM

Day \& Date: Wednesday, 11-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any Three.
a) Explain test automation with testing workbench.
b) Write note on object aggregation.
c) Write in briefly the inheritance model.
d) List and explain characteristics of software process.
Q. 3 Solve any Two.
a) System requirement has IEEE standard. Explain standard suggestions for requirement document.
b) List system models and explain any one of them.
c) Explain release testing in detail.
Section - II
Q. 4 Solve any Three.
a) Explain categories of risk.
b) Describe forward pass for activity planning.
c) What is project? What are different activities of management?
d) Explain slip chart as tracking of project progress.
Q. 5 Solve any Two.
a) Write step wise project planning activates.
b) With suitable example explain Monte Carlo simulation and critical chain concepts.
c) What are different methods to visualize the progress of a project?

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM

Day \& Date: Wednesday, 11-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Organizing step is about \qquad .
a) Group activities
b) Distinguishing of activities
c) Identifying of activities
d) All
2) Functional requirement specification of a system should be \qquad .
a) Complete
b) Consistent
c) Both a) and b)
d) None of these
3) \qquad provides a more striking visual indication of those activities that are not progressing to schedule.
a) Slip chart
b) Time line
c) Gantt chart
d) Ball chart
4) What are the different types of risk may occur when you develop software?
a) Project risks
b) Technical risks
c) Business risks
d) All of the above
5) Risk exposure for each risk can be estimated as Risk Exposure $=$ \qquad * probability of occurrence.
a) Potential damage
b) Cost of risk reduction
c) Risk reduction leverage
d) Risk avoidance
6) The Gantt chart is used for \qquad .
a) Tracking project progress
b) Knowing the activities
c) Knowing starting date of project
d) Knowing end date of project
7) The base line budget is based on \qquad .
a) Activity network
b) Cost monitoring
c) Proposed plan
d) None
8) State-Transition diagram is \qquad .
a) Stimulus-response model
b) Data-flow model
c) Architectural model
d) Composition model
9) The goals of software testing leads to \qquad .
a) Defect testing
b) Violation testing
c) Both ' a ' and ' b '
d) None
10) Release testing is also known as \qquad .
a) Functional testing
b) Regression testing
c) Alfa testing
d) None
11) Activity planning starts from \qquad .
a) State 0
b) Selection of project
c) Stage 1
d) Both a and b
12) Advantages of CBSE \qquad .
a) Reduced software cost
b) Faster delivery
c) Reduced risk
d) All
13) Which of the below is risk identification approach?
a) Network analysis
b) Forward tracking
c) Checklist
d) All
14) Testing helps us to \qquad of product by finding defects in product.
a) Fix defect
b) Improve quality
c) Measure quality
d) All of the above

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM

Day \& Date: Wednesday, 11-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any Three.
a) Explain test automation with testing workbench.
b) Write note on object aggregation.
c) Write in briefly the inheritance model.
d) List and explain characteristics of software process.
Q. 3 Solve any Two.
a) System requirement has IEEE standard. Explain standard suggestions for requirement document.
b) List system models and explain any one of them.
c) Explain release testing in detail.
Section - II
Q. 4 Solve any Three.
a) Explain categories of risk.
b) Describe forward pass for activity planning.
c) What is project? What are different activities of management?
d) Explain slip chart as tracking of project progress.
Q. 5 Solve any Two.
a) Write step wise project planning activates.
b) With suitable example explain Monte Carlo simulation and critical chain concepts.
c) What are different methods to visualize the progress of a project?

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM

Day \& Date: Wednesday, 11-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Advantages of CBSE \qquad .
a) Reduced software cost
b) Faster delivery
c) Reduced risk
d) All
2) Which of the below is risk identification approach?
a) Network analysis
b) Forward tracking
c) Checklist
d) All
3) Testing helps us to \qquad of product by finding defects in product.
a) Fix defect
b) Improve quality
c) Measure quality
d) All of the above
4) Organizing step is about \qquad .
a) Group activities
b) Distinguishing of activities
c) Identifying of activities
d) All
5) Functional requirement specification of a system should be \qquad .
a) Complete
b) Consistent
c) Both a) and b)
d) None of these
6) ___ provides a more striking visual indication of those activities that are not progressing to schedule.
a) Slip chart
b) Time line
c) Gantt chart
d) Ball chart
7) What are the different types of risk may occur when you develop software?
a) Project risks
b) Technical risks
c) Business risks
d) All of the above
8) Risk exposure for each risk can be estimated as Risk Exposure $=$ \qquad * probability of occurrence.
a) Potential damage
b) Cost of risk reduction
c) Risk reduction leverage
d) Risk avoidance
9) The Gantt chart is used for \qquad .
a) Tracking project progress
b) Knowing the activities
c) Knowing starting date of project
d) Knowing end date of project
10) The base line budget is based on \qquad .
a) Activity network
b) Cost monitoring
c) Proposed plan
d) None
11) State-Transition diagram is \qquad .
a) Stimulus-response model
b) Data-flow model
c) Architectural model
d) Composition model
12) The goals of software testing leads to
a) Defect testing
c) Both 'a' and 'b'
b) Violation testing
d) None
\qquad .
13) Release testing is also known as \qquad
b) Regression testing
a) Functional testing
d) None
14) Activity planning starts from \qquad .
a) State 0
b) Selection of project
c) Stage 1
d) Both a and b

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM

Day \& Date: Wednesday, 11-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any Three.
a) Explain test automation with testing workbench.
b) Write note on object aggregation.
c) Write in briefly the inheritance model.
d) List and explain characteristics of software process.
Q. 3 Solve any Two.
a) System requirement has IEEE standard. Explain standard suggestions for requirement document.
b) List system models and explain any one of them.
c) Explain release testing in detail.
Section - II
Q. 4 Solve any Three.
a) Explain categories of risk.
b) Describe forward pass for activity planning.
c) What is project? What are different activities of management?
d) Explain slip chart as tracking of project progress.
Q. 5 Solve any Two.
a) Write step wise project planning activates.
b) With suitable example explain Monte Carlo simulation and critical chain concepts.
c) What are different methods to visualize the progress of a project?

Seat	
No.	

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM

Day \& Date: Wednesday, 11-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) \qquad provides a more striking visual indication of those activities that are not progressing to schedule.
a) Slip chart
b) Time line
c) Gantt chart
d) Ball chart
2) What are the different types of risk may occur when you develop software?
a) Project risks
b) Technical risks
c) Business risks
d) All of the above
3) Risk exposure for each risk can be estimated as Risk Exposure $=$ \qquad * probability of occurrence.
a) Potential damage
b) Cost of risk reduction
c) Risk reduction leverage
d) Risk avoidance
4) The Gantt chart is used for \qquad .
a) Tracking project progress
b) Knowing the activities
c) Knowing starting date of project
d) Knowing end date of project
5) The base line budget is based on \qquad .
a) Activity network
b) Cost monitoring
c) Proposed plan
d) None
6) State-Transition diagram is \qquad .
a) Stimulus-response model
b) Data-flow model
c) Architectural model
d) Composition model
7) The goals of software testing leads to \qquad .
a) Defect testing
b) Violation testing
c) Both 'a' and 'b'
d) None
8) Release testing is also known as \qquad .
a) Functional testing
b) Regression testing
c) Alfa testing
d) None
9) Activity planning starts from \qquad .
a) State 0
b) Selection of project
c) Stage 1
d) Both a and b
10) Advantages of CBSE \qquad .
a) Reduced software cost
b) Faster delivery
c) Reduced risk
d) All
11) Which of the below is risk identification approach?
a) Network analysis
b) Forward tracking
c) Checklist
d) All
12) Testing helps us to \qquad of product by finding defects in product.
a) Fix defect
b) Improve quality
c) Measure quality
d) All of the above
13) Organizing step is about \qquad .
a) Group activities
b) Distinguishing of activities
c) Identifying of activities
d) All
14) Functional requirement specification of a system should be \qquad .
a) Complete
b) Consistent
c) Both a) and b)
d) None of these

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM

Day \& Date: Wednesday, 11-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any Three.
a) Explain test automation with testing workbench.
b) Write note on object aggregation.
c) Write in briefly the inheritance model.
d) List and explain characteristics of software process.
Q. 3 Solve any Two.
a) System requirement has IEEE standard. Explain standard suggestions for requirement document.
b) List system models and explain any one of them.
c) Explain release testing in detail.
Section - II
Q. 4 Solve any Three.
a) Explain categories of risk.
b) Describe forward pass for activity planning.
c) What is project? What are different activities of management?
d) Explain slip chart as tracking of project progress.
Q. 5 Solve any Two.
a) Write step wise project planning activates.
b) With suitable example explain Monte Carlo simulation and critical chain concepts.
c) What are different methods to visualize the progress of a project?

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume necessary data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The 4-point DFT of $\{1,1,0,0\}$ \qquad .
a) $\{2,0,2,0\}$
b) $\{2,1+2 \mathrm{j},-2,1-2 \mathrm{j}\}$
c) $\{0,4,0,0\}$
d) $\{2,1-j, 0,1+j\}$
2) FFT algorithm calculates \qquad -
a) DTFT
b) DCT
c) DFT
d) DST
3) If DFT of a sequence $\mathrm{x}(\mathrm{n})$ is $\mathrm{X}(\mathrm{k})$ then the DFT of $x(n) e^{-j 2 \pi \ln / 2}$ is \qquad .
a) $X((k-l))_{N}$
b) $X((k+l))_{N}$
c) $e^{-j 2 \pi l} X(k)$
d) $e^{j 2 \pi l} X(k)$
4) The DFT of the sequence $\mathrm{x}(n)=\delta\left(n-n_{0}\right)$ is \qquad .
a) 1
b) $e^{j 2 \pi k n_{0}}$
C) $e^{-j 2 \pi k n_{0} / N}$
d) $e^{j 2 \pi k n_{0} / N}$
5) The number of multiplications required for performing the convolution of two sequences with identical length 8 using the indirect method using FFT is \qquad .
a) 256
b) 120
c) 192
d) 64
6) Circular time shift of a sequence is equivalent to \qquad .
a) Multiplication of the sequence $x(n)$ with complex exponential
b) Multiplication of the sequence $\mathrm{X}(\mathrm{k})$ with complex exponential
c) Multiplication of the sequence $x(n)$ with exponential factor
d) None
7) Unwrapped phase response of FIR filter in pass band is \qquad .
a) Exponentially increasing
b) Exponentially decreasing
c) Non-linear
d) linear
8) When analog butter worth filter is converted to DT filter using Impulse Invariance Method, then \qquad .
a) Aliasing can be eliminated
b) Aliasing is always present
c) Aliasing can be reduced by reducing T
d) Aliasing cannot be reduced by reducing T

SLR-FM-240
 Set

9) The frequency response of rectangular window is \qquad .
a) $\frac{\sin \omega N / 2}{\sin \omega / 2}$
b) $\frac{\sin \omega / 2}{\sin \omega N / 2}$
c) $\frac{\sin \omega N / 2}{\omega / 2}$
d) $\frac{\sin \omega N / 2}{\mathrm{~N} \omega / 2}$
10) The relation between Laplace transform and z-transform is \qquad .
a) $z=e^{s t}$
b) $z=e^{j s t}$
c) $s=e^{z t}$
d) $z=e^{-s t}$
11) The Impulse response of FIR system has a linear phase linear characteristics \qquad .
a) $\theta(\omega)=\alpha \omega$
b) $\theta(\omega)=-\frac{\partial \theta}{\partial \omega}$
c) $\theta(\omega)=-\alpha \omega$
d) none of above
12) The main lobe width of rectangular window is \qquad .
a) $\frac{\pi}{N}$
b) $\frac{2 \pi}{N}$
c) $\frac{4 \pi}{N}$
d) $\frac{8 \pi}{N}$
13) The Number of multiplications in FIR system can be reduced using \qquad .
a) Finite Impulse Response
b) Infinite Impulse Response
c) Symmetric nature of Impulse Response
d) None of above
14) To meet the magnitude response specification for a transition width, one has to \qquad .
a) Select Proper Window
b) To Select Kaiser Window
c) Select Filter Order
d) Select Rectangular Window

Seat	
No.	

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume necessary data if necessary.

Section - I

Q. 2 Attempt any Four.
a) Explain the sampling in frequency domain.
b) Compute the Auto correlation of given sequence $x(n)=\{1,3,3,4,5\}$.
c) Derive the relation between DFT and Z transform.
d) Find IDFT of Sequence using DIF-FFT Algorithm $X(k)=\{11,-2-3 i,-3,-2+3 i\}$
e) Describe briefly the Goertzel algorithm.
f) Compute Circular convolution.
$x_{1}(n)=\{1,3,2,5,4\}$
$x_{2}(n)=\{4,5,2,3,1\}$
Q. 3 Attempt any two.
a) Given $x(n)=2^{n}$ and $\mathrm{N}=8$, Find $X(k)$ using DIF-FFT algorithm.
b) Perform linear convolution of finite duration sequences $h(n)=\{1,1,2,1\}$ and $x(n)=\{1,-1,1,2,1,0,1,-4,3,2,1,0,1,1\}$ using overlap save method?
c) Compute the circular convolution of the following sequence $x(n)=\{3,4,5,2\}$ and $h(n)=\{3,1,4,2\}$ Using DFT and IDFT method.

Section - II

Q. 4 Attempt Any Four.
a) Explain in detail FIR filter design using frequency sampling technique.
b) Explain the finite word length effect in IIR Filter.
c) What is warping effect? What is its effect on magnitude and phase response?
d) Obtain the Direct Form I, II form realization for the system.
$y(n)=-0.1 y(n-1)+0.2 y(n-2)+3 x(n)+3.6 x(n-1)+0.6 x(n-2)$
e) For given specification find the order of analog Butterworth filter.
$0.8 \leq|H(j \Omega)| \leq 1$ for $0 \leq \Omega \leq 0.2 \pi$
$|H(j \Omega)| \leq 0.2$ for $0.6 \pi \leq \Omega \leq \pi$
f) Compare Rectangular and Triangular windows.
Q. 5 Attempt Any Two.
a) Design an FIR Filter approximating the ideal frequency response.

$$
\begin{aligned}
H d\left(e^{j \omega}\right)= & e^{-j 5 w} \text { for } \quad-\pi / 2|\omega| \leq \pi / 2 \\
& =0 \quad \text { for } \quad \pi / 2<|\omega| \leq \pi
\end{aligned}
$$

Using Blackman window with $\mathrm{N}-11$
b) Using Impulse invariance with $\mathrm{T}=1 \mathrm{Sec}$ determine $\mathrm{H}(\mathrm{Z})$ if.

$$
H(s)=\frac{1}{s^{2}+\sqrt{2 s}+1}
$$

c) Design a digital Butterworth filter satisfying the constraints.

$$
\begin{aligned}
0.707 \leq\left|H\left(e^{j \omega}\right)\right| \leq 1 \quad \text { for } & 0 \leq \omega \leq \pi / 2 \\
\left|H\left(e^{j \omega}\right)\right| \leq 0.2 \text { for } & 3 \pi / 4 \leq \omega \leq \pi
\end{aligned}
$$

with $\mathrm{T}=1$ Sec using Bilinear Transformation

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume necessary data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) When analog butter worth filter is converted to DT filter using Impulse Invariance Method, then \qquad .
a) Aliasing can be eliminated
b) Aliasing is always present
c) Aliasing can be reduced by reducing T
d) Aliasing cannot be reduced by reducing T
2) The frequency response of rectangular window is \qquad .
a) $\frac{\sin \omega N / 2}{\sin \omega / 2}$
b) $\frac{\sin \omega / 2}{\sin \omega N / 2}$
c) $\frac{\sin \omega N / 2}{\omega / 2}$
d) $\frac{\sin \omega N / 2}{N \omega / 2}$
3) The relation between Laplace transform and z-transform is \qquad .
a) $z=e^{s t}$
b) $z=e^{j s t}$
c) $s=e^{z t}$
d) $z=e^{-s t}$
4) The Impulse response of FIR system has a linear phase linear characteristics \qquad .
a) $\theta(\omega)=\alpha \omega$
b) $\theta(\omega)=-\frac{\partial \theta}{\partial \omega}$
c) $\theta(\omega)=-\alpha \omega$
d) none of above
5) The main lobe width of rectangular window is \qquad .
a) $\frac{\pi}{N}$
b) $\frac{2 \pi}{N}$
c) $\frac{4 \pi}{N}$
d) $\frac{8 \pi}{N}$
6) The Number of multiplications in FIR system can be reduced using \qquad .
a) Finite Impulse Response
b) Infinite Impulse Response
c) Symmetric nature of Impulse Response
d) None of above
7) To meet the magnitude response specification for a transition width, one has to \qquad .
a) Select Proper Window
b) To Select Kaiser Window
c) Select Filter Order
d) Select Rectangular Window
8) The 4-point DFT of $\{1,1,0,0\}$ \qquad .
a) $\{2,0,2,0\}$
b) $\{2,1+2 \mathrm{j},-2,1-2 \mathrm{j}\}$
c) $\{0,4,0,0\}$
d) $\{2,1-j, 0,1+j\}$
9) FFT algorithm calculates \qquad -
a) DTFT
b) DCT
c) DFT
d) DST
10) If DFT of a sequence $\mathrm{x}(\mathrm{n})$ is $\mathrm{X}(\mathrm{k})$ then the DFT of $x(n) e^{-j 2 \pi \ln / 2}$ is \qquad .
a) $X((k-l))_{N}$
b) $X((k+l))_{N}$
c) $e^{-j 2 \pi l} X(k)$
d) $e^{j 2 \pi l} X(k)$
11) The DFT of the sequence $\mathrm{x}(n)=\delta\left(n-n_{0}\right)$ is \qquad .
a) 1
b) $e^{j 2 \pi k n_{0}}$
C) $e^{-j 2 \pi k n_{0} / N}$
d) $e^{j 2 \pi k n_{0} / N}$
12) The number of multiplications required for performing the convolution of two sequences with identical length 8 using the indirect method using FFT is \qquad .
a) 256
b) 120
c) 192
d) 64
13) Circular time shift of a sequence is equivalent to \qquad .
a) Multiplication of the sequence $x(n)$ with complex exponential
b) Multiplication of the sequence $X(k)$ with complex exponential
c) Multiplication of the sequence $x(n)$ with exponential factor
d) None
14) Unwrapped phase response of FIR filter in pass band is \qquad .
a) Exponentially increasing
b) Exponentially decreasing
c) Non-linear
d) linear

SLR-FM-240

Seat
No.

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume necessary data if necessary.

Section - I

Q. 2 Attempt any Four.

a) Explain the sampling in frequency domain.
b) Compute the Auto correlation of given sequence $x(n)=\{1,3,3,4,5\}$.
c) Derive the relation between DFT and Z transform.
d) Find IDFT of Sequence using DIF-FFT Algorithm $X(k)=\{11,-2-3 i,-3,-2+3 i\}$
e) Describe briefly the Goertzel algorithm.
f) Compute Circular convolution.

$$
\begin{aligned}
& x_{1}(n)=\{1,3,2,5,4\} \\
& x_{2}(n)=\{4,5,2,3,1\}
\end{aligned}
$$

Q. 3 Attempt any two.
a) Given $x(n)=2^{n}$ and $\mathrm{N}=8$, Find $X(k)$ using DIF-FFT algorithm.
b) Perform linear convolution of finite duration sequences $h(n)=\{1,1,2,1\}$ and $x(n)=\{1,-1,1,2,1,0,1,-4,3,2,1,0,1,1\}$ using overlap save method?
c) Compute the circular convolution of the following sequence $x(n)=\{3,4,5,2\}$ and $h(n)=\{3,1,4,2\}$ Using DFT and IDFT method.

Section - II

Q. 4 Attempt Any Four.
a) Explain in detail FIR filter design using frequency sampling technique.
b) Explain the finite word length effect in IIR Filter.
c) What is warping effect? What is its effect on magnitude and phase response?
d) Obtain the Direct Form I, II form realization for the system.
$y(n)=-0.1 y(n-1)+0.2 y(n-2)+3 x(n)+3.6 x(n-1)+0.6 x(n-2)$
e) For given specification find the order of analog Butterworth filter.

$$
0.8 \leq|H(j \Omega)| \leq 1 \quad \text { for } 0 \leq \Omega \leq 0.2 \pi
$$

$$
|H(j \Omega)| \leq 0.2 \text { for } 0.6 \pi \leq \Omega \leq \pi
$$

f) Compare Rectangular and Triangular windows.
Q. 5 Attempt Any Two.
a) Design an FIR Filter approximating the ideal frequency response.

$$
\begin{aligned}
H d\left(e^{j \omega}\right)= & e^{-j 5 w} \quad \text { for } \quad-\pi / 2|\omega| \leq \pi / 2 \\
& =0 \quad \text { for } \quad \pi / 2<|\omega| \leq \pi
\end{aligned}
$$

Using Blackman window with $\mathrm{N}-11$
b) Using Impulse invariance with $\mathrm{T}=1 \mathrm{Sec}$ determine $\mathrm{H}(\mathrm{Z})$ if.

$$
H(s)=\frac{1}{s^{2}+\sqrt{2 s}+1}
$$

c) Design a digital Butterworth filter satisfying the constraints.

$$
\begin{aligned}
0.707 \leq\left|H\left(e^{j \omega}\right)\right| \leq 1 \quad \text { for } & 0 \leq \omega \leq \pi / 2 \\
\left|H\left(e^{j \omega}\right)\right| \leq 0.2 \text { for } & 3 \pi / 4 \leq \omega \leq \pi
\end{aligned}
$$

with $\mathrm{T}=1$ Sec using Bilinear Transformation

Seat No.

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume necessary data if necessary.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The number of multiplications required for performing the convolution of two sequences with identical length 8 using the indirect method using FFT is \qquad .
a) 256
b) 120
c) 192
d) 64
2) Circular time shift of a sequence is equivalent to \qquad .
a) Multiplication of the sequence $x(n)$ with complex exponential
b) Multiplication of the sequence $X(k)$ with complex exponential
c) Multiplication of the sequence $x(n)$ with exponential factor
d) None
3) Unwrapped phase response of FIR filter in pass band is \qquad .
a) Exponentially increasing
b) Exponentially decreasing
c) Non-linear
d) Linear
4) When analog butter worth filter is converted to DT filter using Impulse Invariance Method, then \qquad .
a) Aliasing can be eliminated
b) Aliasing is always present
c) Aliasing can be reduced by reducing T
d) Aliasing cannot be reduced by reducing T
5) The frequency response of rectangular window is \qquad .
a) $\frac{\sin \omega N / 2}{\sin \omega / 2}$
b) $\frac{\sin \omega / 2}{\sin \omega N / 2}$
c) $\frac{\sin \omega N / 2}{\omega / 2}$
d) $\frac{\sin \omega N / 2}{N \omega / 2}$
6) The relation between Laplace transform and z-transform is \qquad .
a) $z=e^{s t}$
b) $z=e^{j s t}$
c) $s=e^{z t}$
d) $z=e^{-s t}$
7) The Impulse response of FIR system has a linear phase linear characteristics
a) $\theta(\omega)=\alpha \omega$
b) $\theta(\omega)=-\frac{\partial \theta}{\partial \omega}$
c) $\theta(\omega)=-\alpha \omega$
d) none of above
8) The main lobe width of rectangular window is \qquad .
a) $\frac{\pi}{N}$
b) $\frac{2 \pi}{N}$
c) $\frac{4 \pi}{N}$
d) $\frac{8 \pi}{N}$
9) The Number of multiplications in FIR system can be reduced using \qquad .
a) Finite Impulse Response
b) Infinite Impulse Response
c) Symmetric nature of Impulse Response
d) None of above
10) To meet the magnitude response specification for a transition width, one has to \qquad _.
a) Select Proper Window
b) To Select Kaiser Window
c) Select Filter Order
d) Select Rectangular Window
11) The 4-point DFT of $\{1,1,0,0\}$ \qquad .
a) $\{2,0,2,0\}$
b) $\{2,1+2 \mathrm{j},-2,1-2 \mathrm{j}\}$
c) $\{0,4,0,0\}$
d) $\{2,1-j, 0,1+j\}$
12) FFT algorithm calculates \qquad .
a) DTFT
b) DCT
c) DFT
d) DST
13) If DFT of a sequence $\mathrm{x}(\mathrm{n})$ is $\mathrm{X}(\mathrm{k})$ then the DFT of $x(n) e^{-j 2 \pi \ln / 2}$ is \qquad .
a) $X((k-l))_{N}$
b) $X((k+l))_{N}$
c) $e^{-j 2 \pi l} X(k)$
d) $e^{j 2 \pi l} X(k)$
14) The DFT of the sequence $\mathrm{x}(n)=\delta\left(n-n_{0}\right)$ is \qquad .
a) 1
b) $e^{j 2 \pi k n_{0}}$
c) $e^{-j 2 \pi k n_{0} / N}$
d) $e^{j 2 \pi k n_{0} / N}$

Seat	
No.	

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume necessary data if necessary.

Section - I

Q. 2 Attempt any Four.
a) Explain the sampling in frequency domain.
b) Compute the Auto correlation of given sequence $x(n)=\{1,3,3,4,5\}$.
c) Derive the relation between DFT and Z transform.
d) Find IDFT of Sequence using DIF-FFT Algorithm $X(k)=\{11,-2-3 i,-3,-2+3 i\}$
e) Describe briefly the Goertzel algorithm.
f) Compute Circular convolution.
$x_{1}(n)=\{1,3,2,5,4\}$
$x_{2}(n)=\{4,5,2,3,1\}$
Q. 3 Attempt any two.
a) Given $x(n)=2^{n}$ and $\mathrm{N}=8$, Find $X(k)$ using DIF-FFT algorithm.
b) Perform linear convolution of finite duration sequences $h(n)=\{1,1,2,1\}$ and $x(n)=\{1,-1,1,2,1,0,1,-4,3,2,1,0,1,1\}$ using overlap save method?
c) Compute the circular convolution of the following sequence $x(n)=\{3,4,5,2\}$ and $h(n)=\{3,1,4,2\}$ Using DFT and IDFT method.

Section - II

Q. 4 Attempt Any Four.
a) Explain in detail FIR filter design using frequency sampling technique.
b) Explain the finite word length effect in IIR Filter.
c) What is warping effect? What is its effect on magnitude and phase response?
d) Obtain the Direct Form I, II form realization for the system.
$y(n)=-0.1 y(n-1)+0.2 y(n-2)+3 x(n)+3.6 x(n-1)+0.6 x(n-2)$
e) For given specification find the order of analog Butterworth filter.
$0.8 \leq|H(j \Omega)| \leq 1$ for $0 \leq \Omega \leq 0.2 \pi$
$|H(j \Omega)| \leq 0.2$ for $0.6 \pi \leq \Omega \leq \pi$
f) Compare Rectangular and Triangular windows.
Q. 5 Attempt Any Two.
a) Design an FIR Filter approximating the ideal frequency response.

$$
\begin{aligned}
H d\left(e^{j \omega}\right) & =e^{-j 5 w} \quad \text { for } \quad-\pi / 2|\omega| \leq \pi / 2 \\
& =0 \quad \text { for } \quad \pi / 2 \prec|\omega| \leq \pi
\end{aligned}
$$

Using Blackman window with $\mathrm{N}-11$
b) Using Impulse invariance with $\mathrm{T}=1 \mathrm{Sec}$ determine $\mathrm{H}(\mathrm{Z})$ if.

$$
H(s)=\frac{1}{s^{2}+\sqrt{2 s}+1}
$$

c) Design a digital Butterworth filter satisfying the constraints.

$$
\begin{aligned}
0.707 \leq\left|H\left(e^{j \omega}\right)\right| \leq 1 \quad \text { for } & 0 \leq \omega \leq \pi / 2 \\
\left|H\left(e^{j \omega}\right)\right| \leq 0.2 \text { for } & 3 \pi / 4 \leq \omega \leq \pi
\end{aligned}
$$

with $\mathrm{T}=1$ Sec using Bilinear Transformation

Seat	
No.	

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume necessary data if necessary.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The relation between Laplace transform and z-transform is \qquad .
a) $z=e^{s t}$
b) $z=e^{j s t}$
C) $s=e^{z t}$
d) $z=e^{-s t}$
2) The Impulse response of FIR system has a linear phase linear characteristics \qquad .
a) $\theta(\omega)=\alpha \omega$
b) $\theta(\omega)=-\frac{\partial \theta}{\partial \omega}$
c) $\theta(\omega)=-\alpha \omega$
d) none of above
3) The main lobe width of rectangular window is \qquad .
a) $\frac{\pi}{N}$
b) $\frac{2 \pi}{N}$
c) $\frac{4 \pi}{N}$
d) $\frac{8 \pi}{N}$
4) The Number of multiplications in FIR system can be reduced using \qquad .
a) Finite Impulse Response
b) Infinite Impulse Response
c) Symmetric nature of Impulse Response
d) None of above
5) To meet the magnitude response specification for a transition width, one has to \qquad .
a) Select Proper Window
b) To Select Kaiser Window
c) Select Filter Order
d) Select Rectangular Window
6) The 4-point DFT of $\{1,1,0,0\}$ \qquad .
a) $\{2,0,2,0\}$
b) $\{2,1+2 \mathrm{j},-2,1-2 \mathrm{j}\}$
c) $\{0,4,0,0\}$
d) $\{2,1-j, 0,1+j\}$
7) FFT algorithm calculates \qquad -
a) DTFT
b) DCT
c) DFT
d) DST
8) If DFT of a sequence $\mathrm{x}(\mathrm{n})$ is $\mathrm{X}(\mathrm{k})$ then the DFT of $x(n) e^{-j 2 \pi \ln / 2}$ is \qquad .
a) $X((k-l))_{N}$
b) $X((k+l))_{N}$
c) $e^{-j 2 \pi l} X(k)$
d) $e^{j 2 \pi l} X(k)$

SLR-FM-240
 Set

9) The DFT of the sequence $\mathrm{x}(n)=\delta\left(n-n_{0}\right)$ is
a) 1
b) $e^{j 2 \pi k n_{0}}$
C) $e^{-j 2 \pi k n_{0} / N}$
d) $e^{j 2 \pi k n_{0} / N}$
10) The number of multiplications required for performing the convolution of two sequences with identical length 8 using the indirect method using FFT is \qquad .
a) 256
b) 120
c) 192
d) 64
11) Circular time shift of a sequence is equivalent to \qquad .
a) Multiplication of the sequence $x(n)$ with complex exponential
b) Multiplication of the sequence $X(k)$ with complex exponential
c) Multiplication of the sequence $x(n)$ with exponential factor
d) None
12) Unwrapped phase response of FIR filter in pass band is \qquad .
a) Exponentially increasing
b) Exponentially decreasing
c) Non-linear
d) linear
13) When analog butter worth filter is converted to DT filter using Impulse Invariance Method, then \qquad .
a) Aliasing can be eliminated
b) Aliasing is always present
c) Aliasing can be reduced by reducing T
d) Aliasing cannot be reduced by reducing T
14) The frequency response of rectangular window is \qquad .
a) $\frac{\sin \omega N / 2}{\sin \omega / 2}$
b) $\frac{\sin \omega / 2}{\sin \omega N / 2}$
c) $\frac{\sin \omega N / 2}{\omega / 2}$
d) $\frac{\sin \omega N / 2}{N \omega / 2}$

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume necessary data if necessary.

Section - I

Q. 2 Attempt any Four.
a) Explain the sampling in frequency domain.
b) Compute the Auto correlation of given sequence $x(n)=\{1,3,3,4,5\}$.
c) Derive the relation between DFT and Z transform.
d) Find IDFT of Sequence using DIF-FFT Algorithm $X(k)=\{11,-2-3 i,-3,-2+3 i\}$
e) Describe briefly the Goertzel algorithm.
f) Compute Circular convolution.
$x_{1}(n)=\{1,3,2,5,4\}$
$x_{2}(n)=\{4,5,2,3,1\}$
Q. 3 Attempt any two.
a) Given $x(n)=2^{n}$ and $\mathrm{N}=8$, Find $X(k)$ using DIF-FFT algorithm.
b) Perform linear convolution of finite duration sequences $h(n)=\{1,1,2,1\}$ and $x(n)=\{1,-1,1,2,1,0,1,-4,3,2,1,0,1,1\}$ using overlap save method?
c) Compute the circular convolution of the following sequence $x(n)=\{3,4,5,2\}$ and $h(n)=\{3,1,4,2\}$ Using DFT and IDFT method.

Section - II

Q. 4 Attempt Any Four.
a) Explain in detail FIR filter design using frequency sampling technique.
b) Explain the finite word length effect in IIR Filter.
c) What is warping effect? What is its effect on magnitude and phase response?
d) Obtain the Direct Form I, II form realization for the system.
$y(n)=-0.1 y(n-1)+0.2 y(n-2)+3 x(n)+3.6 x(n-1)+0.6 x(n-2)$
e) For given specification find the order of analog Butterworth filter.
$0.8 \leq|H(j \Omega)| \leq 1$ for $0 \leq \Omega \leq 0.2 \pi$
$|H(j \Omega)| \leq 0.2$ for $0.6 \pi \leq \Omega \leq \pi$
f) Compare Rectangular and Triangular windows.
Q. 5 Attempt Any Two.
a) Design an FIR Filter approximating the ideal frequency response.

$$
\begin{aligned}
H d\left(e^{j \omega}\right)= & e^{-j 5 w} \quad \text { for } \quad-\pi / 2|\omega| \leq \pi / 2 \\
& =0 \quad \text { for } \quad \pi / 2<|\omega| \leq \pi
\end{aligned}
$$

Using Blackman window with N-11
b) Using Impulse invariance with $\mathrm{T}=1 \mathrm{Sec}$ determine $\mathrm{H}(\mathrm{Z})$ if.

$$
H(s)=\frac{1}{s^{2}+\sqrt{2 s}+1}
$$

c) Design a digital Butterworth filter satisfying the constraints.

$$
\begin{aligned}
0.707 \leq\left|H\left(e^{j \omega}\right)\right| \leq 1 \quad \text { for } & 0 \leq \omega \leq \pi / 2 \\
\left|H\left(e^{j \omega}\right)\right| \leq 0.2 \text { for } & 3 \pi / 4 \leq \omega \leq \pi
\end{aligned}
$$

with $\mathrm{T}=1$ Sec using Bilinear Transformation

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - I

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.

2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes

Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) Serial port interrupt is generated, if \qquad bits are set.
a) IE
b) RI , IE
c) IP, TI
d) RI, Tl
2) SP of 8051 is of \qquad wide and it is loaded with the default value of ___ after reset.
a) 2 byte, 08 H
b) $8 \mathrm{bit}, 07 \mathrm{H}$
c) 1 byte, 09 H
d) $8 \mathrm{bit}, 06 \mathrm{H}$
3) ACALL instruction allows specifying \qquad address in the instruction and calling subroutine within \qquad program memory block.
a) 2 byte, 3 K
b) $11 \mathrm{bit}, 2 \mathrm{~K}$
c) $9 \mathrm{bit}, 2 \mathrm{~K}$
d) 1 byte, 3 K
4) Which of the following instruction perform the move accumulator to external RAM of 16bit address?
a) MOV @ DPTR, A
b) MOVX @ Ri, A
c) MOV A, @ Ri
d) MOVX @ DPTR, A
5) In 8051 which interrupt has highest priority?
a) IE1
b) TF0
c) IEO
d) TF1
6) The bit address range for the byte address 25 H is \qquad .
a) $00-07 \mathrm{H}$
b) $28-2 \mathrm{Fh}$
c) $20-27 \mathrm{H}$
d) $30-37 \mathrm{H}$
7) In 8 bit signed no. operations, $O V$ is set to 1 if \qquad .
a) carry is generated from D7 bit
b) carry is generated from D3 bit
c) carry is generated from D7 xor D3 bit
d) carry is generated from D7 xor D6 bit
8) To address a memory location out of N memory locations, the number of address lines required is \qquad -.
a) $\log \mathrm{N}$ (to the base 2)
b) $\quad \log \mathrm{N}$ (to the base 10)
c) $\quad \log \mathrm{N}$ (to the base e)
d) $\log (2 N)$ (to the base e)
9) Which ports assist in addressing lower order and higher address bytes into the data bus simultaneously, while accessing the external data memory?
a) Port 0 \& Port 1 respectively
b) Port 1 \& Port 2 respectively
c) Port 0 \& Port 2 respectively
d) Port 2 \& Port 3 respectively
10) How does the microcontroller communicate with the external peripherals/memory?
a) via I/O ports
b) via register arrays
c) via memory
d) all of the above
11) How many data lines are essential in addition to RS, EN and RW control lines for interfacing LCD with Atmel 89C51 microcontroller?
a) 3
b) 5
c) 8
d) 10
12) Which control signal/s is/are generated by timing and control unit of 8051 microcontroller in order to access the off-chip devices apart from the internal timings?
a) ALE
b) PSEN
c) RD and WR
d) All of the above
13) Which of the following statements is true?
a) In Simplex mode of serial communication, data is transmitted both from the transmitter to the receiver, as well as from the receiver to the transmitter.
b) In Half Duplex mode of serial communication, data is transmitted only from the transmitter to the receiver.
c) In Full Duplex mode of serial communication, data is exchanged between the transmitter and the receiver using two different channels.
d) None of the options mentioned
14) How many times the instruction CPL A is executed in the following program of an 8051?

MOV A, \#FOH
MOV R1, \#60
NEXT: MOV R6, \#10H
AGAIN: CPL A
DJNZ R6, AGAIN
DJNZ R1, NEXT
a) 600 times
b) 900 times
c) 690 times
d) 960 times

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - I

Day \& Date: Monday,16-12-2019

Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four.

a) Give comparison CISC and RISC.
b) With one example explain SJMP, AJMP and LJMP instructions. Specify the range for each instruction.
c) Explain How interrupts are handled by 8051 Microcontroller.
d) Assuming $\mathrm{SMOD}=0$ and $\mathrm{Fc}=11.0592 \mathrm{MHz}$, Calculate Value to be loaded in TH1 register for generating the baud rate of 9600, 4800, 2400 and 1200.
e) Explain the data memory organization of 8051 Microcontroller.

Q. 3 Attempt any two

a) Write assembly language program to copy a block of 10 bytes of data from 35 H to 60 H .
b) Draw and explain detail architecture of 8051.
c) Discuss and compare Timer Mode 1 and Mode2 of 8051.
Section - II

Q. 4 Solve any four of the following.

a) A switch is connected to pin P1.7. Write assembly Language program to check the status of SW and perform the following:

1) If $S W=0$, send letter ' N ' to $P 2$.
2) If $S W=1$, send letter ' Y ' to P2

Use the carry flag to check the switch status.
b) Write a program for blinking LED connected to P2.0
c) How DAC 0808 can be interfaced to 8051 Microcontroller. Write a Program for generating rising ramp signal.
d) Write an 8051 program to transfer the message "SUS" serially at 9600 baud, 8 -bit data, 1 stop bit. Do this continuously.
e) How we can design obstruction detecting circuit using 8051 Microcontroller?
f) Assume that $\mathrm{XTAL}=11.0592 \mathrm{MHz}$. What value do we need to load the timer's register if we want to have a time delay of 5 ms (milliseconds)? Show the program for timer 0 to create a pulse width of 5 ms on P2.3.
Q. 5 Solve any two of the following
a) A door sensor is connected to the P1.1pin, and a buzzer is connected to P1.7. Write an 8051 C program to monitor the door sensor, and when it opens, sound the buzzer. You can sound the buzzer by sending a square wave of a five hundred Hz .
b) Show the design of an 8051-based system with 8 K bytes of program ROM and 16 K bytes of data RAM.
c) Draw and Explain interfacing of Matrix keyboard (4X4) to microcontroller.

Seat

No.

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - I

Day \& Date: Monday, 16-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options.

1) To address a memory location out of N memory locations, the number of address lines required is \qquad .
a) $\log N$ (to the base 2)
b) $\quad \log \mathrm{N}$ (to the base 10)
c) $\quad \log \mathrm{N}$ (to the base e)
d) $\quad \log (2 \mathrm{~N})$ (to the base e)
2) Which ports assist in addressing lower order and higher address bytes into the data bus simultaneously, while accessing the external data memory?
a) Port 0 \& Port 1 respectively
b) Port 1 \& Port 2 respectively
c) Port 0 \& Port 2 respectively
d) Port 2 \& Port 3 respectively
3) How does the microcontroller communicate with the external peripherals/memory?
a) via l/O ports
b) via register arrays
c) via memory
d) all of the above
4) How many data lines are essential in addition to RS, EN and RW control lines for interfacing LCD with Atmel 89C51 microcontroller?
a) 3
b) 5
c) 8
d) 10
5) Which control signal/s is/are generated by timing and control unit of 8051 microcontroller in order to access the off-chip devices apart from the internal timings?
a) ALE
b) PSEN
c) RD and WR
d) All of the above
6) Which of the following statements is true?
a) In Simplex mode of serial communication, data is transmitted both from the transmitter to the receiver, as well as from the receiver to the transmitter.
b) In Half Duplex mode of serial communication, data is transmitted only from the transmitter to the receiver.
c) In Full Duplex mode of serial communication, data is exchanged between the transmitter and the receiver using two different channels.
d) None of the options mentioned
7) How many times the instruction CPL A is executed in the following program of an 8051?

MOV A, \#FOH
MOV R1, \#60
NEXT: MOV R6, \#10H
AGAIN: CPL A
DJNZ R6, AGAIN
DJNZ R1, NEXT
a) 600 times
b) 900 times
c) 690 times
d) 960 times
8) Serial port interrupt is generated, if \qquad bits are set.
a) IE
b) RI, IE
c) IP, Tl
d) RI, Tl
9) SP of 8051 is of \qquad wide and it is loaded with the default value of ___ after reset.
a) 2 byte, 08 H
b) $8 \mathrm{bit}, 07 \mathrm{H}$
c) 1 byte, 09H
d) $8 \mathrm{bit}, 06 \mathrm{H}$
10) ACALL instruction allows specifying \qquad address in the instruction and calling subroutine within \qquad program memory block.
a) 2 byte, 3 K
b) $11 \mathrm{bit}, 2 \mathrm{~K}$
c) $9 \mathrm{bit}, 2 \mathrm{~K}$
d) 1byte, 3 K
11) Which of the following instruction perform the move accumulator to external RAM of 16bit address?
a) MOV @ DPTR, A
b) MOVX@ Ri, A
c) MOV A, @ Ri
d) MOVX @ DPTR, A
12) In 8051 which interrupt has highest priority?
a) IE1
b) TFO
c) IE0
d) TF1
13) The bit address range for the byte address 25 H is \qquad .
a) $00-07 \mathrm{H}$
b) $28-2 \mathrm{Fh}$
c) $20-27 \mathrm{H}$
d) $30-37 \mathrm{H}$
14) In 8 bit signed no. operations, $O V$ is set to 1 if \qquad .
a) carry is generated from D7 bit
b) carry is generated from D3 bit
c) carry is generated from D7 xor D3 bit
d) carry is generated from D7 xor D6 bit

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - I

Day \& Date: Monday,16-12-2019

Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four.

a) Give comparison CISC and RISC.
b) With one example explain SJMP, AJMP and LJMP instructions. Specify the range for each instruction.
c) Explain How interrupts are handled by 8051 Microcontroller.
d) Assuming $\mathrm{SMOD}=0$ and $\mathrm{Fc}=11.0592 \mathrm{MHz}$, Calculate Value to be loaded in TH1 register for generating the baud rate of 9600, 4800, 2400 and 1200.
e) Explain the data memory organization of 8051 Microcontroller.

Q. 3 Attempt any two

a) Write assembly language program to copy a block of 10 bytes of data from 35 H to 60 H .
b) Draw and explain detail architecture of 8051.
c) Discuss and compare Timer Mode 1 and Mode2 of 8051.
Section - II

Q. 4 Solve any four of the following.

a) A switch is connected to pin P1.7. Write assembly Language program to check the status of SW and perform the following:

1) If $S W=0$, send letter ' N ' to $P 2$.
2) If $S W=1$, send letter ' Y ' to P2

Use the carry flag to check the switch status.
b) Write a program for blinking LED connected to P2.0
c) How DAC 0808 can be interfaced to 8051 Microcontroller. Write a Program for generating rising ramp signal.
d) Write an 8051 program to transfer the message "SUS" serially at 9600 baud, 8 -bit data, 1 stop bit. Do this continuously.
e) How we can design obstruction detecting circuit using 8051 Microcontroller?
f) Assume that $\mathrm{XTAL}=11.0592 \mathrm{MHz}$. What value do we need to load the timer's register if we want to have a time delay of 5 ms (milliseconds)? Show the program for timer 0 to create a pulse width of 5 ms on P2.3.
Q. 5 Solve any two of the following
a) A door sensor is connected to the P1.1pin, and a buzzer is connected to P1.7. Write an 8051 C program to monitor the door sensor, and when it opens, sound the buzzer. You can sound the buzzer by sending a square wave of a five hundred Hz .
b) Show the design of an 8051-based system with 8 K bytes of program ROM and 16 K bytes of data RAM.
c) Draw and Explain interfacing of Matrix keyboard (4X4) to microcontroller.

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - I

Day \& Date: Monday,16-12-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) In 8051 which interrupt has highest priority?
a) IE1
b) TFO
c) IEO
d) TF1
2) The bit address range for the byte address 25 H is \qquad .
a) $00-07 \mathrm{H}$
b) $28-2 \mathrm{Fh}$
c) $20-27 \mathrm{H}$
d) $30-37 \mathrm{H}$
3) In 8 bit signed no. operations, $O V$ is set to 1 if \qquad .
a) carry is generated from D7 bit
b) carry is generated from D3 bit
c) carry is generated from D7 xor D3 bit
d) carry is generated from D7 xor D6 bit
4) To address a memory location out of N memory locations, the number of address lines required is \qquad .
a) $\log \mathrm{N}$ (to the base 2)
b) $\quad \log \mathrm{N}$ (to the base 10)
c) $\quad \log \mathrm{N}$ (to the base e)
d) $\quad \log (2 \mathrm{~N})$ (to the base e)
5) Which ports assist in addressing lower order and higher address bytes into the data bus simultaneously, while accessing the external data memory?
a) Port 0 \& Port 1 respectively
b) Port 1 \& Port 2 respectively
c) Port 0 \& Port 2 respectively
d) Port 2 \& Port 3 respectively
6) How does the microcontroller communicate with the external peripherals/memory?
a) via l/O ports
b) via register arrays
c) via memory
d) all of the above
7) How many data lines are essential in addition to RS, EN and RW control lines for interfacing LCD with Atmel 89C51 microcontroller?
a) 3
b) 5
c) 8
d) 10
8) Which control signal/s is/are generated by timing and control unit of 8051 microcontroller in order to access the off-chip devices apart from the internal timings?
a) ALE
b) PSEN
c) RD and WR
d) All of the above
9) Which of the following statements is true?
a) In Simplex mode of serial communication, data is transmitted both from the transmitter to the receiver, as well as from the receiver to the transmitter.
b) In Half Duplex mode of serial communication, data is transmitted only from the transmitter to the receiver.
c) In Full Duplex mode of serial communication, data is exchanged between the transmitter and the receiver using two different channels.
d) None of the options mentioned
10) How many times the instruction CPL A is executed in the following program of an 8051?

MOV A, \#FOH
MOV R1, \#60
NEXT: MOV R6, \#10H
AGAIN: CPL A
DJNZ R6, AGAIN
DJNZ R1, NEXT
a) 600 times
b) 900 times
c) 690 times
d) 960 times
11) Serial port interrupt is generated, if \qquad bits are set.
a) IE
b) RI, IE
c) IP, TI
d) RI, TI
12) SP of 8051 is of \qquad wide and it is loaded with the default value of ___ after reset.
a) 2 byte, 08 H
b) $8 \mathrm{bit}, 07 \mathrm{H}$
c) 1 byte, 09 H
d) $8 \mathrm{bit}, 06 \mathrm{H}$
13) ACALL instruction allows specifying \qquad address in the instruction and calling subroutine within \qquad program memory block.
a) 2 byte, 3 K
b) $11 \mathrm{bit}, 2 \mathrm{~K}$
c) $9 \mathrm{bit}, 2 \mathrm{~K}$
d) 1byte, 3 K
14) Which of the following instruction perform the move accumulator to external RAM of 16bit address?
a) MOV @ DPTR, A
b) MOVX@ Ri,A
c) MOV A, @ Ri
d) MOVX @ DPTR, A

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - I

Day \& Date: Monday,16-12-2019

Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four.

a) Give comparison CISC and RISC.
b) With one example explain SJMP, AJMP and LJMP instructions. Specify the range for each instruction.
c) Explain How interrupts are handled by 8051 Microcontroller.
d) Assuming $\mathrm{SMOD}=0$ and $\mathrm{Fc}=11.0592 \mathrm{MHz}$, Calculate Value to be loaded in TH1 register for generating the baud rate of 9600, 4800, 2400 and 1200.
e) Explain the data memory organization of 8051 Microcontroller.

Q. 3 Attempt any two

a) Write assembly language program to copy a block of 10 bytes of data from 35 H to 60 H .
b) Draw and explain detail architecture of 8051.
c) Discuss and compare Timer Mode 1 and Mode2 of 8051.
Section - II
Q. 4 Solve any four of the following.
a) A switch is connected to pin P1.7. Write assembly Language program to check the status of SW and perform the following:

1) If $S W=0$, send letter ' N ' to $P 2$.
2) If $S W=1$, send letter ' Y ' to P2

Use the carry flag to check the switch status.
b) Write a program for blinking LED connected to P2.0
c) How DAC 0808 can be interfaced to 8051 Microcontroller. Write a Program for generating rising ramp signal.
d) Write an 8051 program to transfer the message "SUS" serially at 9600 baud, 8 -bit data, 1 stop bit. Do this continuously.
e) How we can design obstruction detecting circuit using 8051 Microcontroller?
f) Assume that $\mathrm{XTAL}=11.0592 \mathrm{MHz}$. What value do we need to load the timer's register if we want to have a time delay of 5 ms (milliseconds)? Show the program for timer 0 to create a pulse width of 5 ms on P2.3.
Q. 5 Solve any two of the following
a) A door sensor is connected to the P1.1pin, and a buzzer is connected to P1.7. Write an 8051 C program to monitor the door sensor, and when it opens, sound the buzzer. You can sound the buzzer by sending a square wave of a five hundred Hz .
b) Show the design of an 8051-based system with 8 K bytes of program ROM and 16 K bytes of data RAM.
c) Draw and Explain interfacing of Matrix keyboard (4X4) to microcontroller.

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - I

Day \& Date: Monday,16-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) How does the microcontroller communicate with the external peripherals/memory?
a) via I/O ports
b) via register arrays
c) via memory
d) all of the above
2) How many data lines are essential in addition to RS, EN and RW control lines for interfacing LCD with Atmel 89C51 microcontroller?
a) 3
b) 5
c) 8
d) 10
3) Which control signal/s is/are generated by timing and control unit of 8051 microcontroller in order to access the off-chip devices apart from the internal timings?
a) ALE
b) PSEN
c) RD and WR
d) All of the above
4) Which of the following statements is true?
a) In Simplex mode of serial communication, data is transmitted both from the transmitter to the receiver, as well as from the receiver to the transmitter.
b) In Half Duplex mode of serial communication, data is transmitted only from the transmitter to the receiver.
c) In Full Duplex mode of serial communication, data is exchanged between the transmitter and the receiver using two different channels.
d) None of the options mentioned
5) How many times the instruction CPL A is executed in the following program of an 8051?

MOV A, \#FOH
MOV R1, \#60
NEXT: MOV R6, \#10H
AGAIN: CPL A
DJNZ R6, AGAIN
DJNZ R1, NEXT
a) 600 times
b) 900 times
c) 690 times
d) 960 times
6) Serial port interrupt is generated, if \qquad bits are set.
a) IE
b) RI, IE
c) IP, Tl
d) RI, Tl
7) SP of 8051 is of \qquad wide and it is loaded with the default value of ___ after reset.
a) 2 byte, 08 H
b) $8 \mathrm{bit}, 07 \mathrm{H}$
c) 1 byte, 09 H
d) $8 \mathrm{bit}, 06 \mathrm{H}$
8) ACALL instruction allows specifying \qquad address in the instruction and calling subroutine within \qquad program memory block.
a) 2 byte, 3 K
b) $11 \mathrm{bit}, 2 \mathrm{~K}$
c) $9 \mathrm{bit}, 2 \mathrm{~K}$
d) 1byte, 3 K
9) Which of the following instruction perform the move accumulator to external RAM of 16bit address?
a) MOV @ DPTR, A
b) MOVX@ Ri, A
c) MOV A, @ Ri
d) MOVX @ DPTR, A
10) In 8051 which interrupt has highest priority?
a) IE1
b) TFO
c) IE0
d) TF1
11) The bit address range for the byte address 25 H is \qquad .
a) $00-07 \mathrm{H}$
b) $28-2 \mathrm{Fh}$
c) $20-27 \mathrm{H}$
d) $\quad 30-37 \mathrm{H}$
12) In 8 bit signed no. operations, $O V$ is set to 1 if \qquad .
a) carry is generated from D7 bit
b) carry is generated from D3 bit
c) carry is generated from D7 xor D3 bit
d) carry is generated from D7 xor D6 bit
13) To address a memory location out of N memory locations, the number of address lines required is \qquad .
a) $\log \mathrm{N}$ (to the base 2)
b) $\quad \log \mathrm{N}$ (to the base 10)
c) $\quad \log \mathrm{N}$ (to the base e)
d) $\log (2 N)$ (to the base e)
14) Which ports assist in addressing lower order and higher address bytes into the data bus simultaneously, while accessing the external data memory?
a) Port 0 \& Port 1 respectively
b) Port 1 \& Port 2 respectively
c) Port 0 \& Port 2 respectively
d) Port 2 \& Port 3 respectively

Seat	
No.	

T.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - I

Day \& Date: Monday,16-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four.
a) Give comparison CISC and RISC.
b) With one example explain SJMP, AJMP and LJMP instructions. Specify the range for each instruction.
c) Explain How interrupts are handled by 8051 Microcontroller.
d) Assuming $\mathrm{SMOD}=0$ and $\mathrm{Fc}=11.0592 \mathrm{MHz}$, Calculate Value to be loaded in TH1 register for generating the baud rate of $9600,4800,2400$ and 1200.
e) Explain the data memory organization of 8051 Microcontroller.
Q. 3 Attempt any two
a) Write assembly language program to copy a block of 10 bytes of data from 35 H to 60 H .
b) Draw and explain detail architecture of 8051.
c) Discuss and compare Timer Mode 1 and Mode2 of 8051.
Section - II
Q. 4 Solve any four of the following.
a) A switch is connected to pin P1.7. Write assembly Language program to check the status of SW and perform the following:

1) If $S W=0$, send letter ' N ' to $P 2$.
2) If $S W=1$, send letter ' Y ' to $P 2$

Use the carry flag to check the switch status.
b) Write a program for blinking LED connected to P2.0
c) How DAC 0808 can be interfaced to 8051 Microcontroller. Write a Program for generating rising ramp signal.
d) Write an 8051 program to transfer the message "SUS" serially at 9600 baud, 8 -bit data, 1 stop bit. Do this continuously.
e) How we can design obstruction detecting circuit using 8051 Microcontroller?
f) Assume that $\mathrm{XTAL}=11.0592 \mathrm{MHz}$. What value do we need to load the timer's register if we want to have a time delay of 5 ms (milliseconds)? Show the program for timer 0 to create a pulse width of 5 ms on P2.3.

Q. 5 Solve any two of the following

a) A door sensor is connected to the P1.1pin, and a buzzer is connected to P1.7. Write an 8051 C program to monitor the door sensor, and when it opens, sound the buzzer. You can sound the buzzer by sending a square wave of a five hundred Hz .
b) Show the design of an 8051-based system with 8 K bytes of program ROM and 16 K bytes of data RAM.
c) Draw and Explain interfacing of Matrix keyboard (4X4) to microcontroller.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if required.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Attempt all questions.

1) H-plane Tee is called \qquad .
a) Current divider
b) Power device
c) 3 dB splitter
d) Reciprocal device
2) In case of directional coupler amount of coupling is decided by \qquad .
a) Hole dimensions
b) Number of holes
c) Both A \& B
d) None of these
3) In case of Matched load \qquad .
a) Transmission is zero
b) Reflection is zero
c) Reflection is unity
d) Transmission is equal to reflection
4) PIN diode is \qquad type solid state device.
a) Controllable impedance
b) Negative resistance
c) Non-linear reactance
d) Non-linear resistance
5) The Two -valley model is best suited to explain the working of \qquad .
a) IMPATT diode
b) TRAPATT diode
c) Gunn diode
d) PIN diode
6) The dominant mode in rectangular waveguide is \qquad .
a) TE10
b) TE11
c) TE01
d) TE12
7) A lossless Transmission line operating at $200 \mathrm{M} \mathrm{rad} / \mathrm{sec}$ has $L=0.6 \mu \mathrm{H}$, $\mathrm{C}=10 \mathrm{pF} / \mathrm{m}$. Characteristic impedance of this transmission line is \qquad .
a) 244.94Ω
b) 376.7Ω
c) 173.20Ω
d) None of these
8) An accelerating dc voltage of 10 kV will result in an electron velocity of
\qquad _ m/sec.
a) 5.93×10^{6}
b) 59.3×10^{6}
c) 0.593×10^{6}
d) 5.93×10^{8}
9) In case of Magnetron frequency pulling takes place due to \qquad variations.
a) Supply
b) Load
c) Frequency
d) Amplitude

Set P
10) In case of Radar, the frequency of echo signal \qquad if the target is approaching the radar station.
a) Remains constant
b) Increases
c) Decreases
d) None of these
11) ___ type radar cannot determine range of the moving target.
a) Pulsed radar
b) Modulated CW radar
c) Unmodulated CW radar
d) None of these
12) The power in the range of kilo Watts can be measured by \qquad technique.
a) Balometer
b) Thermister
c) Calorimetric
d) Calorimetric wattmeter
13) The average power depends on the transmitter power Pt and the duty cycle given by \qquad
a) Pavg $=\mathrm{Pt}^{*}$ duty cycle
b) \quad Pavg $=$ Pt * pulse width*prf
c) both of the above
d) None of these
14) Accurate Measurement of attenuation can be done by \qquad method.
a) Power Ratio
b) RF substitution
c) using magic Tee
d) Using slotted line

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering
 RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if required.

Section - I

Q. 2 Attempt any Three
a) Explain working of two hole Directional Coupler.
b) A lossless 100Ω transmission line terminated in $200+\mathrm{j} 200 \Omega$.

Find:

1) voltage reflection coefficient
2) Transmission coefficient
3) VSWR
c) What is PIN diode? Explain any two applications of PIN diode.
d) IMPATT diode has following parameters $\mathrm{Vd}=2 \times 10^{7} \mathrm{~cm} / \mathrm{s}, \mathrm{L}=6 \mu \mathrm{~m}$, $\mathrm{V} 0=100 \mathrm{~V}, 10=200 \mathrm{~mA}$. Find maximum continuous wave output power and frequency of operation if efficiency is 15%.
Q. 3 Attempt any Two.
a) Derive S matrix for E plane tee. Justify the statement "E plane tee acts as a 3 dB splitter".
b) Write \& Explain High frequency limitations of conventional tubes.
c) Determine the cut-off wavelength for the dominant mode in a rectangular waveguide of breadth 10 cms . For 2.5 GHz signal propagated in this waveguide in the dominant mode calculate the guide wavelength in dominant mode, group and phase velocities.
Section - II
Q. 4 Attempt any Three.
a) Reflex Klystron operated at 56 Hz with anode voltage 1000 V and cavity gap 2 mm . Calculate gap trasit angle. Assume $13 / 4$ mode, $\mathrm{VR}=-500 \mathrm{~V}$.
b) Explain any one method for measurement of VSWR.
c) Explain Gunn Effect using Two Valley Theory.
d) Explain Radar Displays.
Q. 5 Attempt any Two.
a) Derive Radar range equation.
b) Two cavity klystron amplifier has following parameters Anode to cathode voltage $=1200 \mathrm{~V}$
Beam current $=28 \mathrm{~mA}$
Frequency $=8 \mathrm{GHz}$
Gap spacing in either cavity $=1 \mathrm{~mm}$
Spacing between two cavities $=4 \mathrm{~cm}$
Effective shunt impedance $=40 \mathrm{kohm}$ (Excluding beam loading)
Calculate:
i) Electron velocity
ii) Input gap voltage to give maximum voltage across input cavity
iii) Efficiency of the amplifier neglecting beam loading
iv) Voltage Gain in decibels
c) Explain any two methods for measurement of attenuation.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if required.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Attempt all questions.

1) An accelerating dc voltage of 10 kV will result in an electron velocity of
a) 5.93×10^{6}
b) 59.3×10^{6}
c) 0.593×10^{6}
d) 5.93×10^{8}
2) In case of Magnetron frequency pulling takes place due to \qquad variations.
a) Supply
b) Load
c) Frequency
d) Amplitude
3) In case of Radar, the frequency of echo signal \qquad if the target is approaching the radar station.
a) Remains constant
b) Increases
c) Decreases
d) None of these
4)

a) Pulsed radar
b) Modulated CW radar
c) Unmodulated CW radar
d) None of these
5) The power in the range of kilo Watts can be measured by \qquad technique.
a) Balometer
b) Thermister
c) Calorimetric
d) Calorimetric wattmeter
6) The average power depends on the transmitter power Pt and the duty cycle given by \qquad .
a) Pavg $=\mathrm{Pt}^{*}$ duty cycle
b) Pavg $=$ Pt * pulse width*prf
c) both of the above
d) None of these
7) Accurate Measurement of attenuation can be done by \qquad method.
a) Power Ratio
b) RF substitution
c) using magic Tee
d) Using slotted line
8) H-plane Tee is called \qquad .
a) Current divider
b) Power device
c) 3 dB splitter
d) Reciprocal device
9) In case of directional coupler amount of coupling is decided by \qquad .
a) Hole dimensions
b) Number of holes
c) Both A \& B
d) None of these
10) In case of Matched load \qquad .
a) Transmission is zero
b) Reflection is zero
c) Reflection is unity
d) Transmission is equal to reflection
11) PIN diode is \qquad type solid state device.
a) Controllable impedance
b) Negative resistance
c) Non-linear reactance
d) Non-linear resistance
12) The Two -valley model is best suited to explain the working of \qquad .
a) IMPATT diode
b) TRAPATT diode
c) Gunn diode
d) PIN diode
13) The dominant mode in rectangular waveguide is \qquad .
a) TE10
b) TE11
c) TE01
d) TE12
14) A lossless Transmission line operating at $200 \mathrm{M} \mathrm{rad} / \mathrm{sec}$ has $L=0.6 \mu \mathrm{H}$, $\mathrm{C}=10 \mathrm{pF} / \mathrm{m}$. Characteristic impedance of this transmission line is \qquad .
a) 244.94Ω
b) 376.7Ω
c) 173.20Ω
d) None of these

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering
 RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if required.

Section - I

Q. 2 Attempt any Three
a) Explain working of two hole Directional Coupler.
b) A lossless 100Ω transmission line terminated in $200+\mathrm{j} 200 \Omega$.

Find:

1) voltage reflection coefficient
2) Transmission coefficient
3) VSWR
c) What is PIN diode? Explain any two applications of PIN diode.
d) IMPATT diode has following parameters $\mathrm{Vd}=2 \times 10^{7} \mathrm{~cm} / \mathrm{s}, \mathrm{L}=6 \mu \mathrm{~m}$, $\mathrm{V} 0=100 \mathrm{~V}, 10=200 \mathrm{~mA}$. Find maximum continuous wave output power and frequency of operation if efficiency is 15%.
Q. 3 Attempt any Two.
a) Derive S matrix for E plane tee. Justify the statement "E plane tee acts as a 3 dB splitter".
b) Write \& Explain High frequency limitations of conventional tubes.
c) Determine the cut-off wavelength for the dominant mode in a rectangular waveguide of breadth 10 cms . For 2.5 GHz signal propagated in this waveguide in the dominant mode calculate the guide wavelength in dominant mode, group and phase velocities.
Section - II
Q. 4 Attempt any Three.
a) Reflex Klystron operated at 56 Hz with anode voltage 1000 V and cavity gap 2 mm . Calculate gap trasit angle. Assume $13 / 4$ mode, $\mathrm{VR}=-500 \mathrm{~V}$.
b) Explain any one method for measurement of VSWR.
c) Explain Gunn Effect using Two Valley Theory.
d) Explain Radar Displays.
Q. 5 Attempt any Two.
a) Derive Radar range equation.
b) Two cavity klystron amplifier has following parameters Anode to cathode voltage $=1200 \mathrm{~V}$
Beam current $=28 \mathrm{~mA}$
Frequency $=8 \mathrm{GHz}$
Gap spacing in either cavity $=1 \mathrm{~mm}$
Spacing between two cavities $=4 \mathrm{~cm}$
Effective shunt impedance $=40 \mathrm{kohm}$ (Excluding beam loading)
Calculate:
i) Electron velocity
ii) Input gap voltage to give maximum voltage across input cavity
iii) Efficiency of the amplifier neglecting beam loading
iv) Voltage Gain in decibels
c) Explain any two methods for measurement of attenuation.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if required.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Q. 1 Attempt all questions.

1) The Two -valley model is best suited to explain the working of \qquad .
a) IMPATT diode
b) TRAPATT diode
c) Gunn diode
d) PIN diode
2) The dominant mode in rectangular waveguide is \qquad .
a) TE10
b) TE11
c) TE01
d) TE12
3) A lossless Transmission line operating at $200 \mathrm{M} \mathrm{rad} / \mathrm{sec}$ has $L=0.6 \mu \mathrm{H}$, $\mathrm{C}=10 \mathrm{pF} / \mathrm{m}$. Characteristic impedance of this transmission line is \qquad .
a) 244.94Ω
b) 376.7Ω
c) 173.20Ω
d) None of these
4) An accelerating dc voltage of 10 kV will result in an electron velocity of _ $\mathrm{m} / \mathrm{sec}$.
a) 5.93×10^{6}
b) 59.3×10^{6}
c) 0.593×10^{6}
d) 5.93×10^{8}
5) In case of Magnetron frequency pulling takes place due to \qquad variations.
a) Supply
b) Load
c) Frequency
d) Amplitude
6) In case of Radar, the frequency of echo signal \qquad if the target is approaching the radar station.
a) Remains constant
b) Increases
c) Decreases
d) None of these
7) \qquad type radar cannot determine range of the moving target.
a) Pulsed radar
b) Modulated CW radar
c) Unmodulated CW radar
d) None of these
8) The power in the range of kilo Watts can be measured by \qquad technique.
a) Balometer
b) Thermister
c) Calorimetric
d) Calorimetric wattmeter
9) The average power depends on the transmitter power Pt and the duty cycle given by \qquad .
a) Pavg $=\mathrm{Pt}^{*}$ duty cycle
b) \quad Pavg $=\mathrm{Pt}^{*}$ pulse width*prf
c) both of the above
d) None of these
10) Accurate Measurement of attenuation can be done by \qquad method.
a) Power Ratio
b) RF substitution
c) using magic Tee
d) Using slotted line
11) H-plane Tee is called \qquad .
a) Current divider
b) Power device
c) 3 dB splitter
d) Reciprocal device
12) In case of directional coupler amount of coupling is decided by \qquad .
a) Hole dimensions
b) Number of holes
c) Both A \& B
d) None of these
13) In case of Matched load \qquad .
a) Transmission is zero
b) Reflection is zero
c) Reflection is unity
d) Transmission is equal to reflection
14) PIN diode is \qquad type solid state device.
a) Controllable impedance
b) Negative resistance
c) Non-linear reactance
d) Non-linear resistance

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering
 RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if required.

Section - I

Q. 2 Attempt any Three
a) Explain working of two hole Directional Coupler.
b) A lossless 100Ω transmission line terminated in $200+\mathrm{j} 200 \Omega$.

Find:

1) voltage reflection coefficient
2) Transmission coefficient
3) VSWR
c) What is PIN diode? Explain any two applications of PIN diode.
d) IMPATT diode has following parameters $\mathrm{Vd}=2 \times 10^{7} \mathrm{~cm} / \mathrm{s}, \mathrm{L}=6 \mu \mathrm{~m}$, $\mathrm{V} 0=100 \mathrm{~V}, 10=200 \mathrm{~mA}$. Find maximum continuous wave output power and frequency of operation if efficiency is 15%.
Q. 3 Attempt any Two.
a) Derive S matrix for E plane tee. Justify the statement "E plane tee acts as a 3 dB splitter".
b) Write \& Explain High frequency limitations of conventional tubes.
c) Determine the cut-off wavelength for the dominant mode in a rectangular waveguide of breadth 10 cms . For 2.5 GHz signal propagated in this waveguide in the dominant mode calculate the guide wavelength in dominant mode, group and phase velocities.
Section - II
Q. 4 Attempt any Three.
a) Reflex Klystron operated at 56 Hz with anode voltage 1000 V and cavity gap 2 mm . Calculate gap trasit angle. Assume $13 / 4$ mode, $\mathrm{VR}=-500 \mathrm{~V}$.
b) Explain any one method for measurement of VSWR.
c) Explain Gunn Effect using Two Valley Theory.
d) Explain Radar Displays.
Q. 5 Attempt any Two.
a) Derive Radar range equation.
b) Two cavity klystron amplifier has following parameters Anode to cathode voltage $=1200 \mathrm{~V}$
Beam current $=28 \mathrm{~mA}$
Frequency $=8 \mathrm{GHz}$
Gap spacing in either cavity $=1 \mathrm{~mm}$
Spacing between two cavities $=4 \mathrm{~cm}$
Effective shunt impedance $=40 \mathrm{kohm}$ (Excluding beam loading)
Calculate:
i) Electron velocity
ii) Input gap voltage to give maximum voltage across input cavity
iii) Efficiency of the amplifier neglecting beam loading
iv) Voltage Gain in decibels
c) Explain any two methods for measurement of attenuation.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering
 RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if required.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Attempt all questions.

1) In case of Radar, the frequency of echo signal \qquad if the target is approaching the radar station.
a) Remains constant
b) Increases
c) Decreases
d) None of these
2)

a) Pulsed radar
b) Modulated CW radar
c) Unmodulated CW radar
d) None of these
3) The power in the range of kilo Watts can be measured by \qquad technique.
a) Balometer
b) Thermister
c) Calorimetric
d) Calorimetric wattmeter
4) The average power depends on the transmitter power Pt and the duty cycle given by \qquad -
a) $\operatorname{Pavg}=\mathrm{Pt}^{*}$ duty cycle
b) Pavg $=\mathrm{Pt}^{*}$ pulse width*prf
c) both of the above
d) None of these
5) Accurate Measurement of attenuation can be done by \qquad method.
a) Power Ratio
b) RF substitution
c) using magic Tee
d) Using slotted line
6) H-plane Tee is called \qquad .
a) Current divider
b) Power device
c) 3 dB splitter
d) Reciprocal device
7) In case of directional coupler amount of coupling is decided by \qquad .
a) Hole dimensions
b) Number of holes
c) Both A \& B
d) None of these
8) In case of Matched load \qquad .
a) Transmission is zero
b) Reflection is zero
c) Reflection is unity
d) Transmission is equal to reflection
9) PIN diode is \qquad type solid state device.
a) Controllable impedance
b) Negative resistance
c) Non-linear reactance
d) Non-linear resistance
10) The Two -valley model is best suited to explain the working of \qquad .
a) IMPATT diode
b) TRAPATT diode
c) Gunn diode
d) PIN diode
11) The dominant mode in rectangular waveguide is \qquad .
a) TE10
b) TE11
c) TE01
d) TE12
12) A lossless Transmission line operating at $200 \mathrm{M} \mathrm{rad} / \mathrm{sec}$ has $L=0.6 \mu \mathrm{H}$, $\mathrm{C}=10 \mathrm{pF} / \mathrm{m}$. Characteristic impedance of this transmission line is \qquad .
a) 244.94Ω
b) 376.7Ω
c) 173.20Ω
d) None of these
13) An accelerating dc voltage of 10 kV will result in an electron velocity of _ m/sec.
a) 5.93×10^{6}
b) 59.3×10^{6}
c) 0.593×10^{6}
d) 5.93×10^{8}
14) In case of Magnetron frequency pulling takes place due to \qquad variations.
a) Supply
b) Load
c) Frequency
d) Amplitude

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering
 RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Assume suitable data if required.

Section - I

Q. 2 Attempt any Three
a) Explain working of two hole Directional Coupler.
b) A lossless 100Ω transmission line terminated in $200+\mathrm{j} 200 \Omega$.

Find:

1) voltage reflection coefficient
2) Transmission coefficient
3) VSWR
c) What is PIN diode? Explain any two applications of PIN diode.
d) IMPATT diode has following parameters $\mathrm{Vd}=2 \times 10^{7} \mathrm{~cm} / \mathrm{s}, \mathrm{L}=6 \mu \mathrm{~m}$, $\mathrm{V} 0=100 \mathrm{~V}, 10=200 \mathrm{~mA}$. Find maximum continuous wave output power and frequency of operation if efficiency is 15%.
Q. 3 Attempt any Two.
a) Derive S matrix for E plane tee. Justify the statement "E plane tee acts as a 3 dB splitter".
b) Write \& Explain High frequency limitations of conventional tubes.
c) Determine the cut-off wavelength for the dominant mode in a rectangular waveguide of breadth 10 cms . For 2.5 GHz signal propagated in this waveguide in the dominant mode calculate the guide wavelength in dominant mode, group and phase velocities.
Section - II
Q. 4 Attempt any Three.
a) Reflex Klystron operated at 56 Hz with anode voltage 1000 V and cavity gap 2 mm . Calculate gap trasit angle. Assume $13 / 4$ mode, $\mathrm{VR}=-500 \mathrm{~V}$.
b) Explain any one method for measurement of VSWR.
c) Explain Gunn Effect using Two Valley Theory.
d) Explain Radar Displays.
Q. 5 Attempt any Two.
a) Derive Radar range equation.
b) Two cavity klystron amplifier has following parameters Anode to cathode voltage $=1200 \mathrm{~V}$
Beam current $=28 \mathrm{~mA}$
Frequency $=8 \mathrm{GHz}$
Gap spacing in either cavity $=1 \mathrm{~mm}$
Spacing between two cavities $=4 \mathrm{~cm}$
Effective shunt impedance $=40 \mathrm{kohm}$ (Excluding beam loading)
Calculate:
i) Electron velocity
ii) Input gap voltage to give maximum voltage across input cavity
iii) Efficiency of the amplifier neglecting beam loading
iv) Voltage Gain in decibels
c) Explain any two methods for measurement of attenuation.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - II (PIC)

Day \& Date: Saturday, 23-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q.No. 1 is compulsory. It should be solved in the first 30 minutes in
the answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Which of the following FSR is used for indirect addressing mode of PIC?
a) INTCON
b) INDF
c) PCL
d) STATUS
2) Special Purpose Registers of PIC 16F877 are mapped into data space at \qquad .
a) $00 \mathrm{H}-1 \mathrm{FH}$
b) $80 \mathrm{H}-9 \mathrm{FH}$
c) both a \& b
d) None of these
3) The SLEEP instructions makes the PIC 16F877 \qquad .
a) Reset
b) Standby mode
c) Power down mode
d) none of these
4) The Vref for ADC in PIC 16F877 is selected by \qquad register.
a) ADCON0
b) ADCON1
c) ADRES
d) PIR1
5) The CALL and GOTO instructions provides \qquad bit address to allow branching within any \qquad program memory space
a) $11,2 \mathrm{~K}$
b) $13,8 \mathrm{~K}$
c) $16,64 \mathrm{~K}$
d) None of these
6) The stack memory for PIC16F877 is the part of \qquad .
a) Program Memory
b) Data Memory
c) Either program or data memory
d) Neither program nor data memory
7) PSA (Prescaler assignment) bit in the option register equals to 1 then \qquad .
a) Prescaler enabled
b) Prescaler disabled
c) Prescaler assigned to WDT
d) Prescaler assigned to TIMER0
8) PIR1 register contains \qquad and PIE1 contains \qquad bits.
a) Interrupt Priority, Interrupt Enable
b) Interrupt Flag, Interrupt Priority
c) Interrupt Priority, Interrupt Flag
d) Interrupt Flag, Interrupt Enable
9) The timer used for capture, compare and PWM mode respectively are \qquad
a) Timer 0, Timer 1, Timer 2
b) Timer 2, Timer 1, Timer 0
c) Timer 1, Timer 1, Timer 2
d) Timer 2, Timer 1, Timer 1
10) What is the execution speed of instruction in PIC while operating at the maximum value of clock rate?
a) $0.1 \mu \mathrm{~s}$
b) $0.2 \mu \mathrm{~s}$
c) $0.4 \mu \mathrm{~s}$
d) $0.8 \mu \mathrm{~s}$
11) What is the status of shift clock supply in an USART synchronous mode?
a) Master - internally, Slave - externally
b) Master - externally, Slave - internally
c) Master \& Slave (both) - internally
d) Master \& Slave (both) - externally
12) Which bit of the SSPCON must be necessarily set so as to enable the synchronization of serial port?
a) WCOL
b) SSPOV
c) CKP
d) SSPEN
13) What is the fundamental role exhibited by the CCP module in compare mode in addition to timer 1 ?
a) To vary the status of synchronization levels
b) To vary the duty cycle of the rectified output
c) To vary the oscillator frequencies in order to receive larger periods
d) To vary the pin status in accordance to the precisely controlled time
14) Which among the below mentioned aspect issues are supported by capture / compare / PWM modules corresponding to time in PIC 16F877?
a) Capture Mode
b) Compare Mode
c) PWM mode
d) All of these

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - II (PIC)

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 A) Attempt any two of the following questions.

1) Explain the memory organization of PIC16F877.
2) Explain and give necessity of Brown out reset and Watch Dog Timer.
3) Give the steps to be followed for doing A / D conversion in PIC16F877.
B) Explain the following instructions
4) clrwdt
5) incfsz
Q. 3 Attempt any two of the following questions.
a) With neat block diagram explain PWM mode. How to vary PWM period and duty cycle?
b) Explain CCP1 module, how it is used for compare function along with Timer1?
c) Write assembly language program to complement the data on PORTD at regular interval of time. Use timer 0 to generate a delay.

Section - II

Q. 4 A) Attempt any two of the following questions.
a) Explain how SPI bus can be used for I/O expansion.
b) Draw interfacing of a switch and LED to PIC, when switch is closed the LED should turn ON. Write assembly language program for this.
c) Explain $I^{2} \mathrm{C}$ Bus and how to use it?
B) Explain the features of PIC18. 04
Q. 5 Attempt any two of the following questions. 14
a) Interface 16×2 LCD to PIC 16F877 and write assembly language program to display INDIA on second line of LCD.
b) How to initialize USART for transmission of data in Asynchronous mode. Explain the registers associated with it.
c) Explain any one automation and control application based on PIC.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - II (PIC)

Day \& Date: Saturday, 23-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM

Instructions: 1) Q.No. 1 is compulsory. It should be solved in the first 30 minutes in the answer book.

2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) PIR1 register contains \qquad and PIE1 contains \qquad bits.
a) Interrupt Priority, Interrupt Enable
b) Interrupt Flag, Interrupt Priority
c) Interrupt Priority, Interrupt Flag
d) Interrupt Flag, Interrupt Enable
2) The timer used for capture, compare and PWM mode respectively are \qquad .
a) Timer 0, Timer 1, Timer 2
b) Timer 2, Timer 1, Timer 0
c) Timer 1, Timer 1, Timer 2
d) Timer 2, Timer 1, Timer 1
3) What is the execution speed of instruction in PIC while operating at the maximum value of clock rate?
a) $0.1 \mu \mathrm{~s}$
b) $0.2 \mu \mathrm{~s}$
c) $0.4 \mu \mathrm{~s}$
d) $0.8 \mu \mathrm{~s}$
4) What is the status of shift clock supply in an USART synchronous mode?
a) Master - internally, Slave - externally
b) Master - externally, Slave - internally
c) Master \& Slave (both) - internally
d) Master \& Slave (both) - externally
5) Which bit of the SSPCON must be necessarily set so as to enable the synchronization of serial port?
a) WCOL
b) SSPOV
c) CKP
d) SSPEN
6) What is the fundamental role exhibited by the CCP module in compare mode in addition to timer 1 ?
a) To vary the status of synchronization levels
b) To vary the duty cycle of the rectified output
c) To vary the oscillator frequencies in order to receive larger periods
d) To vary the pin status in accordance to the precisely controlled time
7) Which among the below mentioned aspect issues are supported by capture / compare / PWM modules corresponding to time in PIC 16F877?
a) Capture Mode
b) Compare Mode
c) PWM mode
d) All of these
8) Which of the following FSR is used for indirect addressing mode of PIC?
a) INTCON
b) INDF
c) PCL
d) STATUS
9) Special Purpose Registers of PIC 16F877 are mapped into data space at \qquad .
a) $00 \mathrm{H}-1 \mathrm{FH}$
b) $80 \mathrm{H}-9 \mathrm{FH}$
c) both a \& b
d) None of these
10) The SLEEP instructions makes the PIC 16F877 \qquad .
a) Reset
b) Standby mode
c) Power down mode
d) none of these
11) The Vref for ADC in PIC 16F877 is selected by \qquad register.
a) ADCONO
b) ADCON1
c) ADRES
d) PIR1
12) The CALL and GOTO instructions provides \qquad bit address to allow branching within any \qquad program memory space
a) $11,2 \mathrm{~K}$
b) $13,8 \mathrm{~K}$
c) $16,64 \mathrm{~K}$
d) None of these
13) The stack memory for PIC16F877 is the part of \qquad .
a) Program Memory
b) Data Memory
c) Either program or data memory
d) Neither program nor data memory
14) PSA (Prescaler assignment) bit in the option register equals to 1 then \qquad .
a) Prescaler enabled
b) Prescaler disabled
c) Prescaler assigned to WDT
d) Prescaler assigned to TIMER0

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - II (PIC)

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 A) Attempt any two of the following questions.

1) Explain the memory organization of PIC16F877.
2) Explain and give necessity of Brown out reset and Watch Dog Timer.
3) Give the steps to be followed for doing A / D conversion in PIC16F877.
B) Explain the following instructions
4) clrwdt
5) incfsz
Q. 3 Attempt any two of the following questions.
a) With neat block diagram explain PWM mode. How to vary PWM period and duty cycle?
b) Explain CCP1 module, how it is used for compare function along with Timer1?
c) Write assembly language program to complement the data on PORTD at regular interval of time. Use timer 0 to generate a delay.

Section - II

Q. 4 A) Attempt any two of the following questions.
a) Explain how SPI bus can be used for I/O expansion.
b) Draw interfacing of a switch and LED to PIC, when switch is closed the LED should turn ON. Write assembly language program for this.
c) Explain $I^{2} \mathrm{C}$ Bus and how to use it?
B) Explain the features of PIC18. 04
Q. 5 Attempt any two of the following questions. 14
a) Interface 16×2 LCD to PIC 16F877 and write assembly language program to display INDIA on second line of LCD.
b) How to initialize USART for transmission of data in Asynchronous mode. Explain the registers associated with it.
c) Explain any one automation and control application based on PIC.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - II (PIC)

Day \& Date: Saturday, 23-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q.No. 1 is compulsory. It should be solved in the first 30 minutes in the answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The CALL and GOTO instructions provides \qquad bit address to allow branching within any \qquad program memory space
a) $11,2 \mathrm{~K}$
b) $13,8 \mathrm{~K}$
c) $16,64 \mathrm{~K}$
d) None of these
2) The stack memory for PIC16F877 is the part of \qquad .
a) Program Memory
b) Data Memory
c) Either program or data memory
d) Neither program nor data memory
3) PSA (Prescaler assignment) bit in the option register equals to 1 then \qquad .
a) Prescaler enabled
b) Prescaler disabled
c) Prescaler assigned to WDT
d) Prescaler assigned to TIMER0
4) PIR1 register contains \qquad and PIE1 contains \qquad bits.
a) Interrupt Priority, Interrupt Enable
b) Interrupt Flag, Interrupt Priority
c) Interrupt Priority, Interrupt Flag
d) Interrupt Flag, Interrupt Enable
5) The timer used for capture, compare and PWM mode respectively are \qquad .
a) Timer 0, Timer 1, Timer 2
b) Timer 2, Timer 1, Timer 0
c) Timer 1, Timer 1, Timer 2
d) Timer 2, Timer 1, Timer 1
6) What is the execution speed of instruction in PIC while operating at the maximum value of clock rate?
a) $0.1 \mu \mathrm{~s}$
b) $0.2 \mu \mathrm{~s}$
c) $0.4 \mu \mathrm{~s}$
d) $0.8 \mu \mathrm{~s}$
7) What is the status of shift clock supply in an USART synchronous mode?
a) Master - internally, Slave - externally
b) Master - externally, Slave - internally
c) Master \& Slave (both) - internally
d) Master \& Slave (both) - externally
8) Which bit of the SSPCON must be necessarily set so as to enable the synchronization of serial port?
a) WCOL
b) SSPOV
c) CKP
d) SSPEN
9) What is the fundamental role exhibited by the CCP module in compare mode in addition to timer 1 ?
a) To vary the status of synchronization levels
b) To vary the duty cycle of the rectified output
c) To vary the oscillator frequencies in order to receive larger periods
d) To vary the pin status in accordance to the precisely controlled time
10) Which among the below mentioned aspect issues are supported by capture / compare / PWM modules corresponding to time in PIC 16F877?
a) Capture Mode
b) Compare Mode
c) PWM mode
d) All of these
11) Which of the following FSR is used for indirect addressing mode of PIC?
a) INTCON
b) INDF
c) PCL
d) STATUS
12) Special Purpose Registers of PIC 16F877 are mapped into data space at \qquad -
a) $00 \mathrm{H}-1 \mathrm{FH}$
b) $80 \mathrm{H}-9 \mathrm{FH}$
c) both a \& b
d) None of these
13) The SLEEP instructions makes the PIC 16F877 \qquad .
a) Reset
b) Standby mode
c) Power down mode
d) none of these
14) The Vref for ADC in PIC 16F877 is selected by \qquad register.
a) ADCONO
b) ADCON1
c) ADRES
d) PIR1

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - II (PIC)

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 A) Attempt any two of the following questions. 10

1) Explain the memory organization of PIC16F877.
2) Explain and give necessity of Brown out reset and Watch Dog Timer.
3) Give the steps to be followed for doing A / D conversion in PIC16F877.
B) Explain the following instructions 04
4) Clrwdt
5) Incfsz
Q. 3 Attempt any two of the following questions. 14
a) With neat block diagram explain PWM mode. How to vary PWM period and duty cycle?
b) Explain CCP1 module, how it is used for compare function along with Timer1?
c) Write assembly language program to complement the data on PORTD at regular interval of time. Use timer 0 to generate a delay.
Section - II

Q. 4 A) Attempt any two of the following questions.

a) Explain how SPI bus can be used for I/O expansion.
b) Draw interfacing of a switch and LED to PIC, when switch is closed the LED should turn ON. Write assembly language program for this.
c) Explain $I^{2} \mathrm{C}$ Bus and how to use it?
B) Explain the features of PIC18. 04
Q. 5 Attempt any two of the following questions. 14
a) Interface 16×2 LCD to PIC 16F877 and write assembly language program to display INDIA on second line of LCD.
b) How to initialize USART for transmission of data in Asynchronous mode. Explain the registers associated with it.
c) Explain any one automation and control application based on PIC.

Seat
No.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - II (PIC)

Day \& Date: Saturday, 23-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q.No. 1 is compulsory. It should be solved in the first 30 minutes in the answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) What is the execution speed of instruction in PIC while operating at the maximum value of clock rate?
a) $0.1 \mu \mathrm{~s}$
b) $0.2 \mu \mathrm{~s}$
c) $0.4 \mu \mathrm{~s}$
d) $0.8 \mu \mathrm{~s}$
2) What is the status of shift clock supply in an USART synchronous mode?
a) Master - internally, Slave - externally
b) Master - externally, Slave - internally
c) Master \& Slave (both) - internally
d) Master \& Slave (both) - externally
3) Which bit of the SSPCON must be necessarily set so as to enable the synchronization of serial port?
a) WCOL
b) SSPOV
c) CKP
d) SSPEN
4) What is the fundamental role exhibited by the CCP module in compare mode in addition to timer 1 ?
a) To vary the status of synchronization levels
b) To vary the duty cycle of the rectified output
c) To vary the oscillator frequencies in order to receive larger periods
d) To vary the pin status in accordance to the precisely controlled time
5) Which among the below mentioned aspect issues are supported by capture / compare / PWM modules corresponding to time in PIC 16F877?
a) Capture Mode
b) Compare Mode
c) PWM mode
d) All of these
6) Which of the following FSR is used for indirect addressing mode of PIC?
a) INTCON
b) INDF
c) PCL
d) STATUS
7) Special Purpose Registers of PIC 16F877 are mapped into data space at \qquad -
a) $00 \mathrm{H}-1 \mathrm{FH}$
b) $80 \mathrm{H}-9 \mathrm{FH}$
c) both a \& b
d) None of these
8) The SLEEP instructions makes the PIC 16F877 \qquad .
a) Reset
b) Standby mode
c) Power down mode
d) none of these
9) The Vref for ADC in PIC 16F877 is selected by \qquad register.
a) ADCONO
b) ADCON1
c) ADRES
d) PIR1
10) The CALL and GOTO instructions provides \qquad bit address to allow branching within any \qquad program memory space
a) $11,2 \mathrm{~K}$
b) $13,8 \mathrm{~K}$
c) $16,64 \mathrm{~K}$
d) None of these
11) The stack memory for PIC16F877 is the part of \qquad .
a) Program Memory
b) Data Memory
c) Either program or data memory
d) Neither program nor data memory
12) PSA (Prescaler assignment) bit in the option register equals to 1 then \qquad .
a) Prescaler enabled
b) Prescaler disabled
c) Prescaler assigned to WDT
d) Prescaler assigned to TIMER0
13) PIR1 register contains \qquad and PIE1 contains \qquad bits.
a) Interrupt Priority, Interrupt Enable
b) Interrupt Flag, Interrupt Priority
c) Interrupt Priority, Interrupt Flag
d) Interrupt Flag, Interrupt Enable
14) The timer used for capture, compare and PWM mode respectively are \qquad
a) Timer 0, Timer 1, Timer 2
b) Timer 2, Timer 1 , Timer 0
c) Timer 1, Timer 1, Timer 2
d) Timer 2, Timer 1, Timer 1

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLER - II (PIC)

Day \& Date: Saturday, 23-11-2019

Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 A) Attempt any two of the following questions. 10

1) Explain the memory organization of PIC16F877.
2) Explain and give necessity of Brown out reset and Watch Dog Timer.
3) Give the steps to be followed for doing A / D conversion in PIC16F877.
B) Explain the following instructions
4) clrwdt
5) incfsz
Q. 3 Attempt any two of the following questions.
a) With neat block diagram explain PWM mode. How to vary PWM period and duty cycle?
b) Explain CCP1 module, how it is used for compare function along with Timer1?
c) Write assembly language program to complement the data on PORTD at regular interval of time. Use timer 0 to generate a delay.

Section - II

Q. 4 A) Attempt any two of the following questions.
a) Explain how SPI bus can be used for I/O expansion.
b) Draw interfacing of a switch and LED to PIC, when switch is closed the LED should turn ON. Write assembly language program for this.
c) Explain $\mathrm{I}^{2} \mathrm{C}$ Bus and how to use it?
B) Explain the features of PIC18. 04
Q. 5 Attempt any two of the following questions. 14
a) Interface 16×2 LCD to PIC 16F877 and write assembly language program to display INDIA on second line of LCD.
b) How to initialize USART for transmission of data in Asynchronous mode. Explain the registers associated with it.
c) Explain any one automation and control application based on PIC.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \& SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) For AC power control using DIAC and TRIAC using 230 V AC input, power loss across. TRIAC is approximately \qquad \% of load power.
a) 5
b) 10
c) 0.5
d) 1
2) For SCR, holding current is \qquad than latching current.
a) Greater
b) Less
c) equal
d) both (a) and (c)
3) In reverse blocking mode of a SCR, junction \qquad .
a) J 2 reverse \& J 1 , J 3 forward bias
b) J 3 forward bias \& J 1 , J 2 reverse bias
c) $\mathrm{J} 1, \mathrm{~J} 3$ reverse \& J 2 forward bias
d) J1, J2 forward \& J3 reverse bias
4) A single phase fully controlled converter with highly inductive load \& freewheeling diode provides \qquad direction of voltage \& \qquad direction of current.
a) Positive, Negative
b) Positive, Positive
c) Negative, Positive
d) Negative, Negative
5) Single phase fully controlled rectifier with inductive load is operated from $230 \mathrm{~V}, 50 \mathrm{~Hz}$ AC input \& firing angle is 30°. Frequency of ripple in the output is \qquad Hz .
a) 50
b) 100
c) 150
d) 200
6) For Class A commutation series R-L-C circuit in series with SCR is \qquad .
a) Under damped
b) Over damped
c) Critically damped
d) none
7) IC 1596 is \qquad .
a) $3_{1 / 2}$ digit DVM
b) Balanced modulator
c) PLL
d) Timer
8) The time period of IC 2240 is given as \qquad .
a) $T=R C$
b) $\mathrm{T}=0.67 \mathrm{RC}$
c) $\mathrm{T}=0.7 \mathrm{RC}$
d) None of the above
9) The number of IC 74926 required to count frequency of 1 MHz with 0.1 Hz resolution is \qquad .
a) 4
b) 2
c) 7
d) 8
10) When trigger and reset both are applied simultaneously to IC 2240 then?
a) Trigger gets activated
b) Reset gets activated
c) Both a and b
d) None
11) The IC XR 2240 consist of \qquad .
a) 8 bit Counter
b) 4 bit Counter
c) 8 digit Counter
d) 4 digit Counter
12) Which of the following temperature sensor has sensitivity $10 \mathrm{mv} /{ }^{\circ} \mathrm{C}$
a) LM 35
b) J-type thermocouple
c) PT 100
d) None
13) Which of following is self powered temperature sensor?
a) Thermocouple
b) RTD
c) Thermistor
d) None of these
14) For input voltage range $0-2 \mathrm{~V}, \mathrm{t} 2=2000$, required DVM display is.
a) 2 digit
b) 3 digit
c) $3 \frac{1}{2}$ digit
d) $3 \frac{3}{4}$ digit

| Seat |
| :--- | :--- |
| No. |

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \& SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019
Time: 10:00 AM To 01:00 PM
Instructions: 1) All Questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Max. Marks: 56

Section - I

Q. 2 Answer any three of the following question. 12
a) Draw and explain two transistor analogy of an SCR.
b) Explain Class - B type commutation of SCR.
c) Draw and explain AC power control using DIAC and TRIAC for lamp dimmer.
d) Explain the basic principle of working of balanced modulator with waveform.
Q. 3 Answer any one of the following question. 08
a) Draw construction and VI characteristics of SCR and explain its working.
b) Draw and explain single phase controlled rectifier with center tapped transformer and resistive load. Derive expression for average output voltage \& rms load voltage.
Q. 4 Design frequency synthesizer to generate a frequency of 0.1 KHz to 999.9 KHz 08
using PLL 565.

Section - II

Q. 5 Answer any three of the following question. 12
a) Design a timer using XR 2240 to generate a delay of 300 seconds.
b) Design voltage to current converter to convert 0 to 5 V into 4 to 20 mA .
c) Draw and explain architecture of PLC.

Compare between ON - OFF controller and proportional controller.
Q. 6 Answer any one of the following question. 08
a) Design frequency measurement set up to measure frequency up to 100 KHz with 0.1 Hz accuracy. Use IC 74C926.
b) Design ON-OFF temperature controller to control temperature in range of 0 to $100^{\circ} \mathrm{C}$. set point is $60^{\circ} \mathrm{C}$ and required full scale output is 10 V .
Q. 7 Answer any one of the following question.
a) Design $31 / 2$ digit DVM for measurement of $\mathrm{Vin}= \pm 2 \mathrm{~V}$. Use 1 MHz clock.
b) Draw and explain ladder diagram for bottle filling plant system.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \& SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The time period of IC 2240 is given as \qquad .
a) $T=R C$
b) $\mathrm{T}=0.67 \mathrm{RC}$
c) $\mathrm{T}=0.7 \mathrm{RC}$
d) None of the above
2) The number of IC 74926 required to count frequency of 1 MHz with 0.1 Hz resolution is \qquad .
a) 4
b) 2
c) 7
d) 8
3) When trigger and reset both are applied simultaneously to IC 2240 then?
a) Trigger gets activated
b) Reset gets activated
c) Both a and b
d) None
4) The IC XR 2240 consist of \qquad .
a) 8 bit Counter
b) 4 bit Counter
c) 8 digit Counter
d) 4 digit Counter
5) Which of the following temperature sensor has sensitivity $10 \mathrm{mv} /{ }^{\circ} \mathrm{C}$
a) LM 35
b) J-type thermocouple
c) PT 100
d) None
6) Which of following is self powered temperature sensor?
a) Thermocouple
b) RTD
c) Thermistor
d) None of these
7) For input voltage range $0-2 \mathrm{~V}, \mathrm{t} 2=2000$, required DVM display is.
a) 2 digit
b) 3 digit
c) $3 \frac{1}{2}$ digit
d) $33 / 4$ digit
8) For AC power control using DIAC and TRIAC using 230 V AC input, power loss across. TRIAC is approximately \% of load power.
a) 5
b) 10
c) 0.5
d) 1
9) For SCR, holding current is \qquad than latching current.
a) Greater
b) Less
c) equal
d) both (a) and (c)

SLR-FM-244
 Set

10) In reverse blocking mode of a SCR, junction \qquad .
a) J 2 reverse \& J 1 , J 3 forward bias
b) J 3 forward bias \& J1, J2 reverse bias
c) $\mathrm{J} 1, \mathrm{~J} 3$ reverse \& J 2 forward bias
d) $\mathrm{J} 1, \mathrm{~J} 2$ forward \& J 3 reverse bias
11) A single phase fully controlled converter with highly inductive load \& freewheeling diode provides \qquad direction of voltage \& \qquad direction of current.
a) Positive, Negative
b) Positive, Positive
c) Negative, Positive
d) Negative, Negative
12) Single phase fully controlled rectifier with inductive load is operated from $230 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ input \& firing angle is 30°. Frequency of ripple in the output is \qquad Hz .
a) 50
b) 100
c) 150
d) 200
13) For Class A commutation series R-L-C circuit in series with SCR is \qquad .
a) Under damped
b) Over damped
c) Critically damped
d) none
14) IC 1596 is \qquad .
a) $3_{1 / 2}$ digit DVM
b) Balanced modulator
c) PLL
d) Timer

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \& SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019
Time: 10:00 AM To 01:00 PM
Instructions: 1) All Questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Max. Marks: 56

Section - I

Q. 2 Answer any three of the following question. 12
a) Draw and explain two transistor analogy of an SCR.
b) Explain Class - B type commutation of SCR.
c) Draw and explain AC power control using DIAC and TRIAC for lamp dimmer.
d) Explain the basic principle of working of balanced modulator with waveform.
Q. 3 Answer any one of the following question. 08
a) Draw construction and VI characteristics of SCR and explain its working.
b) Draw and explain single phase controlled rectifier with center tapped transformer and resistive load. Derive expression for average output voltage \& rms load voltage.
Q. 4 Design frequency synthesizer to generate a frequency of 0.1 KHz to 999.9 KHz 08
using PLL 565.

Section - II

Q. 5 Answer any three of the following question. 12
a) Design a timer using XR 2240 to generate a delay of 300 seconds.
b) Design voltage to current converter to convert 0 to 5 V into 4 to 20 mA .
c) Draw and explain architecture of PLC.

Compare between ON - OFF controller and proportional controller.
Q. 6 Answer any one of the following question. 08
a) Design frequency measurement set up to measure frequency up to 100 KHz with 0.1 Hz accuracy. Use IC 74C926.
b) Design ON-OFF temperature controller to control temperature in range of 0 to $100^{\circ} \mathrm{C}$. set point is $60^{\circ} \mathrm{C}$ and required full scale output is 10 V .
Q. 7 Answer any one of the following question.
a) Design $31 / 2$ digit DVM for measurement of $\mathrm{Vin}= \pm 2 \mathrm{~V}$. Use 1 MHz clock.
b) Draw and explain ladder diagram for bottle filling plant system.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \& SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Single phase fully controlled rectifier with inductive load is operated from $230 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ input \& firing angle is 30°. Frequency of ripple in the output is \qquad Hz .
a) 50
b) 100
c) 150
d) 200
2) For Class A commutation series R-L-C circuit in series with SCR is \qquad .
a) Under damped
b) Over damped
c) Critically damped
d) none
3) IC 1596 is \qquad .
a) $3_{1 / 2}$ digit DVM
b) Balanced modulator
c) PLL
d) Timer
4) The time period of IC 2240 is given as \qquad .
a) $T=R C$
b) $\mathrm{T}=0.67 \mathrm{RC}$
c) $T=0.7 \mathrm{RC}$
d) None of the above
5) The number of IC 74926 required to count frequency of 1 MHz with 0.1 Hz resolution is \qquad .
a) 4
b) 2
c) 7
d) 8
6) When trigger and reset both are applied simultaneously to IC 2240 then?
a) Trigger gets activated
b) Reset gets activated
c) Both a and b
d) None
7) The IC XR 2240 consist of \qquad .
a) 8 bit Counter
b) 4 bit Counter
c) 8 digit Counter
d) 4 digit Counter
8) Which of the following temperature sensor has sensitivity $10 \mathrm{mv} /{ }^{\circ} \mathrm{C}$
a) LM 35
b) J-type thermocouple
c) PT 100
d) None
9) Which of following is self powered temperature sensor?
a) Thermocouple
b) RTD
c) Thermistor
d) None of these
10) For input voltage range $0-2 \mathrm{~V}, \mathrm{t} 2=2000$, required DVM display is.
a) 2 digit
b) 3 digit
c) $3 \frac{1}{2}$ digit
d) $3^{3 / 4}$ digit
11) For AC power control using DIAC and TRIAC using 230 V AC input, power loss across. TRIAC is approximately \qquad \% of load power.
a) 5
b) 10
c) 0.5
d) 1
12) For SCR, holding current is \qquad than latching current.
a) Greater
b) Less
c) equal
d) both (a) and (c)
13) In reverse blocking mode of a SCR, junction \qquad .
a) J 2 reverse \& J 1 , J 3 forward bias
b) J 3 forward bias \& J1, J2 reverse bias
c) $\mathrm{J} 1, \mathrm{~J} 3$ reverse \& J2 forward bias
d) J1, J2 forward \& J3 reverse bias
14) A single phase fully controlled converter with highly inductive load \& freewheeling diode provides \qquad direction of voltage \& \qquad direction of current.
a) Positive, Negative
b) Positive, Positive
c) Negative, Positive
d) Negative, Negative

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \& SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019
Time: 10:00 AM To 01:00 PM
Instructions: 1) All Questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Max. Marks: 56

Section - I

Q. 2 Answer any three of the following question. 12
a) Draw and explain two transistor analogy of an SCR.
b) Explain Class - B type commutation of SCR.
c) Draw and explain AC power control using DIAC and TRIAC for lamp dimmer.
d) Explain the basic principle of working of balanced modulator with waveform.
Q. 3 Answer any one of the following question. 08
a) Draw construction and VI characteristics of SCR and explain its working.
b) Draw and explain single phase controlled rectifier with center tapped transformer and resistive load. Derive expression for average output voltage \& rms load voltage.
Q. 4 Design frequency synthesizer to generate a frequency of 0.1 KHz to 999.9 KHz 08
using PLL 565.

Section - II

Q. 5 Answer any three of the following question. 12
a) Design a timer using XR 2240 to generate a delay of 300 seconds.
b) Design voltage to current converter to convert 0 to 5 V into 4 to 20 mA .
c) Draw and explain architecture of PLC.

Compare between ON - OFF controller and proportional controller.
Q. 6 Answer any one of the following question. 08
a) Design frequency measurement set up to measure frequency up to 100 KHz with 0.1 Hz accuracy. Use IC 74C926.
b) Design ON-OFF temperature controller to control temperature in range of 0 to $100^{\circ} \mathrm{C}$. set point is $60^{\circ} \mathrm{C}$ and required full scale output is 10 V .
Q. 7 Answer any one of the following question.
a) Design $31 / 2$ digit DVM for measurement of $\mathrm{Vin}= \pm 2 \mathrm{~V}$. Use 1 MHz clock.
b) Draw and explain ladder diagram for bottle filling plant system.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \& SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) When trigger and reset both are applied simultaneously to IC 2240 then?
a) Trigger gets activated
b) Reset gets activated
c) Both a and b
d) None
2) The IC XR 2240 consist of \qquad .
a) 8 bit Counter
b) 4 bit Counter
c) 8 digit Counter
d) 4 digit Counter
3) Which of the following temperature sensor has sensitivity $10 \mathrm{mv} /{ }^{\circ} \mathrm{C}$
a) LM 35
b) J-type thermocouple
c) PT 100
d) None
4) Which of following is self powered temperature sensor?
a) Thermocouple
b) RTD
c) Thermistor
d) None of these
5) For input voltage range $0-2 \mathrm{~V}, \mathrm{t} 2=2000$, required DVM display is.
a) 2 digit
b) 3 digit
c) $3 \frac{1}{2}$ digit
d) $3 \frac{3}{4}$ digit
6) For AC power control using DIAC and TRIAC using 230 V AC input, power loss across. TRIAC is approximately \qquad \% of load power.
a) 5
b) 10
c) 0.5
d) 1
7) For SCR, holding current is \qquad than latching current.
a) Greater
b) Less
c) equal
d) both (a) and (c)
8) In reverse blocking mode of a SCR, junction \qquad .
a) J 2 reverse \& J 1 , J 3 forward bias
b) J 3 forward bias \& J1, J2 reverse bias
c) $\mathrm{J} 1, \mathrm{~J} 3$ reverse \& J 2 forward bias
d) $\mathrm{J} 1, \mathrm{~J} 2$ forward \& J 3 reverse bias
9) A single phase fully controlled converter with highly inductive load \& freewheeling diode provides \qquad direction of voltage \& \qquad direction of current.
a) Positive, Negative
b) Positive, Positive
c) Negative, Positive
d) Negative, Negative
10) Single phase fully controlled rectifier with inductive load is operated from $230 \mathrm{~V}, 50 \mathrm{~Hz} A C$ input \& firing angle is 30°. Frequency of ripple in the output is \qquad Hz .
a) 50
b) 100
c) 150
d) 200
11) For Class A commutation series R-L-C circuit in series with SCR is \qquad .
a) Under damped
b) Over damped
c) Critically damped
d) none
12) IC 1596 is \qquad .
a) $3_{1 / 2}$ digit DVM
b) Balanced modulator
c) PLL
d) Timer
13) The time period of IC 2240 is given as \qquad
a) $T=R C$
b) $\mathrm{T}=0.67 \mathrm{RC}$
c) $T=0.7 \mathrm{RC}$
d) None of the above
14) The number of IC 74926 required to count frequency of 1 MHz with 0.1 Hz resolution is \qquad .
a) 4
b) 2
c) 7
d) 8

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \& SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019
Time: 10:00 AM To 01:00 PM
Instructions: 1) All Questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Max. Marks: 56

Section - I

Q. 2 Answer any three of the following question. 12
a) Draw and explain two transistor analogy of an SCR.
b) Explain Class - B type commutation of SCR.
c) Draw and explain AC power control using DIAC and TRIAC for lamp dimmer.
d) Explain the basic principle of working of balanced modulator with waveform.
Q. 3 Answer any one of the following question. 08
a) Draw construction and VI characteristics of SCR and explain its working.
b) Draw and explain single phase controlled rectifier with center tapped transformer and resistive load. Derive expression for average output voltage \& rms load voltage.
Q. 4 Design frequency synthesizer to generate a frequency of 0.1 KHz to 999.9 KHz 08
using PLL 565.

Section - II

Q. 5 Answer any three of the following question. 12
a) Design a timer using XR 2240 to generate a delay of 300 seconds.
b) Design voltage to current converter to convert 0 to 5 V into 4 to 20 mA .
c) Draw and explain architecture of PLC.

Compare between ON - OFF controller and proportional controller.
Q. 6 Answer any one of the following question. 08
a) Design frequency measurement set up to measure frequency up to 100 KHz with 0.1 Hz accuracy. Use IC 74C926.
b) Design ON-OFF temperature controller to control temperature in range of 0 to $100^{\circ} \mathrm{C}$. set point is $60^{\circ} \mathrm{C}$ and required full scale output is 10 V .
Q. 7 Answer any one of the following question.
a) Design $31 / 2$ digit DVM for measurement of $\mathrm{Vin}= \pm 2 \mathrm{~V}$. Use 1 MHz clock.
b) Draw and explain ladder diagram for bottle filling plant system.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) The total number of guided modes for a step index fiber is approximately given by expression, where V is normalized frequency as \qquad -
a) $\mathrm{M}=\mathrm{V} 2 / 2$
b) $\quad \mathrm{M}=\mathrm{V} 2 / 3$
c) $\mathrm{M}=\mathrm{V} / 2$
d) $\quad M=V 2 / 4$
2) Multimode graded index fibers exhibit for less intermodal dispersion than multimode step index fibers due to their \qquad .
a) Structure
b) Acceptance angle
c) Refractive index profile
d) Multipath reflection
3) When angle of refraction is 90° and the refracted ray emerges parallel to interface between dielectrics the angle of incidence must be less than 90°. This limiting case is known as \qquad .
a) Critical angle
b) Acceptance angle
c) Numerical aperture
d) Skew ray
4) The internal quantum efficiency of LED decreases with \qquad .
a) Increase in temp
b) Decrease in temp
c) Increase in pressure
d) None of these
5) Laser is \qquad optical source
a) Non-coherent
b) Coherent
c) Both a) and b)
d) None of these
6) Which of the following considerations is important when deciding between using a diode laser or an LED?
a) Response time
b) Power levels
c) Temperature sensitivity
d) Failure characteristics
7) The cutoff wavelength is the wavelength above which a particular fiber becomes \qquad _.
a) Multimoded
b) Single moded
c) Not usable
d) Both a) and b)
8) The requirement of detector is \qquad .
a) High fidelity
b) Larger size
c) More numerical aperture
d) All of above
9) A photodiode has a quantum efficiency of 70% when photos of energy
1.8×10^{-19} are incident upon it, then the responsivity of the photodiode is
\qquad
a) 0.694
b) 0.723
c) 0.369
d) 0.623
10) Wavelength division multiplexing is same as \qquad .
a) FDM
b) TDM
c) DWDM
d) None
11) In optical communication system, the light detector is: \qquad .
a) Avalanche Photo Diode (APD)
b) Positive Intrinsic Negative (PIN) diode
c) Phototransistor
d) Either a or b
12) Impact lonization phenomenon occur in \qquad .
a) p-n photodiode
b) avalanche photodiode
c) p-i-n photodiode
d) none of these
13) The basic performance of WDM is determined by \qquad .
a) Insertion loss
b) Transmission loss
c) Noise added in channel
d) All of the Above
14) The electron hole pairs generated in a photodiode are separated by the \qquad .
a) Magnetic field
b) Electric field
c) Static field
d) Depletion region

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Answer any three.
a) List the characteristic of Injection Laser.
b) Using simple ray theory, describe the mechanism for the transmission of light within an optical fiber.
c) A 15 km optical fiber link uses fiber with a loss of $1.5 \mathrm{~dB} \mathrm{~km}^{-1}$. The fiber is jointed every kilometre with connectors which give an attenuation of 0.8 dB each. Determine the minimum mean optical power which must be launched into the fiber in order to maintain a mean optical power level of $0.3 \mu \mathrm{~W}$ at the detector.
d) Define the normalized frequency for an optical fiber and explain its use in the determination of the number of guided modes propagating within a step index fiber. A step index fiber in air has a numerical aperture of 0.16 , a core refractive index of 1.45 and a core diameter of $60 \mu \mathrm{~m}$. Determine the normalized frequency for the fiber when light at a wavelength of $0.9 \mu \mathrm{~m}$ is transmitted. Further, estimate the number of guided modes propagating in the fiber.

Q. 3 Answer any two.

a) Define the term LED power, efficiency and drive the expression for them.
b) Two step index fibers exhibit the following parameters:

1) a multimode fiber with a core refractive index of 1.500, a relative refractive index difference of 3% and an operating wavelength of $0.82 \mu \mathrm{~m}$;
2) an $8 \mu \mathrm{~m}$ core diameter single-mode fiber with a core refractive index the same as(1), a relative refractive index difference of 0.3% and an operating wavelength of $1.55 \mu \mathrm{~m}$. Estimate the critical radius of curvature at which large bending losses occur in both cases.
c) Explain fiber alignment and joint loss.

Section - II

Q. 4 Answer any three

a) Explain detection process in PIN photodiode. Compare the device with
b) Explain the concept of SONET.
c) The quantum efficiency of particular silicon RAPD is 80% for the detection of radiation at a wavelength of $0.9 \mu \mathrm{~m}$. When the incident optical power is $0.5 \mu \mathrm{~W}$, the output current from the device (after avalanche gain) is $11 \mu \mathrm{~A}$. Determine the multiplication factor of the photodiode under these conditions.
d) Explain the concept of Link Design

Q. 5 Answer any two.

12

APD photodiode.

a) A p-n photodiode has a quantum efficiency of 50% at a wavelength of 0.9 $\mu \mathrm{m}$. Calculate:

1) its responsivity at $0.9 \mu \mathrm{~m}$;
2) the received optical power if the mean photocurrent is $10^{-6} \mathrm{~A}$
3) the corresponding number of received photons at this wavelength.
b) Briefly explain the WDM.
c) Explain the transmitter and receiver design for optical communication.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) The requirement of detector is \qquad .
a) High fidelity
b) Larger size
c) More numerical aperture
d) All of above
2) A photodiode has a quantum efficiency of 70% when photos of energy
1.8×10^{-19} are incident upon it, then the responsivity of the photodiode is
\qquad .
a) 0.694
b) 0.723
c) 0.369
d) 0.623
3) Wavelength division multiplexing is same as \qquad .
a) FDM
b) TDM
c) DWDM
d) None
4) In optical communication system, the light detector is: \qquad .
a) Avalanche Photo Diode (APD)
b) Positive Intrinsic Negative (PIN) diode
c) Phototransistor
d) Either a or b
5) Impact Ionization phenomenon occur in \qquad .
a) p-n photodiode
b) avalanche photodiode
c) p-i-n photodiode
d) none of these
6) The basic performance of WDM is determined by \qquad .
a) Insertion loss
b) Transmission loss
c) Noise added in channel
d) All of the Above
7) The electron hole pairs generated in a photodiode are separated by the \qquad -
a) Magnetic field
b) Electric field
c) Static field
d) Depletion region

SLR-FM-245
 Set

8) The total number of guided modes for a step index fiber is approximately given by expression, where V is normalized frequency as \qquad .
a) $\mathrm{M}=\mathrm{V} 2 / 2$
b) $\quad \mathrm{M}=\mathrm{V} 2 / 3$
c) $\mathrm{M}=\mathrm{V} / 2$
d) $\quad M=V 2 / 4$
9) Multimode graded index fibers exhibit for less intermodal dispersion than multimode step index fibers due to their \qquad -
a) Structure
b) Acceptance angle
c) Refractive index profile
d) Multipath reflection
10) When angle of refraction is 90° and the refracted ray emerges parallel to interface between dielectrics the angle of incidence must be less than 90°. This limiting case is known as \qquad .
a) Critical angle
b) Acceptance angle
c) Numerical aperture
d) Skew ray
11) The internal quantum efficiency of LED decreases with \qquad .
a) Increase in temp
b) Decrease in temp
c) Increase in pressure
d) None of these
12) Laser is \qquad optical source
a) Non-coherent
b) Coherent
c) Both a) and b)
d) None of these
13) Which of the following considerations is important when deciding between using a diode laser or an LED?
a) Response time
b) Power levels
c) Temperature sensitivity
d) Failure characteristics
14) The cutoff wavelength is the wavelength above which a particular fiber becomes \qquad .
a) Multimoded
b) Single moded
c) Not usable
d) Both a) and b)

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Answer any three.
a) List the characteristic of Injection Laser.
b) Using simple ray theory, describe the mechanism for the transmission of light within an optical fiber.
c) A 15 km optical fiber link uses fiber with a loss of $1.5 \mathrm{~dB} \mathrm{~km}^{-1}$. The fiber is jointed every kilometre with connectors which give an attenuation of 0.8 dB each. Determine the minimum mean optical power which must be launched into the fiber in order to maintain a mean optical power level of $0.3 \mu \mathrm{~W}$ at the detector.
d) Define the normalized frequency for an optical fiber and explain its use in the determination of the number of guided modes propagating within a step index fiber. A step index fiber in air has a numerical aperture of 0.16 , a core refractive index of 1.45 and a core diameter of $60 \mu \mathrm{~m}$. Determine the normalized frequency for the fiber when light at a wavelength of $0.9 \mu \mathrm{~m}$ is transmitted. Further, estimate the number of guided modes propagating in the fiber.

Q. 3 Answer any two.

a) Define the term LED power, efficiency and drive the expression for them.
b) Two step index fibers exhibit the following parameters:

1) a multimode fiber with a core refractive index of 1.500, a relative refractive index difference of 3% and an operating wavelength of $0.82 \mu \mathrm{~m}$;
2) an $8 \mu \mathrm{~m}$ core diameter single-mode fiber with a core refractive index the same as(1), a relative refractive index difference of 0.3% and an operating wavelength of $1.55 \mu \mathrm{~m}$. Estimate the critical radius of curvature at which large bending losses occur in both cases.
c) Explain fiber alignment and joint loss.

SLR-FM-245

Set

Section - II

Q. 4 Answer any three

a) Explain detection process in PIN photodiode. Compare the device with APD photodiode.
b) Explain the concept of SONET.
c) The quantum efficiency of particular silicon RAPD is 80% for the detection of radiation at a wavelength of $0.9 \mu \mathrm{~m}$. When the incident optical power is $0.5 \mu \mathrm{~W}$, the output current from the device (after avalanche gain) is $11 \mu \mathrm{~A}$. Determine the multiplication factor of the photodiode under these conditions.
d) Explain the concept of Link Design

Q. 5 Answer any two.

a) A p-n photodiode has a quantum efficiency of 50% at a wavelength of 0.9 $\mu \mathrm{m}$. Calculate:

1) its responsivity at $0.9 \mu \mathrm{~m}$;
2) the received optical power if the mean photocurrent is $10^{-6} \mathrm{~A}$
3) the corresponding number of received photons at this wavelength.
b) Briefly explain the WDM.
c) Explain the transmitter and receiver design for optical communication.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) Laser is \qquad optical source
a) Non-coherent
b) Coherent
c) Both a) and b)
d) None of these
2) Which of the following considerations is important when deciding between using a diode laser or an LED?
a) Response time
b) Power levels
c) Temperature sensitivity
d) Failure characteristics
3) The cutoff wavelength is the wavelength above which a particular fiber becomes \qquad .
a) Multimoded
b) Single moded
c) Not usable
d) Both a) and b)
4) The requirement of detector is \qquad .
a) High fidelity
b) Larger size
c) More numerical aperture
d) All of above
5) A photodiode has a quantum efficiency of 70% when photos of energy 1.8×10^{-19} are incident upon it, then the responsivity of the photodiode is
\qquad .
a) 0.694
b) 0.723
c) 0.369
d) 0.623
6) Wavelength division multiplexing is same as \qquad .
a) FDM
b) TDM
c) DWDM
d) None
7) In optical communication system, the light detector is: \qquad .
a) Avalanche Photo Diode (APD)
b) Positive Intrinsic Negative (PIN) diode
c) Phototransistor
d) Either a or b
8) Impact lonization phenomenon occur in \qquad .
a) p-n photodiode
b) avalanche photodiode
c) p-i-n photodiode
d) none of these

SLR-FM-245
 Set

9) The basic performance of WDM is determined by \qquad .
a) Insertion loss
b) Transmission loss
c) Noise added in channel
d) All of the Above
10) The electron hole pairs generated in a photodiode are separated by the \qquad -
a) Magnetic field
b) Electric field
c) Static field
d) Depletion region
11) The total number of guided modes for a step index fiber is approximately given by expression, where V is normalized frequency as \qquad .
a) $\mathrm{M}=\mathrm{V} 2 / 2$
b) $\quad \mathrm{M}=\mathrm{V} 2 / 3$
c) $\mathrm{M}=\mathrm{V} / 2$
d) $\quad \mathrm{M}=\mathrm{V} 2 / 4$
12) Multimode graded index fibers exhibit for less intermodal dispersion than multimode step index fibers due to their \qquad .
a) Structure
b) Acceptance angle
c) Refractive index profile
d) Multipath reflection
13) When angle of refraction is 90° and the refracted ray emerges parallel to interface between dielectrics the angle of incidence must be less than 90°. This limiting case is known as \qquad .
a) Critical angle
b) Acceptance angle
c) Numerical aperture
d) Skew ray
14) The internal quantum efficiency of LED decreases with \qquad .
a) Increase in temp
b) Decrease in temp
c) Increase in pressure
d) None of these

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Answer any three.
a) List the characteristic of Injection Laser.
b) Using simple ray theory, describe the mechanism for the transmission of light within an optical fiber.
c) A 15 km optical fiber link uses fiber with a loss of $1.5 \mathrm{~dB} \mathrm{~km}^{-1}$. The fiber is jointed every kilometre with connectors which give an attenuation of 0.8 dB each. Determine the minimum mean optical power which must be launched into the fiber in order to maintain a mean optical power level of $0.3 \mu \mathrm{~W}$ at the detector.
d) Define the normalized frequency for an optical fiber and explain its use in the determination of the number of guided modes propagating within a step index fiber. A step index fiber in air has a numerical aperture of 0.16 , a core refractive index of 1.45 and a core diameter of $60 \mu \mathrm{~m}$. Determine the normalized frequency for the fiber when light at a wavelength of $0.9 \mu \mathrm{~m}$ is transmitted. Further, estimate the number of guided modes propagating in the fiber.

Q. 3 Answer any two.

a) Define the term LED power, efficiency and drive the expression for them.
b) Two step index fibers exhibit the following parameters:

1) a multimode fiber with a core refractive index of 1.500, a relative refractive index difference of 3% and an operating wavelength of $0.82 \mu \mathrm{~m}$;
2) an $8 \mu \mathrm{~m}$ core diameter single-mode fiber with a core refractive index the same as(1), a relative refractive index difference of 0.3% and an operating wavelength of $1.55 \mu \mathrm{~m}$. Estimate the critical radius of curvature at which large bending losses occur in both cases.
c) Explain fiber alignment and joint loss.

Section - II

Q. 4 Answer any three

a) Explain detection process in PIN photodiode. Compare the device with APD photodiode.
b) Explain the concept of SONET.
c) The quantum efficiency of particular silicon RAPD is 80% for the detection of radiation at a wavelength of $0.9 \mu \mathrm{~m}$. When the incident optical power is $0.5 \mu \mathrm{~W}$, the output current from the device (after avalanche gain) is $11 \mu \mathrm{~A}$. Determine the multiplication factor of the photodiode under these conditions.
d) Explain the concept of Link Design

Q. 5 Answer any two.

a) A p-n photodiode has a quantum efficiency of 50% at a wavelength of 0.9 $\mu \mathrm{m}$. Calculate:

1) its responsivity at $0.9 \mu \mathrm{~m}$;
2) the received optical power if the mean photocurrent is $10^{-6} \mathrm{~A}$
3) the corresponding number of received photons at this wavelength.
b) Briefly explain the WDM.
c) Explain the transmitter and receiver design for optical communication.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) Wavelength division multiplexing is same as \qquad .
a) FDM
b) TDM
c) DWDM
d) None
2) In optical communication system, the light detector is: \qquad .
a) Avalanche Photo Diode (APD)
b) Positive Intrinsic Negative (PIN) diode
c) Phototransistor
d) Either a or b
3) Impact lonization phenomenon occur in \qquad .
a) p-n photodiode
b) avalanche photodiode
c) p-i-n photodiode
d) none of these
4) The basic performance of WDM is determined by \qquad .
a) Insertion loss
b) Transmission loss
c) Noise added in channel
d) All of the Above
5) The electron hole pairs generated in a photodiode are separated by the \qquad .
a) Magnetic field
b) Electric field
c) Static field
d) Depletion region
6) The total number of guided modes for a step index fiber is approximately given by expression, where V is normalized frequency as \qquad .
a) $\mathrm{M}=\mathrm{V} 2 / 2$
b) $\quad \mathrm{M}=\mathrm{V} 2 / 3$
c) $M=V / 2$
d) $\quad \mathrm{M}=\mathrm{V} 2 / 4$
7) Multimode graded index fibers exhibit for less intermodal dispersion than multimode step index fibers due to their \qquad .
a) Structure
b) Acceptance angle
c) Refractive index profile
d) Multipath reflection
8) When angle of refraction is 90° and the refracted ray emerges parallel to interface between dielectrics the angle of incidence must be less than 90°. This limiting case is known as \qquad .
a) Critical angle
b) Acceptance angle
c) Numerical aperture
d) Skew ray
9) The internal quantum efficiency of LED decreases with \qquad .
a) Increase in temp
b) Decrease in temp
c) Increase in pressure
d) None of these
10) Laser is \qquad optical source
a) Non-coherent
b) Coherent
c) Both a) and b)
d) None of these
11) Which of the following considerations is important when deciding between using a diode laser or an LED?
a) Response time
b) Power levels
c) Temperature sensitivity
d) Failure characteristics
12) The cutoff wavelength is the wavelength above which a particular fiber becomes \qquad .
a) Multimoded
b) Single moded
c) Not usable
d) Both a) and b)
13) The requirement of detector is \qquad .
a) High fidelity
b) Larger size
c) More numerical aperture
d) All of above
14) A photodiode has a quantum efficiency of 70% when photos of energy 1.8×10^{-19} are incident upon it, then the responsivity of the photodiode is
\qquad
a) 0.0
a) 0.694
b) 0.723
c) 0.369
d) 0.623

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Answer any three.
a) List the characteristic of Injection Laser.
b) Using simple ray theory, describe the mechanism for the transmission of light within an optical fiber.
c) A 15 km optical fiber link uses fiber with a loss of $1.5 \mathrm{~dB} \mathrm{~km}^{-1}$. The fiber is jointed every kilometre with connectors which give an attenuation of 0.8 dB each. Determine the minimum mean optical power which must be launched into the fiber in order to maintain a mean optical power level of $0.3 \mu \mathrm{~W}$ at the detector.
d) Define the normalized frequency for an optical fiber and explain its use in the determination of the number of guided modes propagating within a step index fiber. A step index fiber in air has a numerical aperture of 0.16 , a core refractive index of 1.45 and a core diameter of $60 \mu \mathrm{~m}$. Determine the normalized frequency for the fiber when light at a wavelength of $0.9 \mu \mathrm{~m}$ is transmitted. Further, estimate the number of guided modes propagating in the fiber.

Q. 3 Answer any two.

a) Define the term LED power, efficiency and drive the expression for them.
b) Two step index fibers exhibit the following parameters:

1) a multimode fiber with a core refractive index of 1.500, a relative refractive index difference of 3% and an operating wavelength of $0.82 \mu \mathrm{~m}$;
2) an $8 \mu \mathrm{~m}$ core diameter single-mode fiber with a core refractive index the same as(1), a relative refractive index difference of 0.3% and an operating wavelength of $1.55 \mu \mathrm{~m}$. Estimate the critical radius of curvature at which large bending losses occur in both cases.
c) Explain fiber alignment and joint loss.

Section - II

Q. 4 Answer any three

a) Explain detection process in PIN photodiode. Compare the device with APD photodiode.
b) Explain the concept of SONET.
c) The quantum efficiency of particular silicon RAPD is 80% for the detection of radiation at a wavelength of $0.9 \mu \mathrm{~m}$. When the incident optical power is $0.5 \mu \mathrm{~W}$, the output current from the device (after avalanche gain) is $11 \mu \mathrm{~A}$. Determine the multiplication factor of the photodiode under these conditions.
d) Explain the concept of Link Design

Q. 5 Answer any two.

a) A p-n photodiode has a quantum efficiency of 50% at a wavelength of 0.9 $\mu \mathrm{m}$. Calculate:

1) its responsivity at $0.9 \mu \mathrm{~m}$;
2) the received optical power if the mean photocurrent is $10^{-6} \mathrm{~A}$
3) the corresponding number of received photons at this wavelength.
b) Briefly explain the WDM.
c) Explain the transmitter and receiver design for optical communication.

Seat
 No.

 T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019

 T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

 MOBILE COMMUNICATION}

Set P

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book.
2) Assume suitable data if necessary.
4) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) GSM stands for \qquad -.
a) Global service for mobile
b) Global scope for mobile
c) Group of special machines
d) Global system for mobile
2) The scheme in which each cell is allocated a predetermined set of voice channels is called as \qquad .
a) Dynamic channel
b) Fixed channel
c) Demand channel
d) Forward channel
3) ln \qquad Frequency Spectrum is divided into smaller spectra and is allocated to each user.
a) TDMA
b) CDMA
c) FDMA
d) FGMA
4) The antenna which attempts to direct all its energy in a particular direction is called as a \qquad .
a) Directional Antenna
b) One to one Antenna
c) Propagation Antenna
d) Single Direction Antenna
5) Reflection is?
a) Propagation mode
b) Propagation mechanism
c) Spread spectrum
d) None of the above
6) Spot Beam antenna is used in which of the following multiple access technique?
a) TDMA
b) FDMA
c) SDMA
d) Both (a) and (b)
7) The model considered for both direct path and ground reflected propagation path between T-R is \qquad .
a) Hata model
b) Two ray model
c) Free space model
d) Okumura model
8) Modulation technique used in CDMA 2000 is \qquad .
a) Uplink - QPSK, Downlink - BPSK
b) Uplink - BPSK, Downlink - QPSK
c) Uplink - BPSK, Downlink - BPSK
d) None of the above
9) In GSM the downlink frequency band is \qquad .
a) $890-915 \mathrm{MHz}$
b) $935-960 \mathrm{MHz}$
c) $\quad 890-935 \mathrm{MHz}$
d) $917-945 \mathrm{MHz}$
10) An interface which connects a BTS to a BSC is called \qquad interface.
a) Channel Interface
b) Signaling Interface
c) Abis Interface
d) None of these
11) IMT 2000 stands for \qquad .
a) International Mobile Telecommunication
b) Interim Mobile Telecommunication
c) International Mobile Technology
d) None of these
12) What is modulation technique used in IS-95 CDMA Reverse Channel?
a) QPSK
b) OPQSK
c) MSK
d) FSK
13) GSM is a \qquad generation cellular system.
a) First
b) Second
c) Third
d) None of these
14) Each group of 26 consecutive TDMA frames is called a \qquad .
a) Multi frame
b) Mini frame
c) Mainframe
d) All of the above

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

Day \& Date: Wednesday, 27-11-2019 Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four of the following.
a) Explain the process of Handoff in cellular system.
b) Find the far field distance for an antenna with maximum dimension of 1 meter and operating frequency of 900 MHz .
c) Explain the concept of interference and system capacity.
d) What is diffraction? Explain knife edge diffraction.
e) Describe TDMA technique in detail and compare it with FDMA.
Q. 3 Attempt any two of the following.
a) Explain in brief different methods used to improve capacity of cellular system.
b) For given path loss exponent (i) $\mathrm{n}=4$ and (ii) $\mathrm{n}=3$ find the frequency reuse factor and the cluster size that should be used for maximum capacity. The signal-to-interference ratio of 15 dB is minimum required for satisfactory forward channel performance of a cellular system. There are 6 co-channel cells in the first tier and all of them are at the same distance from the mobile.
c) Explain ground reflection model (two ray model). Also prove that the $\boldsymbol{\Delta}=\left(2 \mathrm{~h}_{\mathrm{t}} \mathrm{h}_{\mathrm{r}}\right) / \mathrm{d}$
(Where $\mathbf{\Delta}$ - path difference between the Line of sight and ground reflected path)

Section - II

Q. 4 Attempt any four of the following.
a) Explain with neat block diagram forward channels in W-CDMA.
b) Explain in detail forward IS 95-CDMA link structure.
c) What is Handoff? Explain Handoff in GSM.
d) Explain GSM frames in detail.
e) Explain mobile call termination sequence in GSM.

Q. 5 Attempt any two of the following.

a) Explain 4G/LTE architecture.
b) Draw and explain GSM signaling architecture in detail.
c) Explain packet and frame format for forward and reverse CDMA IS-95 channels.

SLR-FM-246

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

Day \& Date: Wednesday, 27-11-2019
Time: 10:00 AM To 01:00 PMInstructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book.
2) Assume suitable data if necessary.
4) Figures to right indicate full marks.

MCQ/Objective Type Questions

Max. Marks: 70

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Modulation technique used in CDMA 2000 is \qquad -.
a) Uplink - QPSK, Downlink - BPSK
b) Uplink - BPSK, Downlink - QPSK
c) Uplink - BPSK, Downlink - BPSK
d) None of the above
2) In GSM the downlink frequency band is \qquad .
a) $890-915 \mathrm{MHz}$
b) $935-960 \mathrm{MHz}$
c) $\quad 890-935 \mathrm{MHz}$
d) $917-945 \mathrm{MHz}$
3) An interface which connects a BTS to a BSC is called \qquad interface.
a) Channel Interface
b) Signaling Interface
c) Abis Interface
d) None of these
4) IMT 2000 stands for \qquad .
a) International Mobile Telecommunication
b) Interim Mobile Telecommunication
c) International Mobile Technology
d) None of these
5) What is modulation technique used in IS-95 CDMA Reverse Channel?
a) QPSK
b) OPQSK
c) MSK
d) FSK
6) GSM is a \qquad generation cellular system.
a) First
b) Second
c) Third
d) None of these
7) Each group of 26 consecutive TDMA frames is called a \qquad .
a) Multi frame
b) Mini frame
c) Mainframe
d) All of the above
8) GSM stands for \qquad .
a) Global service for mobile
b) Global scope for mobile
c) Group of special machines
d) Global system for mobile
9) The scheme in which each cell is allocated a predetermined set of voice channels is called as \qquad .
a) Dynamic channel
b) Fixed channel
c) Demand channel
d) Forward channel
10) In \qquad Frequency Spectrum is divided into smaller spectra and is allocated to each user.
a) TDMA
b) CDMA
c) FDMA
d) FGMA
11) The antenna which attempts to direct all its energy in a particular direction is called as a \qquad .
a) Directional Antenna
b) One to one Antenna
c) Propagation Antenna
d) Single Direction Antenna
12) Reflection is?
a) Propagation mode
b) Propagation mechanism
c) Spread spectrum
d) None of the above
13) Spot Beam antenna is used in which of the following multiple access technique?
a) TDMA
b) FDMA
c) SDMA
d) Both (a) and (b)
14) The model considered for both direct path and ground reflected propagation path between $T-R$ is \qquad .
a) Hata model
b) Two ray model
c) Free space model
d) Okumura model

Seat

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

Day \& Date: Wednesday, 27-11-2019 Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data if necessary.

Section-I

Q. 2 Attempt any four of the following.
a) Explain the process of Handoff in cellular system.
b) Find the far field distance for an antenna with maximum dimension of 1 meter and operating frequency of 900 MHz .
c) Explain the concept of interference and system capacity.
d) What is diffraction? Explain knife edge diffraction.
e) Describe TDMA technique in detail and compare it with FDMA.

Q. 3 Attempt any two of the following.

a) Explain in brief different methods used to improve capacity of cellular system.
b) For given path loss exponent (i) $\mathrm{n}=4$ and (ii) $\mathrm{n}=3$ find the frequency reuse factor and the cluster size that should be used for maximum capacity. The signal-to-interference ratio of 15 dB is minimum required for satisfactory forward channel performance of a cellular system. There are 6 co-channel cells in the first tier and all of them are at the same distance from the mobile.
c) Explain ground reflection model (two ray model). Also prove that the $\boldsymbol{\Delta}=\left(2 \mathrm{~h}_{\mathrm{t}} \mathrm{h}_{\mathrm{r}}\right) / \mathrm{d}$
(Where $\boldsymbol{\Delta}$ - path difference between the Line of sight and ground reflected path)

Section - II
Q. 4 Attempt any four of the following.
a) Explain with neat block diagram forward channels in W-CDMA.
b) Explain in detail forward IS 95-CDMA link structure.
c) What is Handoff? Explain Handoff in GSM.
d) Explain GSM frames in detail.
e) Explain mobile call termination sequence in GSM.
a) Explain 4G/LTE architecture.
b) Draw and explain GSM signaling architecture in detail.
c) Explain packet and frame format for forward and reverse CDMA IS-95 channels.

Seat
 No.
 T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

Set R

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book.
2) Assume suitable data if necessary.
4) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Reflection is?
a) Propagation mode
b) Propagation mechanism
c) Spread spectrum
d) None of the above
2) Spot Beam antenna is used in which of the following multiple access technique?
a) TDMA
b) FDMA
c) SDMA
d) Both (a) and (b)
3) The model considered for both direct path and ground reflected propagation path between T-R is \qquad .
a) Hata model
b) Two ray model
c) Free space model
d) Okumura model
4) Modulation technique used in CDMA 2000 is \qquad .
a) Uplink - QPSK, Downlink - BPSK
b) Uplink - BPSK, Downlink - QPSK
c) Uplink - BPSK, Downlink - BPSK
d) None of the above
5) In GSM the downlink frequency band is \qquad .
a) $890-915 \mathrm{MHz}$
b) $935-960 \mathrm{MHz}$
c) $\quad 890-935 \mathrm{MHz}$
d) $917-945 \mathrm{MHz}$
6) An interface which connects a BTS to a BSC is called \qquad interface.
a) Channel Interface
b) Signaling Interface
c) Abis Interface
d) None of these
7) IMT 2000 stands for \qquad .
a) International Mobile Telecommunication
b) Interim Mobile Telecommunication
c) International Mobile Technology
d) None of these
8) What is modulation technique used in IS-95 CDMA Reverse Channel?
a) QPSK
b) OPQSK
c) MSK
d) FSK
9) GSM is a \qquad generation cellular system.
a) First
b) Second
c) Third
d) None of these
10) Each group of 26 consecutive TDMA frames is called a \qquad .
a) Multi frame
b) Mini frame
c) Mainframe
d) All of the above
11) GSM stands for \qquad .
a) Global service for mobile
b) Global scope for mobile
c) Group of special machines
d) Global system for mobile
12) The scheme in which each cell is allocated a predetermined set of voice channels is called as \qquad .
a) Dynamic channel
b) Fixed channel
c) Demand channel
d) Forward channel
13) In \qquad Frequency Spectrum is divided into smaller spectra and is allocated to each user.
a) TDMA
b) CDMA
c) FDMA
d) FGMA
14) The antenna which attempts to direct all its energy in a particular direction is called as a \qquad .
a) Directional Antenna
b) One to one Antenna
c) Propagation Antenna
d) Single Direction Antenna

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four of the following.
a) Explain the process of Handoff in cellular system.
b) Find the far field distance for an antenna with maximum dimension of 1 meter and operating frequency of 900 MHz .
c) Explain the concept of interference and system capacity.
d) What is diffraction? Explain knife edge diffraction.
e) Describe TDMA technique in detail and compare it with FDMA.
Q. 3 Attempt any two of the following.
a) Explain in brief different methods used to improve capacity of cellular system.
b) For given path loss exponent (i) $\mathrm{n}=4$ and (ii) $\mathrm{n}=3$ find the frequency reuse factor and the cluster size that should be used for maximum capacity. The signal-to-interference ratio of 15 dB is minimum required for satisfactory forward channel performance of a cellular system. There are 6 co-channel cells in the first tier and all of them are at the same distance from the mobile.
c) Explain ground reflection model (two ray model). Also prove that the $\boldsymbol{\Delta}=\left(2 \mathrm{~h}_{\mathrm{t}} \mathrm{h}_{\mathrm{r}}\right) / \mathrm{d}$
(Where $\mathbf{\triangle}$ - path difference between the Line of sight and ground reflected path)

Section - II

Q. 4 Attempt any four of the following.
a) Explain with neat block diagram forward channels in W-CDMA.
b) Explain in detail forward IS 95-CDMA link structure.
c) What is Handoff? Explain Handoff in GSM.
d) Explain GSM frames in detail.
e) Explain mobile call termination sequence in GSM.

Q. 5 Attempt any two of the following.

a) Explain 4G/LTE architecture.
b) Draw and explain GSM signaling architecture in detail.
c) Explain packet and frame format for forward and reverse CDMA IS-95 channels.

Seat
 No.

 T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019

 T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

 MOBILE COMMUNICATION}Set

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book.
2) Assume suitable data if necessary.
4) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) An interface which connects a BTS to a BSC is called \qquad interface.
a) Channel Interface
b) Signaling Interface
c) Abis Interface
d) None of these
2) IMT 2000 stands for \qquad .
a) International Mobile Telecommunication
b) Interim Mobile Telecommunication
c) International Mobile Technology
d) None of these
3) What is modulation technique used in IS-95 CDMA Reverse Channel?
a) QPSK
b) OPQSK
c) MSK
d) FSK
4) GSM is a \qquad generation cellular system.
a) First
b) Second
c) Third
d) None of these
5) Each group of 26 consecutive TDMA frames is called a \qquad .
a) Multi frame
b) Mini frame
c) Mainframe
d) All of the above
6) GSM stands for \qquad .
a) Global service for mobile
b) Global scope for mobile
c) Group of special machines
d) Global system for mobile
7) The scheme in which each cell is allocated a predetermined set of voice channels is called as \qquad .
a) Dynamic channel
b) Fixed channel
c) Demand channel
d) Forward channel
8) In \qquad Frequency Spectrum is divided into smaller spectra and is allocated to each user.
a) TDMA
b) CDMA
c) FDMA
d) FGMA
9) The antenna which attempts to direct all its energy in a particular direction is called as a \qquad .
a) Directional Antenna
b) One to one Antenna
c) Propagation Antenna
d) Single Direction Antenna
10) Reflection is?
a) Propagation mode
b) Propagation mechanism
c) Spread spectrum
d) None of the above
11) Spot Beam antenna is used in which of the following multiple access technique?
a) TDMA
b) FDMA
c) SDMA
d) Both (a) and (b)
12) The model considered for both direct path and ground reflected propagation path between T-R is \qquad .
a) Hata model
b) Two ray model
c) Free space model
d) Okumura model
13) Modulation technique used in CDMA 2000 is \qquad .
a) Uplink - QPSK, Downlink - BPSK
b) Uplink - BPSK, Downlink - QPSK
c) Uplink - BPSK, Downlink - BPSK
d) None of the above
14) In GSM the downlink frequency band is \qquad .
a) $890-915 \mathrm{MHz}$
b) $935-960 \mathrm{MHz}$
c) $\quad 890-935 \mathrm{MHz}$
d) $917-945 \mathrm{MHz}$
Seat
No.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four of the following.
a) Explain the process of Handoff in cellular system.
b) Find the far field distance for an antenna with maximum dimension of 1 meter and operating frequency of 900 MHz .
c) Explain the concept of interference and system capacity.
d) What is diffraction? Explain knife edge diffraction.
e) Describe TDMA technique in detail and compare it with FDMA.

Q. 3 Attempt any two of the following.

a) Explain in brief different methods used to improve capacity of cellular system.
b) For given path loss exponent (i) $\mathrm{n}=4$ and (ii) $\mathrm{n}=3$ find the frequency reuse factor and the cluster size that should be used for maximum capacity. The signal-to-interference ratio of 15 dB is minimum required for satisfactory forward channel performance of a cellular system. There are 6 co-channel cells in the first tier and all of them are at the same distance from the mobile.
c) Explain ground reflection model (two ray model). Also prove that the $\boldsymbol{\Delta}=\left(2 \mathrm{~h}_{\mathrm{t}} \mathrm{h}_{\mathrm{r}}\right) / \mathrm{d}$
(Where $\boldsymbol{\Delta}$ - path difference between the Line of sight and ground reflected path)

Section - II

Q. 4 Attempt any four of the following.
a) Explain with neat block diagram forward channels in W-CDMA.
b) Explain in detail forward IS 95-CDMA link structure.
c) What is Handoff? Explain Handoff in GSM.
d) Explain GSM frames in detail.
e) Explain mobile call termination sequence in GSM.
Q. 5 Attempt any two of the following.
a) Explain 4G/LTE architecture.
b) Draw and explain GSM signaling architecture in detail.
c) Explain packet and frame format for forward and reverse CDMA IS-95 channels.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION

Day \& Date: Thursday, 28-12-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in

 answer book.2) Answer MCQ Objective type questions on Page No. 3 only
3) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10

Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) The addressing mode, where operand value is directly specified is called \qquad .
a) Immediate
b) Direct
c) Definite
d) Relative
2) Which representation is most efficient to perform arithmetic operations?
a) Sign magnitude
b) 1's complements
c) 2's complements
d) None of these
3) Which register points to the first instruction to be executed when the processor starts.
a) Accumulator
b) Program counter
c) Data register
d) Instruction register
4) Speedup techniques of computer include \qquad .
a) cache
b) pipeline
c) superscalar
d) all of these
5) Floating point representation consist of \qquad .
a) Mantissa
b) exponent
c) Both a) and b)
d) none of these
6) To read the control words sequentially \qquad is used.
a) PC
b) $I R$
c) $u P C$
d) None of these
7) Data used with assembly language instruction in processors are nothing but \qquad .
a) Opcode
b) Operand
c) Register
d) None of these
8) In Processor DMA Stand for \qquad .
a) Direct Memory Access
b) Division Memory Access
c) Direct mapping Access
d) All of the above
9) What is not true about RISC?
a) Large no of addressing modes
b) Simple instruction
c) Hardwired control unit
d) A single chip processor
10) To interface 2048 bytes of memory, how many address lines are required?
a) 8
b) 9
c) 10
d) 11

Seat	
No.	

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION

Day \& Date: Thursday, 28-12-2019
Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No.2.
2) Figures to right indicate full marks.
Q. 2 Attempt any four (each 10 marks)
a) Write note Virtual memory system.
b) Explain instruction set formats in detail.
c) Explain CISC and RISC Architecture in detail.
d) Explain GCD processor hardwired control unit.
e) Explain memory allocation schemes in details.
f) Explain in detail cache memory organization.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION

Day \& Date: Thursday, 28-12-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in answer book.
2) Answer MCQ Objective type questions on Page No. 3 only
3) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10

Q. 1 Choose the correct alternatives from the options and rewrite the 10 sentence.

1) To read the control words sequentially \qquad is used.
a) PC
b) $I R$
c) $u P C$
d) None of these
2) Data used with assembly language instruction in processors are nothing but \qquad .
a) Opcode
b) Operand
c) Register
d) None of these
3) In Processor DMA Stand for \qquad .
a) Direct Memory Access
b) Division Memory Access
c) Direct mapping Access
d) All of the above
4) What is not true about RISC?
a) Large no of addressing modes
b) Simple instruction
c) Hardwired control unit
d) A single chip processor
5) To interface 2048 bytes of memory, how many address lines are required?
a) 8
b) 9
c) 10
d) 11
6) The addressing mode, where operand value is directly specified is called \qquad .
a) Immediate
b) Direct
c) Definite
d) Relative
7) Which representation is most efficient to perform arithmetic operations?
a) Sign magnitude
b) 1's complements
c) 2's complements
d) None of these
8) Which register points to the first instruction to be executed when the processor starts.
a) Accumulator
b) Program counter
c) Data register
d) Instruction register
9) Speedup techniques of computer include \qquad .
a) cache
b) pipeline
c) superscalar
d) all of these
10) Floating point representation consist of
a) Mantissa
b) exponent
c) Both a) and b)
d) none of these

Seat	
No.	

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION

Day \& Date: Thursday, 28-12-2019
Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No.2.
2) Figures to right indicate full marks.
Q. 2 Attempt any four (each 10 marks)
a) Write note Virtual memory system.
b) Explain instruction set formats in detail.
c) Explain CISC and RISC Architecture in detail.
d) Explain GCD processor hardwired control unit.
e) Explain memory allocation schemes in details.
f) Explain in detail cache memory organization.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION

Day \& Date: Thursday, 28-12-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in answer book.
2) Answer MCQ Objective type questions on Page No. 3 only
3) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10

Q. 1 Choose the correct alternatives from the options and rewrite the 10 sentence.

1) What is not true about RISC?
a) Large no of addressing modes
b) Simple instruction
c) Hardwired control unit
d) A single chip processor
2) To interface 2048 bytes of memory, how many address lines are required?
a) 8
b) 9
c) 10
d) 11
3) The addressing mode, where operand value is directly specified is called \qquad .
a) Immediate
b) Direct
c) Definite
d) Relative
4) Which representation is most efficient to perform arithmetic operations?
a) Sign magnitude
b) 1's complements
c) 2's complements
d) None of these
5) Which register points to the first instruction to be executed when the processor starts.
a) Accumulator
b) Program counter
c) Data register
d) Instruction register
6) Speedup techniques of computer include \qquad .
a) cache
b) pipeline
c) superscalar
d) all of these
7) Floating point representation consist of \qquad .
a) Mantissa
b) exponent
c) Both a) and b)
d) none of these
8) To read the control words sequentially \qquad is used.
a) PC
b) $\quad I R$
c) $u P C$
d) None of these
9) Data used with assembly language instruction in processors are nothing but \qquad .
a) Opcode
b) Operand
c) Register
d) None of these
10) In Processor DMA Stand for
a) Direct Memory Access
b) Division Memory Access
c) Direct mapping Access
d) All of the above

Seat	
No.	

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION

Day \& Date: Thursday, 28-12-2019
Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No.2.
2) Figures to right indicate full marks.
Q. 2 Attempt any four (each 10 marks)
a) Write note Virtual memory system.
b) Explain instruction set formats in detail.
c) Explain CISC and RISC Architecture in detail.
d) Explain GCD processor hardwired control unit.
e) Explain memory allocation schemes in details.
f) Explain in detail cache memory organization.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION

Day \& Date: Thursday, 28-12-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in answer book.
2) Answer MCQ Objective type questions on Page No. 3 only
3) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10

Q. 1 Choose the correct alternatives from the options and rewrite the 10 sentence.

1) Which register points to the first instruction to be executed when the processor starts.
a) Accumulator
b) Program counter
c) Data register
d) Instruction register
2) Speedup techniques of computer include \qquad .
a) cache
b) pipeline
c) superscalar
d) all of these
3) Floating point representation consist of \qquad .
a) Mantissa
b) exponent
c) Both a) and b)
d) none of these
4) To read the control words sequentially \qquad is used.
a) PC
b) $I R$
c) uPC
d) None of these
5) Data used with assembly language instruction in processors are nothing but \qquad .
a) Opcode
b) Operand
c) Register
d) None of these
6) In Processor DMA Stand for \qquad .
a) Direct Memory Access
b) Division Memory Access
c) Direct mapping Access
d) All of the above
7) What is not true about RISC?
a) Large no of addressing modes
b) Simple instruction
c) Hardwired control unit
d) A single chip processor
8) To interface 2048 bytes of memory, how many address lines are required?
a) 8
b) 9
c) 10
d) 11
9) The addressing mode, where operand value is directly specified is called \qquad .
a) Immediate
b) Direct
c) Definite
d) Relative
10) Which representation is most efficient to perform arithmetic operations?
a) Sign magnitude
b) 1's complements
c) 2's complements
d) None of these

Seat	
No.	

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION

Day \& Date: Thursday, 28-12-2019
Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No.2.
2) Figures to right indicate full marks.
Q. 2 Attempt any four (each 10 marks)
a) Write note Virtual memory system.
b) Explain instruction set formats in detail.
c) Explain CISC and RISC Architecture in detail.
d) Explain GCD processor hardwired control unit.
e) Explain memory allocation schemes in details.
f) Explain in detail cache memory organization.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 20 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) Process is \qquad .
a) program in High level language kept on disk
b) contents of main memory
c) a program in execution
d) a job in secondary memory
2) The strategy of allowing processes that are logically runnable to be temporarily suspended is called \qquad .
a) preemptive scheduling
b) non preemptive scheduling
c) Shortest job first
d) first come first served
3) A non-relocatable program is one which \qquad .
a) cannot be made to execute in any area of storage other than the one designated for it at the time of its coding or translation.
b) consists of a program and relevant information for its relocation.
c) can itself performs the relocation of its address-sensitive portions.
d) all of the above
4) Operating system \qquad .
a) links a program with the subroutines it references
b) provides a layered, user-friendly interface
c) enables the programmer to draw a flowchart
d) all of the above
5) Which of the following is not true about the memory management?
a) virtual memory is used only in multi-user systems
b) segmentation suffers from external fragmentation
c) paging suffers from internal fragmentation
d) segmented memory can be paged
6) Which of the following is characteristic of an operating system?
a) resource management
b) error recovery
c) memory management
d) All the above
7) A thread is a \qquad .
a) Task
b) Process
c) Program
d) Light weight process
8) In \qquad the processes under consideration must be independent: that is, the order in which they execute must be unconstrained by any synchronization requirements.
a) deadlock prevention
b) deadlock avoidance
c) deadlock detection
d) deadlock deletion
9) In almost all modern multi programming systems, principal operation of memory management involves a sophisticated scheme known as
a) memory partitioning
b) virtual memory
c) real memory
d) memory organization
10) To access the services of operating system, the interface is provided by the \qquad .
a) System calls
b) API
c) library
d) Assembly instructions

Seat	
No.	

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019 Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) All the questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
Q. 2 Attempt any four of the following questions.
a) Why we need the operating system? Explain following types of operating system

1) Time sharing system
2) Real time system
b) What do you mean by process in operating system? List different process States and explain it with the help of diagram of process state transitions.
c) Draw and explain queuing diagram representation of process scheduling, what is the difference between long term scheduler and short term scheduler?
d) What are necessary conditions for deadlock situation? Explain resource allocation graph with dead lock.
e) Discuss in detail paging as memory management scheme.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 20 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) Which of the following is characteristic of an operating system?
a) resource management
b) error recovery
C) memory management
d) All the above
2) A thread is a \qquad .
a) Task
b) Process
c) Program
d) Light weight process
3) \ln \qquad the processes under consideration must be independent: that is, the order in which they execute must be unconstrained by any synchronization requirements.
a) deadlock prevention
b) deadlock avoidance
c) deadlock detection
d) deadlock deletion
4) In almost all modern multi programming systems, principal operation of memory management involves a sophisticated scheme known as
\qquad .
a) memory partitioning
b) virtual memory
c) real memory
d) memory organization
5) To access the services of operating system, the interface is provided by the \qquad .
a) System calls
b) API
c) library
d) Assembly instructions
6) Process is \qquad .
a) program in High level language kept on disk
b) contents of main memory
c) a program in execution
d) a job in secondary memory
7) The strategy of allowing processes that are logically runnable to be temporarily suspended is called \qquad .
a) preemptive scheduling
b) non preemptive scheduling
c) Shortest job first
d) first come first served
8) A non-relocatable program is one which \qquad .
a) cannot be made to execute in any area of storage other than the one designated for it at the time of its coding or translation.
b) consists of a program and relevant information for its relocation.
c) can itself performs the relocation of its address-sensitive portions.
d) all of the above
9) Operating system \qquad .
a) links a program with the subroutines it references
b) provides a layered, user-friendly interface
c) enables the programmer to draw a flowchart
d) all of the above
10) Which of the following is not true about the memory management?
a) virtual memory is used only in multi-user systems
b) segmentation suffers from external fragmentation
c) paging suffers from internal fragmentation
d) segmented memory can be paged

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019
Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) All the questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
Q. 2 Attempt any four of the following questions.
a) Why we need the operating system? Explain following types of operating system

1) Time sharing system
2) Real time system
b) What do you mean by process in operating system? List different process States and explain it with the help of diagram of process state transitions.
c) Draw and explain queuing diagram representation of process scheduling, what is the difference between long term scheduler and short term scheduler?
d) What are necessary conditions for deadlock situation? Explain resource allocation graph with dead lock.
e) Discuss in detail paging as memory management scheme.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 20 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) In almost all modern multi programming systems, principal operation of memory management involves a sophisticated scheme known as
\qquad .
a) memory partitioning
b) virtual memory
c) real memory
d) memory organization
2) To access the services of operating system, the interface is provided by the \qquad .
a) System calls
b) API
c) library
d) Assembly instructions
3) Process is \qquad .
a) program in High level language kept on disk
b) contents of main memory
c) a program in execution
d) a job in secondary memory
4) The strategy of allowing processes that are logically runnable to be temporarily suspended is called \qquad .
a) preemptive scheduling
b) non preemptive scheduling
c) Shortest job first
d) first come first served
5) A non-relocatable program is one which \qquad .
a) cannot be made to execute in any area of storage other than the one designated for it at the time of its coding or translation.
b) consists of a program and relevant information for its relocation.
c) can itself performs the relocation of its address-sensitive portions.
d) all of the above
6) Operating system \qquad .
a) links a program with the subroutines it references
b) provides a layered, user-friendly interface
c) enables the programmer to draw a flowchart
d) all of the above
7) Which of the following is not true about the memory management?
a) virtual memory is used only in multi-user systems
b) segmentation suffers from external fragmentation
c) paging suffers from internal fragmentation
d) segmented memory can be paged
8) Which of the following is characteristic of an operating system?
a) resource management
b) error recovery
c) memory management
d) All the above
9) A thread is a \qquad .
a) Task
b) Process
c) Program
d) Light weight process
10) In \qquad the processes under consideration must be independent: that is, the order in which they execute must be unconstrained by any synchronization requirements.
a) deadlock prevention
b) deadlock avoidance
c) deadlock detection
d) deadlock deletion

Seat	
No.	

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019
Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) All the questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
Q. 2 Attempt any four of the following questions.
a) Why we need the operating system? Explain following types of operating system

1) Time sharing system
2) Real time system
b) What do you mean by process in operating system? List different process States and explain it with the help of diagram of process state transitions.
c) Draw and explain queuing diagram representation of process scheduling, what is the difference between long term scheduler and short term scheduler?
d) What are necessary conditions for deadlock situation? Explain resource allocation graph with dead lock.
e) Discuss in detail paging as memory management scheme.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 20 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) A non-relocatable program is one which \qquad .
a) cannot be made to execute in any area of storage other than the one designated for it at the time of its coding or translation.
b) consists of a program and relevant information for its relocation.
c) can itself performs the relocation of its address-sensitive portions.
d) all of the above
2) Operating system \qquad .
a) links a program with the subroutines it references
b) provides a layered, user-friendly interface
c) enables the programmer to draw a flowchart
d) all of the above
3) Which of the following is not true about the memory management?
a) virtual memory is used only in multi-user systems
b) segmentation suffers from external fragmentation
c) paging suffers from internal fragmentation
d) segmented memory can be paged
4) Which of the following is characteristic of an operating system?
a) resource management
b) error recovery
c) memory management
d) All the above
5) A thread is a \qquad .
a) Task
b) Process
c) Program
d) Light weight process
6) $\quad \mathrm{In}$ \qquad the processes under consideration must be independent: that is, the order in which they execute must be unconstrained by any synchronization requirements.
a) deadlock prevention
b) deadlock avoidance
c) deadlock detection
d) deadlock deletion
7) In almost all modern multi programming systems, principal operation of memory management involves a sophisticated scheme known as
\qquad .
a) memory partitioning
b) virtual memory
c) real memory
d) memory organization
8) To access the services of operating system, the interface is provided by the \qquad .
a) System calls
b) API
c) library
d) Assembly instructions
9) Process is \qquad .
a) program in High level language kept on disk
b) contents of main memory
c) a program in execution
d) a job in secondary memory
10) The strategy of allowing processes that are logically runnable to be temporarily suspended is called \qquad .
a) preemptive scheduling
b) non preemptive scheduling
c) Shortest job first
d) first come first served

Seat	
No.	

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019 Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) All the questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
Q. 2 Attempt any four of the following questions.
a) Why we need the operating system? Explain following types of operating system

1) Time sharing system
2) Real time system
b) What do you mean by process in operating system? List different process States and explain it with the help of diagram of process state transitions.
c) Draw and explain queuing diagram representation of process scheduling, what is the difference between long term scheduler and short term scheduler?
d) What are necessary conditions for deadlock situation? Explain resource allocation graph with dead lock.
e) Discuss in detail paging as memory management scheme.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ROBOTICS

Day \& Date: Thursday, 28-11-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in answer Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) Which of the following is a sensor that measures the movement of an object?
a) Pressure sensor
b) Motion sensor
c) Action sensor
d) Touch sensor
2) The common robotic arm has \qquad degrees of freedom.
a) Six
b) Five
c) Four
d) Three
3) The process of extracting, characterizing and interpreting information from images of 3 D world is referred as \qquad .
a) Robot vision
b) Robochar
c) Robo 3D
d) Roboextract
4) Robotic vehicles are used in \qquad .
a) Remotely operated communication systems
b) Space vehicles
c) Undersea exploration
d) All of the above
5) Programming of a robot can be done by \qquad .
a) Force sensors
b) Teach pendant programming
c) Tactile sensors
d) Touch sensors
6) The main objective(s) of Industrial robot is to \qquad -
a) To minimise the labour requirement
b) To increase productivity
c) To enhance the life of production machines
d) All of the above
7) The following sensor can detect nearby objects \qquad .
a) Touch sensor
b) Humidity sensor
c) Proximity sensor
d) Pressure sensor
8) A robot is a \qquad .
a) multifunctional and reprogrammable manipulator
b) unifunctional and reprogrammable manipulator
c) multifunctional and non-programmable manipulator
d) unifunctional and non-programmable manipulator
9) \qquad can be used to measure the distance from a reference to the object in the field.
a) Force sensor
b) Pressure sensor
c) Range sensor
d) Torque sensor
10) The speed regulation is good in \qquad .
a) Series wound motor
b) Shunt wound motor
c) Can be series wound or shunt wound.
d) None of the above

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ROBOTICS

Day \& Date: Thursday, 28-11-2019
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No. 2.
2) Figures to the right indicate full marks.
Q. 2 Attempt any four of the following:
a) Explain motion control of robots.
b) Explain robotic applications.
c) Explain the following terms related to robotics :

1) Accuracy
2) Precision
3) Resolution
4) Repeatability
5) Speed
d) Explain in brief about types of sensors.
e) Explain Microelectromechanical systems and write in brief about classification of MEMS.
f) What is machine Intelligence? Explain Computer and robotics - Future trends.
g) Explain electrical drives for robotic articulation.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ROBOTICS

Day \& Date: Thursday, 28-11-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in answer
Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) The main objective(s) of Industrial robot is to \qquad .
a) To minimise the labour requirement
b) To increase productivity
c) To enhance the life of production machines
d) All of the above
2) The following sensor can detect nearby objects \qquad .
a) Touch sensor
b) Humidity sensor
c) Proximity sensor
d) Pressure sensor
3) A robot is a \qquad .
a) multifunctional and reprogrammable manipulator
b) unifunctional and reprogrammable manipulator
c) multifunctional and non-programmable manipulator
d) unifunctional and non-programmable manipulator
4) \qquad can be used to measure the distance from a reference to the $\overline{\text { object }}$ in the field.
a) Force sensor
b) Pressure sensor
c) Range sensor
d) Torque sensor
5) The speed regulation is good in \qquad .
a) Series wound motor
b) Shunt wound motor
c) Can be series wound or shunt wound.
d) None of the above
6) Which of the following is a sensor that measures the movement of an object?
a) Pressure sensor
b) Motion sensor
c) Action sensor
d) Touch sensor
7) The common robotic arm has \qquad degrees of freedom.
a) Six
b) Five
c) Four
d) Three
8) The process of extracting, characterizing and interpreting information from images of 3 D world is referred as \qquad .
a) Robot vision
b) Robochar
c) Robo 3D
d) Roboextract

SLR-FM-249
 Set

9) Robotic vehicles are used in \qquad .
a) Remotely operated communication systems
b) Space vehicles
c) Undersea exploration
d) All of the above
10) Programming of a robot can be done by
a) Force sensors
b) Teach pendant programming
c) Tactile sensors
d) Touch sensors

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ROBOTICS

Day \& Date: Thursday, 28-11-2019
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No. 2.
2) Figures to the right indicate full marks.
Q. 2 Attempt any four of the following:
a) Explain motion control of robots.
b) Explain robotic applications.
c) Explain the following terms related to robotics :

1) Accuracy
2) Precision
3) Resolution
4) Repeatability
5) Speed
d) Explain in brief about types of sensors.
e) Explain Microelectromechanical systems and write in brief about classification of MEMS.
f) What is machine Intelligence? Explain Computer and robotics - Future trends.
g) Explain electrical drives for robotic articulation.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ROBOTICS

Day \& Date: Thursday, 28-11-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in answer Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) $\overline{\text { object in the field. }}$
a) Force sensor
b) Pressure sensor
c) Range sensor
d) Torque sensor
2) The speed regulation is good in \qquad .
a) Series wound motor
b) Shunt wound motor
c) Can be series wound or shunt wound.
d) None of the above
3) Which of the following is a sensor that measures the movement of an object?
a) Pressure sensor
b) Motion sensor
c) Action sensor
d) Touch sensor
4) The common robotic arm has \qquad degrees of freedom.
a) Six
b) Five
c) Four
d) Three
5) The process of extracting, characterizing and interpreting information from images of 3 D world is referred as \qquad .
a) Robot vision
b) Robochar
c) Robo 3D
d) Roboextract
6) Robotic vehicles are used in \qquad .
a) Remotely operated communication systems
b) Space vehicles
c) Undersea exploration
d) All of the above
7) Programming of a robot can be done by \qquad .
a) Force sensors
b) Teach pendant programming
c) Tactile sensors
d) Touch sensors
8) The main objective(s) of Industrial robot is to \qquad .
a) To minimise the labour requirement
b) To increase productivity
c) To enhance the life of production machines
d) All of the above
9) The following sensor can detect nearby objects
a) Touch sensor
b) Humidity sensor
c) Proximity sensor
d) Pressure sensor
10) A robot is a \qquad .
a) multifunctional and reprogrammable manipulator
b) unifunctional and reprogrammable manipulator
c) multifunctional and non-programmable manipulator
d) unifunctional and non-programmable manipulator

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ROBOTICS

Day \& Date: Thursday, 28-11-2019
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No. 2.
2) Figures to the right indicate full marks.
Q. 2 Attempt any four of the following:
a) Explain motion control of robots.
b) Explain robotic applications.
c) Explain the following terms related to robotics :

1) Accuracy
2) Precision
3) Resolution
4) Repeatability
5) Speed
d) Explain in brief about types of sensors.
e) Explain Microelectromechanical systems and write in brief about classification of MEMS.
f) What is machine Intelligence? Explain Computer and robotics - Future trends.
g) Explain electrical drives for robotic articulation.

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ROBOTICS

Day \& Date: Thursday, 28-11-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in answer Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) The process of extracting, characterizing and interpreting information from images of 3 D world is referred as \qquad .
a) Robot vision
b) Robochar
c) Robo 3D
d) Roboextract
2) Robotic vehicles are used in \qquad .
a) Remotely operated communication systems
b) Space vehicles
c) Undersea exploration
d) All of the above
3) Programming of a robot can be done by \qquad .
a) Force sensors
b) Teach pendant programming
c) Tactile sensors
d) Touch sensors
4) The main objective(s) of Industrial robot is to \qquad .
a) To minimise the labour requirement
b) To increase productivity
c) To enhance the life of production machines
d) All of the above
5) The following sensor can detect nearby objects \qquad .
a) Touch sensor
b) Humidity sensor
c) Proximity sensor
d) Pressure sensor
6) A robot is a \qquad .
a) multifunctional and reprogrammable manipulator
b) unifunctional and reprogrammable manipulator
c) multifunctional and non-programmable manipulator
d) unifunctional and non-programmable manipulator
7) ___ can be used to measure the distance from a reference to the object in the field.
a) Force sensor
b) Pressure sensor
c) Range sensor
d) Torque sensor
8) The speed regulation is good in \qquad .
a) Series wound motor
b) Shunt wound motor
c) Can be series wound or shunt wound.
d) None of the above
9) Which of the following is a sensor that measures the movement of an object?
a) Pressure sensor
b) Motion sensor
c) Action sensor
d) Touch sensor
10) The common robotic arm has \qquad degrees of freedom.
a) Six
b) Five
c) Four
d) Three

T.E. (Part - II) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ROBOTICS

Day \& Date: Thursday, 28-11-2019
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No. 2.
2) Figures to the right indicate full marks.
Q. 2 Attempt any four of the following:
a) Explain motion control of robots.
b) Explain robotic applications.
c) Explain the following terms related to robotics :

1) Accuracy
2) Precision
3) Resolution
4) Repeatability
5) Speed
d) Explain in brief about types of sensors.
e) Explain Microelectromechanical systems and write in brief about classification of MEMS.
f) What is machine Intelligence? Explain Computer and robotics - Future trends.
g) Explain electrical drives for robotic articulation.

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate maximum marks.
3) Assume the data whenever necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) In microwave, we take the elements as \qquad .
a) lumped circuit element
b) distributed circuit element
c) both a) and b)
d) None of above
2) The Wavelength of microwaves at 100 GHz will be \qquad .
a) 3 cm
b) 0.3 cm
c) 0.03 cm
d) 0.3 m
3) The transferred electron bulk effect occurs in \qquad .
a) germanium
b) silicon
c) gallium arsenide
d) boron
4) Waveguide may be considered as \qquad .
a) high pass filter
b) low pass filter
c) band pass filter
d) band reject filter
5) In case of matched load \qquad .
a) transmission is zero
b) reflection is zero
c) reflection is unity
d) transmission is equals to reflection
6) Tee's and junctions constitutes \qquad .
a) single port network
b) two port network
c) Three port network
d) three or more port network
7) The propagation constant of a transmission line is given by.
a) $\sqrt{\frac{R+j \omega L}{G+j \omega C}}$
b) $\sqrt{(R+j \omega L)(g+J \omega c)}$
c) $\sqrt{1 / L C}$
d) none of these
8) When the target is moving away from the CW Doppler radar, the received frequency \qquad .
a) is higher than the transmitted frequency
b) is lower than the transmitted frequency
c) has a lot of harmonic content
d) none of these
9) If the peak transmitted power in a radar system is increased by a factor of 81, the maximum range increases by a factor of \qquad
a) 3
b) 6
c) 9
d) 81
10) The CAHO in MTI radar operates at the \qquad .
a) transmitted frequency
b) intermediate frequency
c) received frequency
d) none of these
11) TWT uses a helix \qquad .
a) To reduce the axial velocity of RF field
b) To ensure broad band operation
c) To increase the efficiency
d) To reduce the noise
12) The π-mode of resonance in a traveling wave magnetron is characterizes by \qquad .
a) $n=N$
b) $\mathrm{n}=\mathrm{N} / 4$
c) $n=N / 2$
d) none of the above
13) Electron bunching in reflex klystron occurs in the \qquad .
a) input cavity only
b) vicinity of repeller electrode
c) centre of drift space
d) none of these
14) A magnetron has average power of 100 watts and duty cycle 2%. Its peak power output power is \qquad .
a) 50 W
b) 100 W
c) 5000 W
d) $10,000 \mathrm{~W}$

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate maximum marks.
3) Assume the data whenever necessary.

Section - I

Q. 2 Attempt any three

a) Explain Transmission line equation in terms of voltage and current.
b) Define following with the help waveguide -
i) Cut off Condition
ii) Dominant mode
iii) Degenerative mode
iv) Evanescent mode
c) Explain E plane tee as 3 dB coupler.
d) Explain Magic tee as Impedance Bridge.
e) Derive the following for $\mathrm{TE}_{\mathrm{mn}}$ mode in rectangular waveguide -
i) Cut off wave number
ii) Guided wavelength
iii) Phase velocity in guide
iv) Characteristics Impedance of guide

Q. 3 Attempt any two

a) An air filled rectangular waveguide of inner dimensions $5 \times 2 \mathrm{~cm}$ operates in TE_{11} mode at 10 GHz . Find -
i) Cut off wave frequency
ii) Propagation constant
iii) Guided wavelength
iv) Phase velocity in waveguide
b) A transmission line 10 miles long operates at 10 KHz and has parameters $R=30 \Omega / \mathrm{miles}, \mathrm{C}=80 \mathrm{nF} / \mathrm{miles}, \mathrm{L}=2.2 \mathrm{mH} / \mathrm{miles}$, and $\mathrm{G}=20 \mathrm{nS} / \mathrm{miles}$. Find characteristics impedance, attenuation per miles, phase shift per miles, phase velocity and wavelength.
c) Derive the field equation of $\mathrm{TM}_{\mathrm{mn}}$ mode in rectangular waveguide assuming wave is propagating in z-direction.

Section - II

Q. 4 Attempt any three
a) Explain wave meter method for frequency measurement.
b) Explain radar display methods.
c) Calculate minimum receivable signal in radar receiver, which has I.F. band of 1.75 MHz and 7.5 dB noise figure.
d) For Two cavity klystron, voltage gain is 15 dB , input power 5 mW , $\mathrm{R}_{\text {sh }}$ of input cavity is $30 \mathrm{~K} \Omega$, $\mathrm{R}_{\text {sh }}$ of output cavity is $40 \mathrm{~K} \Omega$. Determine- input RMS voltage, output RMS voltage.
e) Explain Zero mode of Magnetron.

Q. 5 Attempt any two

a) Explain effect of noise on Radar Range.
b) Derive and explain Velocity modulation in two cavity klystron tube with Applegate diagram.
c) Explain Doppler Effect. Also draw and explain MTI radar.

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate maximum marks.
3) Assume the data whenever necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) When the target is moving away from the CW Doppler radar, the received frequency \qquad .
a) is higher than the transmitted frequency
b) is lower than the transmitted frequency
c) has a lot of harmonic content
d) none of these
2) If the peak transmitted power in a radar system is increased by a factor of 81, the maximum range increases by a factor of \qquad
a) 3
b) 6
c) 9
d) 81
3) The CAHO in MTI radar operates at the \qquad .
a) transmitted frequency
b) intermediate frequency
c) received frequency
d) none of these
4) TWT uses a helix \qquad .
a) To reduce the axial velocity of RF field
b) To ensure broad band operation
c) To increase the efficiency
d) To reduce the noise
5) The π-mode of resonance in a traveling wave magnetron is characterizes by \qquad .
a) $n=N$
b) $\mathrm{n}=\mathrm{N} / 4$
c) $n=N / 2$
d) none of the above
6) Electron bunching in reflex klystron occurs in the \qquad .
a) input cavity only
b) vicinity of repeller electrode
c) centre of drift space
d) none of these
7) A magnetron has average power of 100 watts and duty cycle 2%. Its peak power output power is \qquad .
a) 50 W
b) 100 W
c) 5000 W
d) $10,000 \mathrm{~W}$
8) In microwave, we take the elements as \qquad .
a) lumped circuit element
b) distributed circuit element
c) both a) and b)
d) None of above
9) The Wavelength of microwaves at 100 GHz will be \qquad .
a) 3 cm
b) 0.3 cm
c) 0.03 cm
d) 0.3 m
10) The transferred electron bulk effect occurs in \qquad .
a) germanium
b) silicon
c) gallium arsenide
d) boron
11) Waveguide may be considered as \qquad .
a) high pass filter
b) low pass filter
c) band pass filter
d) band reject filter
12) In case of matched load \qquad .
a) transmission is zero
b) reflection is zero
c) reflection is unity
d) transmission is equals to reflection
13) Tee's and junctions constitutes \qquad .
a) single port network
b) two port network
c) Three port network
d) three or more port network
14) The propagation constant of a transmission line is given by.
a) $\sqrt{\frac{R+j \omega L}{G+j \omega C}}$
b) $\sqrt{(R+j \omega L)(g+J \omega c)}$
c) $\sqrt{1 / L C}$
d) none of these

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate maximum marks.
3) Assume the data whenever necessary.

Section - I

Q. 2 Attempt any three

a) Explain Transmission line equation in terms of voltage and current.
b) Define following with the help waveguide -
i) Cut off Condition
ii) Dominant mode
iii) Degenerative mode
iv) Evanescent mode
c) Explain E plane tee as 3 dB coupler.
d) Explain Magic tee as Impedance Bridge.
e) Derive the following for $\mathrm{TE}_{\mathrm{mn}}$ mode in rectangular waveguide -
i) Cut off wave number
ii) Guided wavelength
iii) Phase velocity in guide
iv) Characteristics Impedance of guide
Q. 3 Attempt any two
a) An air filled rectangular waveguide of inner dimensions $5 \times 2 \mathrm{~cm}$ operates in TE_{11} mode at 10 GHz . Find -
i) Cut off wave frequency
ii) Propagation constant
iii) Guided wavelength
iv) Phase velocity in waveguide
b) A transmission line 10 miles long operates at 10 KHz and has parameters $R=30 \Omega / \mathrm{miles}, \mathrm{C}=80 \mathrm{nF} / \mathrm{miles}, \mathrm{L}=2.2 \mathrm{mH} / \mathrm{miles}$, and $\mathrm{G}=20 \mathrm{nS} / \mathrm{miles}$. Find characteristics impedance, attenuation per miles, phase shift per miles, phase velocity and wavelength.
c) Derive the field equation of $\mathrm{TM}_{m n}$ mode in rectangular waveguide assuming wave is propagating in z-direction.

Section - II

Q. 4 Attempt any three
a) Explain wave meter method for frequency measurement.
b) Explain radar display methods.
c) Calculate minimum receivable signal in radar receiver, which has I.F. band of 1.75 MHz and 7.5 dB noise figure.
d) For Two cavity klystron, voltage gain is 15 dB , input power 5 mW , $\mathrm{R}_{\text {sh }}$ of input cavity is $30 \mathrm{~K} \Omega, \mathrm{R}_{\text {sh }}$ of output cavity is $40 \mathrm{~K} \Omega$. Determine- input RMS voltage, output RMS voltage.
e) Explain Zero mode of Magnetron.

Q. 5 Attempt any two

a) Explain effect of noise on Radar Range.
b) Derive and explain Velocity modulation in two cavity klystron tube with Applegate diagram.
c) Explain Doppler Effect. Also draw and explain MTI radar.

SLR-FM-250

Seat
No.
Set
R

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate maximum marks.
3) Assume the data whenever necessary.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) In case of matched load \qquad .
a) transmission is zero
b) reflection is zero
c) reflection is unity
d) transmission is equals to reflection
2) Tee's and junctions constitutes \qquad .
a) single port network
b) two port network
c) Three port network
d) three or more port network
3) The propagation constant of a transmission line is given by.
a) $\sqrt{\frac{R+j \omega L}{G+j \omega C}}$
b) $\sqrt{(R+j \omega L)(g+J \omega c)}$
C) $\sqrt{1 / L C}$
d) none of these
4) When the target is moving away from the CW Doppler radar, the received frequency \qquad -.
a) is higher than the transmitted frequency
b) is lower than the transmitted frequency
c) has a lot of harmonic content
d) none of these
5) If the peak transmitted power in a radar system is increased by a factor of 81, the maximum range increases by a factor of \qquad
a) 3
b) 6
c) 9
d) 81
6) The CAHO in MTI radar operates at the \qquad .
a) transmitted frequency
b) intermediate frequency
c) received frequency
d) none of these
7) TWT uses a helix \qquad .
a) To reduce the axial velocity of RF field
b) To ensure broad band operation
c) To increase the efficiency
d) To reduce the noise
8) The π-mode of resonance in a traveling wave magnetron is characterizes by \qquad -.
a) $n=N$
b) $\mathrm{n}=\mathrm{N} / 4$
c) $n=N / 2$
d) none of the above
9) Electron bunching in reflex klystron occurs in the \qquad .
a) input cavity only
b) vicinity of repeller electrode
c) centre of drift space
d) none of these
10) A magnetron has average power of 100 watts and duty cycle 2%. Its peak power output power is \qquad .
a) 50 W
b) 100 W
c) 5000 W
d) $10,000 \mathrm{~W}$
11) In microwave, we take the elements as \qquad .
a) lumped circuit element
b) distributed circuit element
c) both a) and b)
d) None of above
12) The Wavelength of microwaves at 100 GHz will be \qquad .
a) 3 cm
b) 0.3 cm
c) 0.03 cm
d) 0.3 m
13) The transferred electron bulk effect occurs in \qquad .
a) germanium
b) silicon
c) gallium arsenide
d) boron
14) Waveguide may be considered as \qquad .
a) high pass filter
b) low pass filter
c) band pass filter
d) band reject filter

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate maximum marks.
3) Assume the data whenever necessary.

Section - I

Q. 2 Attempt any three

a) Explain Transmission line equation in terms of voltage and current.
b) Define following with the help waveguide -
i) Cut off Condition
ii) Dominant mode
iii) Degenerative mode
iv) Evanescent mode
c) Explain E plane tee as 3 dB coupler.
d) Explain Magic tee as Impedance Bridge.
e) Derive the following for $\mathrm{TE}_{\mathrm{mn}}$ mode in rectangular waveguide -
i) Cut off wave number
ii) Guided wavelength
iii) Phase velocity in guide
iv) Characteristics Impedance of guide
Q. 3 Attempt any two
a) An air filled rectangular waveguide of inner dimensions $5 \times 2 \mathrm{~cm}$ operates in TE_{11} mode at 10 GHz . Find -
i) Cut off wave frequency
ii) Propagation constant
iii) Guided wavelength
iv) Phase velocity in waveguide
b) A transmission line 10 miles long operates at 10 KHz and has parameters $R=30 \Omega / \mathrm{miles}, \mathrm{C}=80 \mathrm{nF} / \mathrm{miles}, \mathrm{L}=2.2 \mathrm{mH} / \mathrm{miles}$, and $\mathrm{G}=20 \mathrm{nS} / \mathrm{miles}$. Find characteristics impedance, attenuation per miles, phase shift per miles, phase velocity and wavelength.
c) Derive the field equation of $\mathrm{TM}_{\mathrm{mn}}$ mode in rectangular waveguide assuming wave is propagating in z-direction.

Section - II

Q. 4 Attempt any three
a) Explain wave meter method for frequency measurement.
b) Explain radar display methods.
c) Calculate minimum receivable signal in radar receiver, which has I.F. band of 1.75 MHz and 7.5 dB noise figure.
d) For Two cavity klystron, voltage gain is 15 dB , input power 5 mW , $\mathrm{R}_{\text {sh }}$ of input cavity is $30 \mathrm{~K} \Omega$, $\mathrm{R}_{\text {sh }}$ of output cavity is $40 \mathrm{~K} \Omega$. Determine- input RMS voltage, output RMS voltage.
e) Explain Zero mode of Magnetron.

Q. 5 Attempt any two

a) Explain effect of noise on Radar Range.
b) Derive and explain Velocity modulation in two cavity klystron tube with Applegate diagram.
c) Explain Doppler Effect. Also draw and explain MTI radar.

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate maximum marks.
3) Assume the data whenever necessary.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The CAHO in MTI radar operates at the \qquad .
a) transmitted frequency
b) intermediate frequency
c) received frequency
d) none of these
2) TWT uses a helix \qquad .
a) To reduce the axial velocity of RF field
b) To ensure broad band operation
c) To increase the efficiency
d) To reduce the noise
3) The π-mode of resonance in a traveling wave magnetron is characterizes by \qquad .
a) $n=N$
b) $\mathrm{n}=\mathrm{N} / 4$
c) $n=N / 2$
d) none of the above
4) Electron bunching in reflex klystron occurs in the \qquad .
a) input cavity only
b) vicinity of repeller electrode
c) centre of drift space
d) none of these
5) A magnetron has average power of 100 watts and duty cycle 2%. Its peak power output power is \qquad .
a) 50 W
b) 100 W
c) 5000 W
d) $10,000 \mathrm{~W}$
6) In microwave, we take the elements as \qquad .
a) lumped circuit element
b) distributed circuit element
c) both a) and b)
d) None of above
7) The Wavelength of microwaves at 100 GHz will be \qquad .
a) 3 cm
b) 0.3 cm
c) 0.03 cm
d) 0.3 m
8) The transferred electron bulk effect occurs in \qquad .
a) germanium
b) silicon
c) gallium arsenide
d) boron
9) Waveguide may be considered as \qquad .
a) high pass filter
b) low pass filter
c) band pass filter
d) band reject filter
10) In case of matched load \qquad .
a) transmission is zero
b) reflection is zero
c) reflection is unity
d) transmission is equals to reflection
11) Tee's and junctions constitutes \qquad .
a) single port network
b) two port network
c) Three port network
d) three or more port network
12) The propagation constant of a transmission line is given by.
a) $\sqrt{\frac{R+j \omega L}{G+j \omega C}}$
b) $\sqrt{(R+j \omega L)(g+J \omega c)}$
c) $\sqrt{1 / L C}$
d) none of these
13) When the target is moving away from the CW Doppler radar, the received frequency \qquad .
a) is higher than the transmitted frequency
b) is lower than the transmitted frequency
c) has a lot of harmonic content
d) none of these
14) If the peak transmitted power in a radar system is increased by a factor of 81, the maximum range increases by a factor of \qquad
a) 3
b) 6
c) 9
d) 81

SLR-FM-250

Seat

No.
Set

T.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering RADAR \& MICROWAVE ENGINEERING

Day \& Date: Friday, 22-11-2019

Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate maximum marks.
3) Assume the data whenever necessary.

Section - I

Q. 2 Attempt any three
a) Explain Transmission line equation in terms of voltage and current.
b) Define following with the help waveguide -
i) Cut off Condition
ii) Dominant mode
iii) Degenerative mode
iv) Evanescent mode
c) Explain E plane tee as 3 dB coupler.
d) Explain Magic tee as Impedance Bridge.
e) Derive the following for $\mathrm{TE}_{m n}$ mode in rectangular waveguide -
i) Cut off wave number
ii) Guided wavelength
iii) Phase velocity in guide
iv) Characteristics Impedance of guide
Q. 3 Attempt any two
a) An air filled rectangular waveguide of inner dimensions $5 \times 2 \mathrm{~cm}$ operates in TE_{11} mode at 10 GHz . Find -
i) Cut off wave frequency
ii) Propagation constant
iii) Guided wavelength
iv) Phase velocity in waveguide
b) A transmission line 10 miles long operates at 10 KHz and has parameters $R=30 \Omega / \mathrm{miles}, \mathrm{C}=80 \mathrm{nF} / \mathrm{miles}, \mathrm{L}=2.2 \mathrm{mH} / \mathrm{miles}$, and $\mathrm{G}=20 \mathrm{nS} / \mathrm{miles}$. Find characteristics impedance, attenuation per miles, phase shift per miles, phase velocity and wavelength.
c) Derive the field equation of $\mathrm{TM}_{m n}$ mode in rectangular waveguide assuming wave is propagating in z-direction.

Section - II

Q. 4 Attempt any three
a) Explain wave meter method for frequency measurement.
b) Explain radar display methods.
c) Calculate minimum receivable signal in radar receiver, which has I.F. band of 1.75 MHz and 7.5 dB noise figure.
d) For Two cavity klystron, voltage gain is 15 dB , input power $5 \mathrm{~mW}, \mathrm{R}_{\text {sh }}$ of input cavity is $30 \mathrm{~K} \Omega$, $\mathrm{R}_{\text {sh }}$ of output cavity is $40 \mathrm{~K} \Omega$. Determine- input RMS voltage, output RMS voltage.
e) Explain Zero mode of Magnetron.

SLR-FM-250
 Set

Q. 5 Attempt any two

16
a) Explain effect of noise on Radar Range.
b) Derive and explain Velocity modulation in two cavity klystron tube with Applegate diagram.
c) Explain Doppler Effect. Also draw and explain MTI radar.
T.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLERS AND APPLICATIONS

Day \& Date: Saturday, 23-11-2019
Max. Marks: 70

Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Use of non programmable Calculator is allowed.
3) Assume Suitable Data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) SJMP instruction is \qquad byte instruction.
a) 1
b) 2
c) 3
d) None
2) In the 8051, control can be transferred anywhere within the \qquad K bytes of, code space if using the LCALL instruction.
a) 8
b) 16
c) 32
d) 64
3) In $8051, \mathrm{SP}$ register is \qquad bit wide.
a) 8
b) 16
c) 32
d) None
4) What is the address of DPL \qquad .
a) 83 H
b) 82 H
c) 81 H
d) 88 H
5) In microcontroller \& LCD interface, which line will instruct the LCD that microcontroller sending a data or command?
a) DB0
b) RW
c) EN
d) $R S$
6) What are the address of SFR's IE, IP, PSW \& TH 0 respectively?
a) $99 \mathrm{~h}, 88 \mathrm{~h}, 90 \mathrm{~h}, 81 \mathrm{~h}$
b) $87 \mathrm{~h}, \mathrm{~d} 0 \mathrm{~h}, 8 \mathrm{bh}, 8 \mathrm{ch}$
c) $a 8 h, b 8 h, d 0 h, 8 c h$
d) $98 \mathrm{~h}, 89 \mathrm{~h}, \mathrm{~d} 0 \mathrm{~h}, 8 \mathrm{ah}$
7) Out of following registers, which register is not bit addressable register?
a) PSW
b) TCON
c) SBUF
d) IE
8) Which of the following FSR is used for indirect addressing mode of PIC?
a) INTCON
b) INDF
c) PCL
d) STATUS
9) The PIC actually uses a \qquad program counter.
a) 12 bit
b) 13 bit
c) 14 bit
d) 15 bit
10) Special Purpose Registers of PIC 16F877 are mapped into data space at \qquad .
a) $00 \mathrm{H}-1 \mathrm{FH}$
b) $80 \mathrm{H}-9 \mathrm{FH}$
c) both a \& b
d) none of these
11) The Vref for ADC in PIC is selected by \qquad register.
a) ADCONO
b) ADCON1
c) ADRES
d) PIR1
12) The timer used for capture, compare and PWM mode respectively are \qquad .
a) Timer 0, Timer 1, Timer 2
b) Timer 2, Timer 1, Timer 0
c) Timer 1, Timer 1, Timer 2
d) Timer 2, Timer 1, Timer 1
13) PIR1 register contains \qquad and PIE1 contains \qquad bits.
a) Interrupt Priority, Interrupt Enable
b) Interrupt Flag, Interrupt Priority
c) Interrupt Priority, Interrupt Flag
d) Interrupt Flag, Interrupt Enable
14) PSA (Prescaler assignment) bit in the option register equals to 1 then \qquad .
a) Prescaler enabled
b) Prescaler disabled
c) Prescaler assigned to WDT
d) Prescaler assigned to TIMER0

SLR-FM-251

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLERS AND APPLICATIONS

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any three.

a) Explain following instructions.

1) MOVC A, @A+PC
2) DIV $A B$
3) JNB 00h, relative address.
4) $X C H D$.
b) Assuming Crystal frequency is of 12 MHz , Write a assembly language program to generate square wave of 100 Hz frequency on pin P1.3 using timer.
c) State from which memory (External program /Internal program /Internal Data/External Data) Data will be transfer for following Underlined instructions. (Consider EA bar $=1$ or $+5 v \& A=00 h$)
5) MOV DPTR,\#OEFFFh

MOVC A,@A+DPTR
2) MOV DPTR,\#0030h

MOVC A,@ A+DPTR
3) MOV DPTR,\#3FFFH

MOVX A,@DPTR
4) MOV R1,8
d) Explain the SFRs associated with the interrupt structure of 8051.
Q. 3 Solve any two.
a) Explain timer module with GATE input bit and INTx pin. Also explain in detail all modes of timer of Microcontroller 8051.
b) Draw interfacing Diagram and Write a program to display data "SUS Solapur" on 16×2 LCD Display.
c) Draw Interfacing of $4^{*} 4$ matrix keyboard \& 7 segment display to 8051 and Write ALP to display on Seven segment display no. (From 0-f) pressed on 4*4 Matrix keyboard.

Section - II

Q. 4 Solve any three.
a) Explain the following instructions.

1) Clrwdt
2) Incfsz
b) Give the steps to be followed for doing A/D conversion in PIC16F877.
c) Explain the memory organization of PIC 16F877.
d) Explain and give necessity of Brown out reset and Watch Dog Timer in embedded system.
Q. 5 Solve any two.
a) Explain CCP1 module, how it is used for compare function along with Timer1?
b) Explain different addressing modes of PIC. Write assembly language program for addition of two 16 bit numbers.
c) Explain in detail $I^{2} \mathrm{C}$ bus for PIC16F877.

SLR-FM-251

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLERS AND APPLICATIONS

Day \& Date: Saturday, 23-11-2019
Max. Marks: 70

Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Use of non programmable Calculator is allowed.
3) Assume Suitable Data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) Which of the following FSR is used for indirect addressing mode of PIC?
a) INTCON
b) INDF
c) PCL
d) STATUS
2) The PIC actually uses a \qquad program counter.
a) 12 bit
b) 13 bit
c) 14 bit
d) 15 bit
3) Special Purpose Registers of PIC 16F877 are mapped into data space at \qquad .
a) $00 \mathrm{H}-1 \mathrm{FH}$
b) $80 \mathrm{H}-9 \mathrm{FH}$
c) both $a \& b$
d) none of these
4) The Vref for ADC in PIC is selected by \qquad register.
a) ADCONO
b) ADCON1
c) ADRES
d) PIR1
5) The timer used for capture, compare and PWM mode respectively are \qquad .
a) Timer 0, Timer 1, Timer 2
b) Timer 2, Timer 1, Timer 0
c) Timer 1, Timer 1, Timer 2
d) Timer 2, Timer 1, Timer 1
6) PIR1 register contains \qquad and PIE1 contains \qquad bits.
a) Interrupt Priority, Interrupt Enable
b) Interrupt Flag, Interrupt Priority
c) Interrupt Priority, Interrupt Flag
d) Interrupt Flag, Interrupt Enable
7) PSA (Prescaler assignment) bit in the option register equals to 1 then \qquad .
a) Prescaler enabled
b) Prescaler disabled
c) Prescaler assigned to WDT
d) Prescaler assigned to TIMER0
8) SJMP instruction is \qquad byte instruction.
a) 1
b) 2
c) 3
d) none

SLR-FM-251
 Set

9) In the 8051, control can be transferred anywhere within the \qquad K bytes of, code space if using the LCALL instruction.
a) 8
b) 16
c) 32
d) 64
10) In $8051, \mathrm{SP}$ register is \qquad bit wide.
a) 8
b) 16
c) 32
d) None
11) What is the address of DPL \qquad .
a) 83 H
b) 82 H
c) 81 H
d) 88 H
12) In microcontroller \& LCD interface, which line will instruct the LCD that microcontroller sending a data or command?
a) DB0
b) RW
c) EN
d) $R S$
13) What are the address of SFR's IE, IP, PSW \& TH 0 respectively?
a) $99 \mathrm{~h}, 88 \mathrm{~h}, 90 \mathrm{~h}, 81 \mathrm{~h}$
b) $87 \mathrm{~h}, \mathrm{~d} 0 \mathrm{~h}, 8 \mathrm{bh}, 8 \mathrm{ch}$
c) $a 8 h, b 8 h, d$ 0h,8ch
d) 98h,89h,d 0h,8ah
14) Out of following registers, which register is not bit addressable register?
a) PSW
b) TCON
c) SBUF
d) IE

SLR-FM-251

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLERS AND APPLICATIONS

Day \& Date: Saturday, 23-11-2019

Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any three.

a) Explain following instructions.

1) MOVC A, @A+PC
2) DIV $A B$
3) JNB 00h, relative address.
4) $X C H D$.
b) Assuming Crystal frequency is of 12 MHz , Write a assembly language program to generate square wave of 100 Hz frequency on pin P1.3 using timer.
c) State from which memory (External program /Internal program /Internal Data/External Data) Data will be transfer for following Underlined instructions. (Consider EA bar $=1$ or $+5 \mathrm{v} \& \mathrm{~A}=0 \mathrm{~h}$)
5) MOV DPTR,\#OEFFFh

MOVC A,@A+DPTR
2) MOV DPTR,\#0030h

MOVC A,@ A+DPTR
3) MOV DPTR,\#3FFFH

MOVX A,@DPTR
4) MOV R1,8
d) Explain the SFRs associated with the interrupt structure of 8051.
Q. 3 Solve any two.
a) Explain timer module with GATE input bit and INTx pin. Also explain in detail all modes of timer of Microcontroller 8051.
b) Draw interfacing Diagram and Write a program to display data "SUS Solapur" on 16×2 LCD Display.
c) Draw Interfacing of 4*4 matrix keyboard \& 7 segment display to 8051 and Write ALP to display on Seven segment display no. (From 0-f) pressed on 4*4 Matrix keyboard.

Section - II

Q. 4 Solve any three.
a) Explain the following instructions.

1) Clrwdt
2) Incfsz
b) Give the steps to be followed for doing A/D conversion in PIC16F877.
c) Explain the memory organization of PIC 16F877.
d) Explain and give necessity of Brown out reset and Watch Dog Timer in embedded system.
Q. 5 Solve any two.
a) Explain CCP1 module, how it is used for compare function along with Timer1?
b) Explain different addressing modes of PIC. Write assembly language program for addition of two 16 bit numbers.
c) Explain in detail $\mathrm{I}^{2} \mathrm{C}$ bus for PIC16F877.

SLR-FM-251

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLERS AND APPLICATIONS

Day \& Date: Saturday, 23-11-2019
Max. Marks: 70

Time: 10:00 AM To 01:00 PM

Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
 2) Use of non programmable Calculator is allowed.
 3) Assume Suitable Data if necessary.
 MCQ/Objective Type Questions
 Duration: 30 Minutes
 Marks: 14
 Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) In microcontroller \& LCD interface, which line will instruct the LCD that microcontroller sending a data or command?
a) DB0
b) RW
c) EN
d) $R S$
2) What are the address of SFR's IE, IP, PSW \& TH 0 respectively?
a) $99 \mathrm{~h}, 88 \mathrm{~h}, 90 \mathrm{~h}, 81 \mathrm{~h}$
b) $87 \mathrm{~h}, \mathrm{~d} 0 \mathrm{~h}, 8 \mathrm{bh}, 8 \mathrm{ch}$
c) $a 8 h, b 8 h, d$ 0h,8ch
d) $98 \mathrm{~h}, 89 \mathrm{~h}, \mathrm{~d} 0 \mathrm{~h}, 8 \mathrm{ah}$

3) Out of following registers, which register is not bit addressable register?
a) PSW
b) TCON
c) SBUF
d) IE
4) Which of the following FSR is used for indirect addressing mode of PIC?
a) INTCON
b) INDF
c) PCL
d) STATUS
5) The PIC actually uses a \qquad program counter.
a) 12 bit
b) 13 bit
c) 14 bit
d) 15 bit
6) Special Purpose Registers of PIC 16F877 are mapped into data space at \qquad .
a) $00 \mathrm{H}-1 \mathrm{FH}$
b) $80 \mathrm{H}-9 \mathrm{FH}$
c) both a \& b
d) none of these
7) The Vref for ADC in PIC is selected by \qquad register.
a) ADCONO
b) ADCON1
c) ADRES
d) PIR1
8) The timer used for capture, compare and PWM mode respectively are \qquad .
a) Timer 0, Timer 1, Timer 2
b) Timer 2, Timer 1, Timer 0
c) Timer 1, Timer 1, Timer 2
d) Timer 2, Timer 1, Timer 1
9) PIR1 register contains \qquad and PIE1 contains \qquad bits.
a) Interrupt Priority, Interrupt Enable
b) Interrupt Flag, Interrupt Priority
c) Interrupt Priority, Interrupt Flag
d) Interrupt Flag, Interrupt Enable
10) PSA (Prescaler assignment) bit in the option register equals to 1 then \qquad .
a) Prescaler enabled
b) Prescaler disabled
c) Prescaler assigned to WDT
d) Prescaler assigned to TIMER0
11) SJMP instruction is \qquad byte instruction.
a) 1
b) 2
c) 3
d) none
12) In the 8051, control can be transferred anywhere within the \qquad K bytes of, code space if using the LCALL instruction.
a) 8
b) 16
c) 32
d) 64
13) In $8051, \mathrm{SP}$ register is \qquad bit wide.
a) 8
b) 16
c) 32
d) none
14) What is the address of DPL \qquad .
a) 83 H
b) 82 H
c) 81 H
d) 88 H

SLR-FM-251

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLERS AND APPLICATIONS

Day \& Date: Saturday, 23-11-2019

Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any three.

a) Explain following instructions.

1) MOVC A, @A+PC
2) DIV $A B$
3) JNB 00h, relative address.
4) $X C H D$.
b) Assuming Crystal frequency is of 12 MHz , Write a assembly language program to generate square wave of 100 Hz frequency on pin P1.3 using timer.
c) State from which memory (External program /Internal program /Internal Data/External Data) Data will be transfer for following Underlined instructions. (Consider EA bar $=1$ or $+5 v \& A=00 h$)
5) MOV DPTR,\#OEFFFh

MOVC A,@A+DPTR
2) MOV DPTR,\#0030h

MOVC A,@ A+DPTR
3) MOV DPTR,\#3FFFH

MOVX A,@DPTR
4) MOV R1,8
d) Explain the SFRs associated with the interrupt structure of 8051.
Q. 3 Solve any two.
a) Explain timer module with GATE input bit and INTx pin. Also explain in detail all modes of timer of Microcontroller 8051.
b) Draw interfacing Diagram and Write a program to display data "SUS Solapur" on 16×2 LCD Display.
c) Draw Interfacing of 4*4 matrix keyboard \& 7 segment display to 8051 and Write ALP to display on Seven segment display no. (From 0-f) pressed on 4*4 Matrix keyboard.

Section - II

Q. 4 Solve any three.
a) Explain the following instructions.

1) Clrwdt
2) Incfsz
b) Give the steps to be followed for doing A/D conversion in PIC16F877.
c) Explain the memory organization of PIC 16F877.
d) Explain and give necessity of Brown out reset and Watch Dog Timer in embedded system.
Q. 5 Solve any two.
a) Explain CCP1 module, how it is used for compare function along with Timer1?
b) Explain different addressing modes of PIC. Write assembly language program for addition of two 16 bit numbers.
c) Explain in detail $\mathrm{I}^{2} \mathrm{C}$ bus for PIC16F877.

SLR-FM-251

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLERS AND APPLICATIONS

Day \& Date: Saturday, 23-11-2019
Max. Marks: 70

Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Use of non programmable Calculator is allowed.
3) Assume Suitable Data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) Special Purpose Registers of PIC 16F877 are mapped into data space at \qquad .
a) $00 \mathrm{H}-1 \mathrm{FH}$
b) $80 \mathrm{H}-9 \mathrm{FH}$
c) both a \& b
d) none of these
2) The Vref for ADC in PIC is selected by \qquad register.
a) ADCONO
b) ADCON1
c) ADRES
d) PIR1
3) The timer used for capture, compare and PWM mode respectively are \qquad .
a) Timer 0, Timer 1, Timer 2
b) Timer 2, Timer 1, Timer 0
c) Timer 1, Timer 1, Timer 2
d) Timer 2, Timer 1, Timer 1
4) PIR1 register contains \qquad and PIE1 contains \qquad bits.
a) Interrupt Priority, Interrupt Enable
b) Interrupt Flag, Interrupt Priority
c) Interrupt Priority, Interrupt Flag
d) Interrupt Flag, Interrupt Enable
5) PSA (Prescaler assignment) bit in the option register equals to 1 then \qquad .
a) Prescaler enabled
b) Prescaler disabled
c) Prescaler assigned to WDT
d) Prescaler assigned to TIMER0
6) SJMP instruction is \qquad byte instruction.
a) 1
b) 2
c) 3
d) none
7) In the 8051, control can be transferred anywhere within the \qquad K bytes of, code space if using the LCALL instruction.
a) 8
b) 16
c) 32
d) 64
8) In 8051, SP register is \qquad bit wide.
a) 8
b) 16
c) 32
d) none
9) What is the address of DPL \qquad .
a) 83 H
b) 82 H
c) 81 H
d) 88 H
10) In microcontroller \& LCD interface, which line will instruct the LCD that microcontroller sending a data or command?
a) DB0
b) RW
c) EN
d) RS
11) What are the address of SFR's IE, IP, PSW \& TH 0 respectively?
a) $99 \mathrm{~h}, 88 \mathrm{~h}, 90 \mathrm{~h}, 81 \mathrm{~h}$
b) $87 \mathrm{~h}, \mathrm{~d} 0 \mathrm{~h}, 8 \mathrm{bh}, 8 \mathrm{ch}$
c) $a 8 h, b 8 h, d$ 0h,8ch
d) $98 h, 89 h, d 0 h, 8 a h$
12) Out of following registers, which register is not bit addressable register?
a) PSW
b) TCON
c) SBUF
d) IE
13) Which of the following FSR is used for indirect addressing mode of PIC?
a) INTCON
b) INDF
c) PCL
d) STATUS
14) The PIC actually uses a \qquad program counter.
a) 12 bit
b) 13 bit
c) 14 bit
d) 15 bit

SLR-FM-251

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROCONTROLLERS AND APPLICATIONS

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any three.

a) Explain following instructions.

1) MOVC A, @A+PC
2) DIV $A B$
3) JNB 00h, relative address.
4) $X C H D$.
b) Assuming Crystal frequency is of 12 MHz , Write a assembly language program to generate square wave of 100 Hz frequency on pin P1.3 using timer.
c) State from which memory (External program /Internal program /Internal Data/External Data) Data will be transfer for following Underlined instructions. (Consider EA bar $=1$ or $+5 \mathrm{v} \& \mathrm{~A}=0 \mathrm{Oh}$)
5) MOV DPTR,\#OEFFFh

MOVC A,@A+DPTR
2) MOV DPTR,\#0030h

MOVC A,@ A+DPTR
3) MOV DPTR,\#3FFFH

MOVX A,@DPTR
4) MOV R1,8
d) Explain the SFRs associated with the interrupt structure of 8051.
Q. 3 Solve any two.
a) Explain timer module with GATE input bit and INTx pin. Also explain in detail all modes of timer of Microcontroller 8051.
b) Draw interfacing Diagram and Write a program to display data "SUS Solapur" on 16×2 LCD Display.
c) Draw Interfacing of 4*4 matrix keyboard \& 7 segment display to 8051 and Write ALP to display on Seven segment display no. (From 0-f) pressed on 4*4 Matrix keyboard.

Section - II

Q. 4 Solve any three.
a) Explain the following instructions.

1) Clrwdt
2) Incfsz
b) Give the steps to be followed for doing A/D conversion in PIC16F877.
c) Explain the memory organization of PIC 16F877.
d) Explain and give necessity of Brown out reset and Watch Dog Timer in embedded system.
Q. 5 Solve any two.
a) Explain CCP1 module, how it is used for compare function along with Timer1?
b) Explain different addressing modes of PIC. Write assembly language program for addition of two 16 bit numbers.
c) Explain in detail $I^{2} \mathrm{C}$ bus for PIC16F877.

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \& SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer
book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) SCR is used in \qquad .
a) Voltage control applications
b) high voltage
c) high frequency
d) None
2) SCR is a \qquad device.
a) PNPN
b) NNNP
c) PPPN
d) NPNP
3) Fan regular is based on \qquad .
a) DC voltage controlling
b) AC voltage controlling
c) Both a and b
d) None
4) TRIAC is antiparallel arrangement of \qquad .
a) Diodes
b) $S C R$
c) Transistors
d) None
5) In frequency synthesizer \qquad IC is used.
a) IC 1596
b) IC 565
c) CD 4046
d) None
6) Timer is designed using \qquad .
a) $X R 2240$
b) PT 100
c) LM394
d) 1 N 4007
7) PLC exchanges information via \qquad .
a) Cables
b) Sensors
c) Input and output modules
d) Output device
8) DC Drive is based on \qquad .
a) Phase angle control
b) Frequency control
c) time control
d) none
9) IC 74C926 is used for \qquad .
a) Event counting
b) Time
c) Time and event
d) None
10) XR2240 consists of \qquad .
a) 8 bit programmable counter
b) 4 bit programmable counter
c) 8 digit programmable counter
d) 4 digit programmable counter
11) Diac contains \qquad diodes.
a) 1
b) 2
c) 3
d) 4
12) Triac contains \qquad diodes.
a) 1
b) 2
c) 3
d) None
13) Timer counter is designed by \qquad IC.
a) IC XR 2240
b) 74 C 96
c) Both a and b
d) None
14) IC 1596 is used for \qquad .
a) Modulation
b) Demodulation
c) Both a and b
d) None

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \&SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019

Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All Questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any three of the following questions.

a) Explain construction and working of SCR.
b) Explain difference between FSK demodulator and PSK demodulator.
c) Explain design of frequency synthesizer using LM 565 and CD 4046.
d) Compare between TRIAC and DIAC.
Q. 3 Attempt any one of the following questions. 08

a) Explain the AC power controlling with DIAC and TRIAC with suitable
examples.

b) Explain VI characteristics of DIAC and TRIAC.
Q. 4 What are the different Commutation techniques of SCR? Also explain firing 08
circuits of SCR.

Section - II

Q. 5 Attempt any three of the following questions. 12
a) Explain in detail J and K type Thermocouple.

b) Explain design of counter using IC74C926.

c) What is on/off and Propetional Control? Explain in brief.

d) Differentiate between V to V , I to V and V to I converter.
Q. 6 Attempt any one of the following questions. 08

a) Explain PLC architecture and Applications.

b) Write short note on bottle filling plant and elevator control.
Q. 7 Explain design procedure for 3.5 digit multirange digital voltmeter.08

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \& SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) DC Drive is based on \qquad .
a) Phase angle control
b) Frequency control
c) time control
d) none
2) IC 74C926 is used for \qquad .
a) Event counting
b) Time
c) Time and event
d) None
3) XR2240 consists of \qquad .
a) 8 bit programmable counter
b) 4 bit programmable counter
c) 8 digit programmable counter
d) 4 digit programmable counter
4) Diac contains \qquad diodes.
a) 1
b) 2
c) 3
d) 4
5) Triac contains \qquad diodes.
a) 1
b) 2
c) 3
d) None
6) Timer counter is designed by \qquad IC.
a) IC XR 2240
b) 74 C 96
c) Both a and b
d) None
7) IC 1596 is used for \qquad .
a) Modulation
b) Demodulation
c) Both a and b
d) None
8) SCR is used in \qquad .
a) Voltage control applications
b) high voltage
c) high frequency
d) None
9) SCR is a \qquad device.
a) PNPN
b) NNNP
c) PPPN
d) NPNP
10) Fan regular is based on \qquad .
a) DC voltage controlling
b) AC voltage controlling
c) Both a and b
d) None
11) TRIAC is antiparallel arrangement of \qquad .
a) Diodes
b) SCR
c) Transistors
d) None
12) In frequency synthesizer \qquad IC is used.
a) IC 1596
b) IC 565
c) CD 4046
d) None
13) Timer is designed using \qquad .
a) XR 2240
b) PT 100
c) LM394
d) 1 N 4007
14) PLC exchanges information via \qquad .
a) Cables
b) Sensors
c) Input and output modules
d) Output device

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \&SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019

Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All Questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any three of the following questions.
a) Explain construction and working of SCR.
b) Explain difference between FSK demodulator and PSK demodulator.
c) Explain design of frequency synthesizer using LM 565 and CD 4046 .
d) Compare between TRIAC and DIAC.
Q. 3 Attempt any one of the following questions. 08
a) Explain the AC power controlling with DIAC and TRIAC with suitable examples.
b) Explain VI characteristics of DIAC and TRIAC.
Q. 4 What are the different Commutation techniques of SCR? Also explain firing circuits of SCR.

Section - II

Q. 5 Attempt any three of the following questions.12
a) Explain in detail J and K type Thermocouple.
b) Explain design of counter using IC74C926.
c) What is on/off and Propetional Control? Explain in brief.
d) Differentiate between V to V , I to V and V to I converter.
Q. 6 Attempt any one of the following questions. 08
a) Explain PLC architecture and Applications.
b) Write short note on bottle filling plant and elevator control.
Q. 7 Explain design procedure for 3.5 digit multirange digital voltmeter.08

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \& SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) In frequency synthesizer
a) IC 1596
c) CD 4046 IC is used.
b) IC 565
d) None
2) Timer is designed using \qquad .
a) XR 2240
b) PT 100
c) LM394
d) 1 N 4007
3) PLC exchanges information via \qquad .
a) Cables
b) Sensors
c) Input and output modules
d) Output device
4) DC Drive is based on \qquad .
a) Phase angle control
b) Frequency control
c) time control
d) none
5) IC 74C926 is used for \qquad .
a) Event counting
b) Time
c) Time and event
d) None
6) XR2240 consists of \qquad .
a) 8 bit programmable counter
b) 4 bit programmable counter
c) 8 digit programmable counter
d) 4 digit programmable counter
7) Diac contains \qquad diodes.
a) 1
b) 2
c) 3
d) 4
8) Triac contains \qquad diodes.
a) 1
b) 2
c) 3
d) None
9) Timer counter is designed by \qquad IC.
a) IC XR 2240
b) 74 C 96
c) Both a and b
d) None
10) IC 1596 is used for \qquad .
a) Modulation
b) Demodulation
c) Both a and b
d) None
11) SCR is used in \qquad .
a) Voltage control applications
b) high voltage
c) high frequency
d) None
12) $S C R$ is a \qquad device.
a) PNPN
b) NNNP
c) PPPN
d) NPNP
13) Fan regular is based on \qquad .
a) DC voltage controlling
b) AC voltage controlling
c) Both a and b
d) None
14) TRIAC is antiparallel arrangement of \qquad
a) Diodes
b) SCR
c) Transistors
d) None

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \&SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019

Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All Questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any three of the following questions.
a) Explain construction and working of SCR.
b) Explain difference between FSK demodulator and PSK demodulator.
c) Explain design of frequency synthesizer using LM 565 and CD 4046.
d) Compare between TRIAC and DIAC.
Q. 3 Attempt any one of the following questions. 08

a) Explain the AC power controlling with DIAC and TRIAC with suitable
examples.

b) Explain VI characteristics of DIAC and TRIAC.
Q. 4 What are the different Commutation techniques of SCR? Also explain firing 08
circuits of SCR.

Section - II

Q. 5 Attempt any three of the following questions. 12
a) Explain in detail J and K type Thermocouple.

b) Explain design of counter using IC74C926.

c) What is on/off and Propetional Control? Explain in brief.

d) Differentiate between V to V , I to V and V to I converter.
Q. 6 Attempt any one of the following questions. 08

a) Explain PLC architecture and Applications.

b) Write short note on bottle filling plant and elevator control.
Q. 7 Explain design procedure for 3.5 digit multirange digital voltmeter.08

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \& SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer
book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) XR2240 consists of \qquad .
a) 8 bit programmable counter
b) 4 bit programmable counter
c) 8 digit programmable counter
d) 4 digit programmable counter
2) Diac contains \qquad diodes.
a) 1
b) 2
c) 3
d) 4
3) Triac contains \qquad diodes.
a) 1
b) 2
c) 3
d) None
4) Timer counter is designed by \qquad IC.
a) IC XR 2240
b) 74 C 96
c) Both a and b
d) None
5) IC 1596 is used for \qquad .
a) Modulation
b) Demodulation
c) Both a and b
d) None
6) SCR is used in \qquad .
a) Voltage control applications
b) high voltage
c) high frequency
d) None
7) SCR is a \qquad device.
a) PNPN
b) NNNP
c) PPPN
d) NPNP
8) Fan regular is based on \qquad .
a) DC voltage controlling
b) AC voltage controlling
c) Both a and b
d) None
9) TRIAC is antiparallel arrangement of \qquad
a) Diodes
b) SCR
c) Transistors
d) None
10) In frequency synthesizer \qquad IC is used.
a) IC 1596
b) IC 565
c) CD 4046
d) None
11) Timer is designed using \qquad .
a) XR 2240
b) PT 100
c) LM394
d) 1 N 4007
12) PLC exchanges information via \qquad
a) Cables
b) Sensors
c) Input and output modules
d) Output device
13) DC Drive is based on \qquad .
a) Phase angle control
b) Frequency control
c) time control
d) none
14) IC 74C926 is used for \qquad .
a) Event counting
b) Time
c) Time and event
d) None

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS APPLICATIONS \&SYSTEM DESIGN

Day \& Date: Monday, 25-11-2019

Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All Questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any three of the following questions.
a) Explain construction and working of SCR.
b) Explain difference between FSK demodulator and PSK demodulator.
c) Explain design of frequency synthesizer using LM 565 and CD 4046 .
d) Compare between TRIAC and DIAC.
Q. 3 Attempt any one of the following questions. 08
a) Explain the AC power controlling with DIAC and TRIAC with suitable examples.
b) Explain VI characteristics of DIAC and TRIAC.
Q. 4 What are the different Commutation techniques of SCR? Also explain firing circuits of SCR.

Section - II

Q. 5 Attempt any three of the following questions.12
a) Explain in detail J and K type Thermocouple.
b) Explain design of counter using IC74C926.
c) What is on/off and Propetional Control? Explain in brief.
d) Differentiate between V to V , I to V and V to I converter.
Q. 6 Attempt any one of the following questions. 08
a) Explain PLC architecture and Applications.
b) Write short note on bottle filling plant and elevator control.
Q. 7 Explain design procedure for 3.5 digit multirange digital voltmeter.08

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70

Time: 10:00 AM To 01:00 PM
Instructions: 1) Objective paper should be returned in first 30 minutes.
2) Figures to the right indicates full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) Intrinsic absorption is \qquad in ultra violet portion of electromagnetic spectrum as compared to visible and infrared portion.
a) same
b) very weak
c) very strong
d) none of these
2) As compared to multimode step index fiber, a step index fiber has a ___ intermodal dispersion.
a) High
b) Low
c) Same
d) None of these
3) A multimode graded index fiber has a total pulse broadening of $0.2 \mu \mathrm{~s}$ over a distance of 15 km . Then the pulse dispersion per unit length is
a) $6.67 \mathrm{~ns} \mathrm{~km}^{-1}$
b) $\quad 13.34 \mathrm{~ns} \mathrm{~km}^{-1}$
c) $0.133 \mathrm{~ns} \mathrm{~km}^{-1}$
d) $0.266 \mathrm{~ns} \mathrm{~km}^{-1}$
4) Which of the following fiber manufacturing techniques can be used to draw fiber continuously?
a) Vapour Axial Deposition
b) Modified chemical deposition technique
c) Plasma activated chemical deposition technique
d) b and c above
5) A fiber splice is a \qquad joint formed between two individual optical fibers in field or factory.
a) Permanent
b) Temporary
c) Permanent or Temporary
d) None of the above
6) An anisotype heterojunction is a \qquad junction.
a) $n-n$
b) $p-p$
c) $p-n$
d) $a \& b a b o v e$
7) Which of the following is an advantage of a plastic optical fiber as compared to glass fiber?
a) Reduced requirement for a buffer jacket
b) Cheaper to produce
c) Easier to handle
d) All of the above
8) Responsivity of photo diode is expressed in \qquad .
a) A / W
b) A-W
c) W / A
d) $A^{2}-W$
9) Speed of response of detector is limited by \qquad .
a) drift time of carrier through the carrier through depletion region
b) diffusion time of the carrier generated outside the depletion region
c) time constant incurred by the capacitance of photodiode with its load
d) all the above
10) Transmission of multiple optical signals over same fiber is used \qquad .
a) to increase the transmission capacity of the fiber
b) to increase the core diameter of the fiber
c) to increase the cladding diameter of the fiber
d) none of the above
11) Interferometric technique is used to measure \qquad .
a) Dispersion
b) Numerical aperture
c) Refractive index profile
d) Total attenuation
12) Frequency domain measurements is the preferred method for acquiring the \qquad of multimode optical fibers.
a) Bandwidth
b) Frequency
c) Dispersion
d) Wavelength
13) WDM means \qquad .
a) Wave Division Multiplexing
b) Wavelength Division Multiplexing
c) Width Division Multiplexing
d) None of the above
14) A photodiode has a quantum efficiency of 70% when photons of energy $1.8 \times 10^{-19} \mathrm{~J}$ are incident upon it, then the responsivity of the photodiode is \qquad .
a) 0.694
b) 0.723
c) 0.369
d) 0.623

Seat	
No.	

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full mark.

Section - I

Q. 2 Solve any three of the followings.
a) Determine the cutoff wavelength of a step index fiber to exhibit single mode operation when the core refractive index and radius are 1.46 and $4.5 \mu \mathrm{~m}$, respectively, with the relative index difference being 0.25%
b) A multimode graded index fiber exhibits total pulse broadening of $0.1 \mu \mathrm{~s}$ over a distance of 15 km . Estimate:

1) the maximum bandwidth on the link assuming no intersymbol interference.
2) the pulse dispersion per unit length
c) Explain snug tube and V groove mechanical splices.
d) Write a note on index guided LASERs.

Max. Marks: 56
Q. 3 Solve any two of the followings.
a) Explain the following terms

1) Total internal reflection
2) Acceptance angle
3) Numerical aperture
4) Skew ray
b) Compare different vapour phase deposition techniques with reference to reaction type, depositional direction and refractive index profile formation.
c) Why heterojunctions are preferred in an injection LASER? Explain the operation of a double heterojunction injection LASER with help of energy band diagram.

Section - II

Q. 4 Solve any three of the followings.
a) Explain the working of surface emitter LED.
b) Explain the working principle of phototransistor.
c) Explain the receiver design for optical communication.
d) Explain briefly the cut off wavelength measurements.
Q. 5 Solve any two of the followings.
a) When 10^{11} photons per second each with an energy of $1.28 \times 10^{-19} \mathrm{~J}$ are incident on an ideal photodiode, calculate:

1) the wavelength of the incident radiation
2) the output photocurrent
3) the output photocurrent if the device is an APD with a multiplication factor of 18.
b) Compare LED with Laser based on principle, construction, advantages and disadvantages.
c) Explain FDDI network.
T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70

Time: 10:00 AM To 01:00 PM
Instructions: 1) Objective paper should be returned in first 30 minutes.
2) Figures to the right indicates full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) Responsivity of photo diode is expressed in \qquad .
a) A / W
b) A-W
c) W / A
d) $A^{2}-W$
2) Speed of response of detector is limited by \qquad .
a) drift time of carrier through the carrier through depletion region
b) diffusion time of the carrier generated outside the depletion region
c) time constant incurred by the capacitance of photodiode with its load
d) all the above
3) Transmission of multiple optical signals over same fiber is used \qquad .
a) to increase the transmission capacity of the fiber
b) to increase the core diameter of the fiber
c) to increase the cladding diameter of the fiber
d) none of the above
4) Interferometric technique is used to measure \qquad .
a) Dispersion
b) Numerical aperture
c) Refractive index profile
d) Total attenuation
5) Frequency domain measurements is the preferred method for acquiring the \qquad of multimode optical fibers.
a) Bandwidth
b) Frequency
c) Dispersion
d) Wavelength
6) WDM means \qquad .
a) Wave Division Multiplexing
b) Wavelength Division Multiplexing
c) Width Division Multiplexing
d) None of the above
7) A photodiode has a quantum efficiency of 70% when photons of energy $1.8 \times 10^{-19} \mathrm{~J}$ are incident upon it, then the responsivity of the photodiode is \qquad .
a) 0.694
b) 0.723
c) 0.369
d) 0.623
8) Intrinsic absorption is \qquad in ultra violet portion of electromagnetic spectrum as compared to visible and infrared portion.
a) same
b) very weak
c) very strong
d) none of these
9) As compared to multimode step index fiber, a step index fiber has a ___ intermodal dispersion.
a) High
b) Low
c) Same
d) None of these
10) A multimode graded index fiber has a total pulse broadening of $0.2 \mu \mathrm{~s}$ over a distance of 15 km . Then the pulse dispersion per unit length is
a) $6.67 \mathrm{~ns} \mathrm{~km}^{-1}$
b) $\quad 13.34 \mathrm{~ns} \mathrm{~km}^{-1}$
c) $0.133 \mathrm{~ns} \mathrm{~km}^{-1}$
d) $0.266 \mathrm{~ns} \mathrm{~km}^{-1}$
11) Which of the following fiber manufacturing techniques can be used to draw fiber continuously?
a) Vapour Axial Deposition
b) Modified chemical deposition technique
c) Plasma activated chemical deposition technique
d) b and c above
12) A fiber splice is a \qquad joint formed between two individual optical fibers in field or factory.
a) Permanent
b) Temporary
c) Permanent or Temporary
d) None of the above
13) An anisotype heterojunction is a \qquad junction.
a) $n-n$
b) $p-p$
c) $p-n$
d) $a \& b$ above
14) Which of the following is an advantage of a plastic optical fiber as compared to glass fiber?
a) Reduced requirement for a buffer jacket
b) Cheaper to produce
c) Easier to handle
d) All of the above

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full mark.

Section - I

Q. 2 Solve any three of the followings.
a) Determine the cutoff wavelength of a step index fiber to exhibit single mode operation when the core refractive index and radius are 1.46 and $4.5 \mu \mathrm{~m}$, respectively, with the relative index difference being 0.25%
b) A multimode graded index fiber exhibits total pulse broadening of $0.1 \mu \mathrm{~s}$ over a distance of 15 km . Estimate:

1) the maximum bandwidth on the link assuming no intersymbol interference.
2) the pulse dispersion per unit length
c) Explain snug tube and V groove mechanical splices.
d) Write a note on index guided LASERs.
Q. 3 Solve any two of the followings.
a) Explain the following terms
3) Total internal reflection
4) Acceptance angle
5) Numerical aperture
6) Skew ray
b) Compare different vapour phase deposition techniques with reference to reaction type, depositional direction and refractive index profile formation.
c) Why heterojunctions are preferred in an injection LASER? Explain the operation of a double heterojunction injection LASER with help of energy band diagram.

Section - II

Q. 4 Solve any three of the followings.
a) Explain the working of surface emitter LED.
b) Explain the working principle of phototransistor.
c) Explain the receiver design for optical communication.
d) Explain briefly the cut off wavelength measurements.
Q. 5 Solve any two of the followings.
a) When 10^{11} photons per second each with an energy of $1.28 \times 10^{-19} \mathrm{~J}$ are incident on an ideal photodiode, calculate:

1) the wavelength of the incident radiation
2) the output photocurrent
3) the output photocurrent if the device is an APD with a multiplication factor of 18.
b) Compare LED with Laser based on principle, construction, advantages and disadvantages.
c) Explain FDDI network.

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70

Time: 10:00 AM To 01:00 PM
Instructions: 1) Objective paper should be returned in first 30 minutes.
2) Figures to the right indicates full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) A fiber splice is a \qquad joint formed between two individual optical fibers in field or factory.
a) Permanent
b) Temporary
c) Permanent or Temporary
d) None of the above
2) An anisotype heterojunction is a \qquad junction.
a) $n-n$
b) $p-p$
c) $p-n$
d) a \& b above
3) Which of the following is an advantage of a plastic optical fiber as compared to glass fiber?
a) Reduced requirement for a buffer jacket
b) Cheaper to produce
c) Easier to handle
d) All of the above
4) Responsivity of photo diode is expressed in \qquad .
a) A / W
b) A-W
c) W / A
d) $A^{2}-W$
5) Speed of response of detector is limited by \qquad .
a) drift time of carrier through the carrier through depletion region
b) diffusion time of the carrier generated outside the depletion region
c) time constant incurred by the capacitance of photodiode with its load
d) all the above
6) Transmission of multiple optical signals over same fiber is used \qquad .
a) to increase the transmission capacity of the fiber
b) to increase the core diameter of the fiber
c) to increase the cladding diameter of the fiber
d) none of the above
7) Interferometric technique is used to measure \qquad .
a) Dispersion
b) Numerical aperture
c) Refractive index profile
d) Total attenuation
8) Frequency domain measurements is the preferred method for acquiring the \qquad of multimode optical fibers.
a) Bandwidth
b) Frequency
c) Dispersion
d) Wavelength
9) WDM means \qquad .
a) Wave Division Multiplexing
b) Wavelength Division Multiplexing
c) Width Division Multiplexing
d) None of the above
10) A photodiode has a quantum efficiency of 70% when photons of energy $1.8 \times 10^{-19} \mathrm{~J}$ are incident upon it, then the responsivity of the photodiode is \qquad .
a) 0.694
b) 0.723
c) 0.369
d) 0.623
11) Intrinsic absorption is \qquad in ultra violet portion of electromagnetic spectrum as compared to visible and infrared portion.
a) same
b) very weak
c) very strong
d) none of these
12) As compared to multimode step index fiber, a step index fiber has a intermodal dispersion.
a) High
b) Low
c) Same
d) None of these
13) A multimode graded index fiber has a total pulse broadening of $0.2 \mu \mathrm{~s}$ over a distance of 15 km . Then the pulse dispersion per unit length is
a) $6.67 \mathrm{~ns} \mathrm{~km}^{-1}$
b) $\quad 13.34 \mathrm{~ns} \mathrm{~km}^{-1}$
c) $0.133 \mathrm{~ns} \mathrm{~km}^{-1}$
d) $0.266 \mathrm{~ns} \mathrm{~km}^{-1}$
14) Which of the following fiber manufacturing techniques can be used to draw fiber continuously?
a) Vapour Axial Deposition
b) Modified chemical deposition technique
c) Plasma activated chemical deposition technique
d) b and c above

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full mark.

Section - I

Q. 2 Solve any three of the followings.
a) Determine the cutoff wavelength of a step index fiber to exhibit single mode operation when the core refractive index and radius are 1.46 and $4.5 \mu \mathrm{~m}$, respectively, with the relative index difference being 0.25%
b) A multimode graded index fiber exhibits total pulse broadening of $0.1 \mu \mathrm{~s}$ over a distance of 15 km . Estimate:

1) the maximum bandwidth on the link assuming no intersymbol interference.
2) the pulse dispersion per unit length
c) Explain snug tube and V groove mechanical splices.
d) Write a note on index guided LASERs.

Max. Marks: 56
Q. 3 Solve any two of the followings.
a) Explain the following terms

1) Total internal reflection
2) Acceptance angle
3) Numerical aperture
4) Skew ray
b) Compare different vapour phase deposition techniques with reference to reaction type, depositional direction and refractive index profile formation.
c) Why heterojunctions are preferred in an injection LASER? Explain the operation of a double heterojunction injection LASER with help of energy band diagram.

Section - II

Q. 4 Solve any three of the followings.
a) Explain the working of surface emitter LED.
b) Explain the working principle of phototransistor.
c) Explain the receiver design for optical communication.
d) Explain briefly the cut off wavelength measurements.
Q. 5 Solve any two of the followings.
a) When 10^{11} photons per second each with an energy of $1.28 \times 10^{-19} \mathrm{~J}$ are incident on an ideal photodiode, calculate:

1) the wavelength of the incident radiation
2) the output photocurrent
3) the output photocurrent if the device is an APD with a multiplication factor of 18.
b) Compare LED with Laser based on principle, construction, advantages and disadvantages.
c) Explain FDDI network.
T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70

Time: 10:00 AM To 01:00 PM
Instructions: 1) Objective paper should be returned in first 30 minutes.
2) Figures to the right indicates full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) Transmission of multiple optical signals over same fiber is used \qquad .
a) to increase the transmission capacity of the fiber
b) to increase the core diameter of the fiber
c) to increase the cladding diameter of the fiber
d) none of the above
2) Interferometric technique is used to measure \qquad .
a) Dispersion
b) Numerical aperture
c) Refractive index profile
d) Total attenuation
3) Frequency domain measurements is the preferred method for acquiring the \qquad of multimode optical fibers.
a) Bandwidth
b) Frequency
c) Dispersion
d) Wavelength
4) WDM means \qquad .
a) Wave Division Multiplexing
b) Wavelength Division Multiplexing
c) Width Division Multiplexing
d) None of the above
5) A photodiode has a quantum efficiency of 70% when photons of energy $1.8 \times 10^{-19} \mathrm{~J}$ are incident upon it, then the responsivity of the photodiode is \qquad .
a) 0.694
b) 0.723
c) 0.369
d) 0.623
6) Intrinsic absorption is \qquad in ultra violet portion of electromagnetic spectrum as compared to visible and infrared portion.
a) same
b) very weak
c) very strong
d) none of these
7) As compared to multimode step index fiber, a step index fiber has a
\qquad intermodal dispersion.
a) High
b) Low
c) Same
d) None of these
8) A multimode graded index fiber has a total pulse broadening of $0.2 \mu \mathrm{~s}$ over a distance of 15 km . Then the pulse dispersion per unit length is
a) $6.67 \mathrm{~ns} \mathrm{~km}^{-1}$
b) $\quad 13.34 \mathrm{~ns} \mathrm{~km}^{-1}$
c) $0.133 \mathrm{~ns} \mathrm{~km}^{-1}$
d) $0.266 \mathrm{~ns} \mathrm{~km}^{-1}$
9) Which of the following fiber manufacturing techniques can be used to draw fiber continuously?
a) Vapour Axial Deposition
b) Modified chemical deposition technique
c) Plasma activated chemical deposition technique
d) b and c above
10) A fiber splice is a \qquad joint formed between two individual optical fibers in field or factory.
a) Permanent
b) Temporary
c) Permanent or Temporary
d) None of the above
11) An anisotype heterojunction is a \qquad junction.
a) $n-n$
b) $p-p$
c) $p-n$
d) $a \& b$ above
12) Which of the following is an advantage of a plastic optical fiber as compared to glass fiber?
a) Reduced requirement for a buffer jacket
b) Cheaper to produce
c) Easier to handle
d) All of the above
13) Responsivity of photo diode is expressed in \qquad .
a) A / W
b) A-W
c) W / A
d) $A^{2}-W$
14) Speed of response of detector is limited by \qquad .
a) drift time of carrier through the carrier through depletion region
b) diffusion time of the carrier generated outside the depletion region
c) time constant incurred by the capacitance of photodiode with its load
d) all the above

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPTICAL COMMUNICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full mark.

Section - I

Q. 2 Solve any three of the followings.
a) Determine the cutoff wavelength of a step index fiber to exhibit single mode operation when the core refractive index and radius are 1.46 and $4.5 \mu \mathrm{~m}$, respectively, with the relative index difference being 0.25%
b) A multimode graded index fiber exhibits total pulse broadening of $0.1 \mu \mathrm{~s}$ over a distance of 15 km . Estimate:

1) the maximum bandwidth on the link assuming no intersymbol interference.
2) the pulse dispersion per unit length
c) Explain snug tube and V groove mechanical splices.
d) Write a note on index guided LASERs.
Q. 3 Solve any two of the followings.
a) Explain the following terms
3) Total internal reflection
4) Acceptance angle
5) Numerical aperture
6) Skew ray
b) Compare different vapour phase deposition techniques with reference to reaction type, depositional direction and refractive index profile formation.
c) Why heterojunctions are preferred in an injection LASER? Explain the operation of a double heterojunction injection LASER with help of energy band diagram.

Section - II

Q. 4 Solve any three of the followings.
a) Explain the working of surface emitter LED.
b) Explain the working principle of phototransistor.
c) Explain the receiver design for optical communication.
d) Explain briefly the cut off wavelength measurements.
Q. 5 Solve any two of the followings.
a) When 10^{11} photons per second each with an energy of $1.28 \times 10^{-19} \mathrm{~J}$ are incident on an ideal photodiode, calculate:

1) the wavelength of the incident radiation
2) the output photocurrent
3) the output photocurrent if the device is an APD with a multiplication factor of 18.
b) Compare LED with Laser based on principle, construction, advantages and disadvantages.
c) Explain FDDI network.

Seat
 No.
 T.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

Set

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Advantage of using Dynamic channel assignment is \qquad .
a) Blocking is reduced
b) Capacity of the system is increased
c) Both a \& b
d) None of the above
2) Trunking in a cellular network refers to \qquad .
a) Termination of a call
b) Spectrum unavailability
c) Accommodating large numbers of users in limited spectrum
d) All of the above
3) Co-channel reuse ratio for cluster size 12 is \qquad .
a) 4
b) 5
c) 6
d) 7
4) Friis free space equation \qquad .
a) Is an expression for noise power
b) Is a function of transmitting and receiving antenna gain
c) Depends upon the distance between transmitting and receiving antenna.
d) Both b \& c
5) is the Time Dispersion Parameter.
a) RMS delay spread
b) Mean excess delay
c) Excess delay spread
d) All of above
6) Data transmission for users of a \qquad system is not continuous, but oocurs in bursts.
a) FDMA
b) TDMA
c) SDMA
d) SSMA
7) requires tight RF filtering to minimize adjacent channel interference.
a) FDMA
b) TDMA
c) SDMA
d) SSMA
8) Carrier Separation in Primary GSM system is of \qquad .
a) 200 KHz
b) 300 KHz
c) 400 KHz
d) 500 KHz
9) In GSM one hyperframe is made of
a) 2048 superframes
b) 2048 mutiframes
c) 2084 superframes
d) 2084 mutiframes
10) The standard interface that connects a MS to BTS is called the \qquad interface.
a) Um
b) A-bis
c) A
d) D
11) The \qquad channel is used for sending short message including broadcast message.
a) Forward traffic
b) Sync
c) Paging
d) Pilot
12) In IS-95 CDMA forward channel bandwidth is of \qquad .
a) 1.25 MHz
b) 1.40 MHz
c) $\quad 2 \mathrm{MHz}$
d) 3 MHz
13) The channel bandwidth in W-CDMA is \qquad .
a) 5 MHz
b) 4 MHz
c) 2 MHz
d) 1.5 MHz
14) The data modulation used in forward channel in W-CDMA system is \qquad .
a) BPSK
b) QPSK
c) Dual Channel QPSK
d) OQPSK

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Attempt any three of the following questions.
a) Explain frequency reuse concept in cellular systems.
b) Explain Umbrella cell approach.
c) Explain log-distance path loss model and log-normal shadowing.
d) What is diversity? Explain in detail.
e) Write a note on Space Division Multiple Access (SDMA).
Q. 3 Attempt any two of the following questions.
a) Explain different methods used to improve capacity of cellular systems.
b) Elaborate the free space propagation model.
c) Explain frame structure, features, efficiency and number of channels in TDMA system.

Section - II

Q. 4 Attempt any three of the following questions.
a) Write a note on GPRS.
b) Describe the types of Handoff in GSM.
c) Explain GSM frame hierarchy.
d) Explain pilot channel, sync channel and paging channels in IS-95 CDMA system.
e) Explain reverse channel in W-CDMA.
Q. 5 Attempt any two of the following questions.
a) Give the detail comparison of IS-95, WCDMA and CDMA 2000.
b) Explain in detail GSM protocol architecture.
c) Explain with neat block diagram Access channel processing and reverse traffic channel processing in IS-95 CDMA system.

T.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Carrier Separation in Primary GSM system is of \qquad .
a) 200 KHz
b) 300 KHz
c) 400 KHz
d) 500 KHz
2) In GSM one hyperframe is made of \qquad .
a) 2048 superframes
b) 2048 mutiframes
c) 2084 superframes
d) 2084 mutiframes
3) The standard interface that connects a MS to BTS is called the \qquad interface.
a) Um
b) A-bis
c) A
d) D
4) The \qquad channel is used for sending short message including broadcast message.
a) Forward traffic
b) Sync
c) Paging
d) Pilot
5) In IS-95 CDMA forward channel bandwidth is of \qquad .
a) 1.25 MHz
b) 1.40 MHz
c) 2 MHz
d) 3 MHz
6) The channel bandwidth in W-CDMA is \qquad .
a) 5 MHz
b) 4 MHz
c) 2 MHz
d) 1.5 MHz
7) The data modulation used in forward channel in W-CDMA system is \qquad .
a) BPSK
b) QPSK
c) Dual Channel QPSK
d) OQPSK
8) Advantage of using Dynamic channel assignment is \qquad .
a) Blocking is reduced
b) Capacity of the system is increased
c) Both a \& b
d) None of the above
9) Trunking in a cellular network refers to \qquad .
a) Termination of a call
b) Spectrum unavailability
c) Accommodating large numbers of users in limited spectrum
d) All of the above
10) Co-channel reuse ratio for cluster size 12 is \qquad .
a) 4
b) 5
c) 6
d) 7
11) Friis free space equation \qquad .
a) Is an expression for noise power
b) Is a function of transmitting and receiving antenna gain
c) Depends upon the distance between transmitting and receiving antenna.
d) Both b \& c
12) is the Time Dispersion Parameter.
a) RMS delay spread
b) Mean excess delay
c) Excess delay spread
d) All of above
13) Data transmission for users of a \qquad system is not continuous, but oocurs in bursts.
a) FDMA
b) TDMA
c) SDMA
d) SSMA
14) \qquad requires tight RF filtering to minimize adjacent channel interference.
a) FDMA
b) TDMA
c) SDMA
d) SSMA

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Attempt any three of the following questions.
 12

a) Explain frequency reuse concept in cellular systems.
b) Explain Umbrella cell approach.
c) Explain log-distance path loss model and log-normal shadowing.
d) What is diversity? Explain in detail.
e) Write a note on Space Division Multiple Access (SDMA).
Q. 3 Attempt any two of the following questions.
a) Explain different methods used to improve capacity of cellular systems.
b) Elaborate the free space propagation model.
c) Explain frame structure, features, efficiency and number of channels in TDMA system.

Section - II

Q. 4 Attempt any three of the following questions.
a) Write a note on GPRS.
b) Describe the types of Handoff in GSM.
c) Explain GSM frame hierarchy.
d) Explain pilot channel, sync channel and paging channels in IS-95 CDMA system.
e) Explain reverse channel in W-CDMA.
Q. 5 Attempt any two of the following questions.
a) Give the detail comparison of IS-95, WCDMA and CDMA 2000.
b) Explain in detail GSM protocol architecture.
c) Explain with neat block diagram Access channel processing and reverse traffic channel processing in IS-95 CDMA system.

Seat

No.
Set R

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) is the Time Dispersion Parameter.
a) RMS delay spread
b) Mean excess delay
c) Excess delay spread
d) All of above
2) Data transmission for users of a \qquad system is not continuous, but oocurs in bursts.
a) FDMA
b) TDMA
c) SDMA
d) SSMA
3) \qquad requires tight RF filtering to minimize adjacent channel interference.
a) FDMA
b) TDMA
c) SDMA
d) SSMA
4) Carrier Separation in Primary GSM system is of \qquad .
a) 200 KHz
b) 300 KHz
c) 400 KHz
d) 500 KHz
5) In GSM one hyperframe is made of \qquad .
a) 2048 superframes
b) 2048 mutiframes
c) 2084 superframes
d) 2084 mutiframes
6) The standard interface that connects a MS to BTS is called the \qquad interface.
a) Um
b) A-bis
c) A
d) D
7) The \qquad channel is used for sending short message including broadcast message.
a) Forward traffic
b) Sync
c) Paging
d) Pilot
8) In IS-95 CDMA forward channel bandwidth is of \qquad .
a) 1.25 MHz
b) 1.40 MHz
c) $\quad 2 \mathrm{MHz}$
d) 3 MHz
9) The channel bandwidth in W-CDMA is \qquad .
a) 5 MHz
b) 4 MHz
c) $\quad 2 \mathrm{MHz}$
d) 1.5 MHz
10) The data modulation used in forward channel in W-CDMA system is \qquad .
a) BPSK
b) QPSK
c) Dual Channel QPSK
d) OQPSK
11) Advantage of using Dynamic channel assignment is \qquad .
a) Blocking is reduced
b) Capacity of the system is increased
c) Both a \& b
d) None of the above
12) Trunking in a cellular network refers to \qquad .
a) Termination of a call
b) Spectrum unavailability
c) Accommodating large numbers of users in limited spectrum
d) All of the above
13) Co-channel reuse ratio for cluster size 12 is \qquad .
a) 4
b) 5
c) 6
d) 7
14) Friis free space equation \qquad .
a) Is an expression for noise power
b) Is a function of transmitting and receiving antenna gain
c) Depends upon the distance between transmitting and receiving antenna.
d) Both b \& c

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Attempt any three of the following questions. 12
a) Explain frequency reuse concept in cellular systems.
b) Explain Umbrella cell approach.
c) Explain log-distance path loss model and log-normal shadowing.
d) What is diversity? Explain in detail.
e) Write a note on Space Division Multiple Access (SDMA).
Q. 3 Attempt any two of the following questions.
a) Explain different methods used to improve capacity of cellular systems.
b) Elaborate the free space propagation model.
c) Explain frame structure, features, efficiency and number of channels in TDMA system.

Section - II

Q. 4 Attempt any three of the following questions.
a) Write a note on GPRS.
b) Describe the types of Handoff in GSM.
c) Explain GSM frame hierarchy.
d) Explain pilot channel, sync channel and paging channels in IS-95 CDMA system.
e) Explain reverse channel in W-CDMA.
Q. 5 Attempt any two of the following questions.
a) Give the detail comparison of IS-95, WCDMA and CDMA 2000.
b) Explain in detail GSM protocol architecture.
c) Explain with neat block diagram Access channel processing and reverse traffic channel processing in IS-95 CDMA system.

Seat
 No.
 T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

Set

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The standard interface that connects a MS to BTS is called the \qquad interface.
a) Um
b) A-bis
c) A
d) D
2) The \qquad channel is used for sending short message including broadcast message.
a) Forward traffic
b) Sync
c) Paging
d) Pilot
3) In IS-95 CDMA forward channel bandwidth is of \qquad .
a) 1.25 MHz
b) 1.40 MHz
c) 2 MHz
d) 3 MHz
4) The channel bandwidth in W-CDMA is \qquad .
a) 5 MHz
b) 4 MHz
c) 2 MHz
d) 1.5 MHz
5) The data modulation used in forward channel in W-CDMA system is \qquad .
a) BPSK
b) QPSK
c) Dual Channel QPSK
d) OQPSK
6) Advantage of using Dynamic channel assignment is \qquad .
a) Blocking is reduced
b) Capacity of the system is increased
c) Both a \& b
d) None of the above
7) Trunking in a cellular network refers to \qquad .
a) Termination of a call
b) Spectrum unavailability
c) Accommodating large numbers of users in limited spectrum
d) All of the above
8) Co-channel reuse ratio for cluster size 12 is \qquad .
a) 4
b) 5
c) 6
d) 7
9) Friis free space equation \qquad .
a) Is an expression for noise power
b) Is a function of transmitting and receiving antenna gain
c) Depends upon the distance between transmitting and receiving antenna.
d) Both b \& c
10)

a) RMS delay spread
b) Mean excess delay
c) Excess delay spread
d) All of above
11) Data transmission for users of a \qquad system is not continuous, but oocurs in bursts.
a) FDMA
b) TDMA
c) SDMA
d) SSMA
12) ___ requires tight RF filtering to minimize adjacent channel interference.
a) FDMA
b) TDMA
c) SDMA
d) SSMA
13) Carrier Separation in Primary GSM system is of \qquad .
a) 200 KHz
b) 300 KHz
c) 400 KHz
d) 500 KHz
14) In GSM one hyperframe is made of \qquad .
a) 2048 superframes
b) 2048 mutiframes
c) 2084 superframes
d) 2084 mutiframes

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MOBILE COMMUNICATION

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Attempt any three of the following questions.
 12

a) Explain frequency reuse concept in cellular systems.
b) Explain Umbrella cell approach.
c) Explain log-distance path loss model and log-normal shadowing.
d) What is diversity? Explain in detail.
e) Write a note on Space Division Multiple Access (SDMA).
Q. 3 Attempt any two of the following questions.
a) Explain different methods used to improve capacity of cellular systems.
b) Elaborate the free space propagation model.
c) Explain frame structure, features, efficiency and number of channels in TDMA system.

Section - II

Q. 4 Attempt any three of the following questions.
a) Write a note on GPRS.
b) Describe the types of Handoff in GSM.
c) Explain GSM frame hierarchy.
d) Explain pilot channel, sync channel and paging channels in IS-95 CDMA system.
e) Explain reverse channel in W-CDMA.
Q. 5 Attempt any two of the following questions.
a) Give the detail comparison of IS-95, WCDMA and CDMA 2000.
b) Explain in detail GSM protocol architecture.
c) Explain with neat block diagram Access channel processing and reverse traffic channel processing in IS-95 CDMA system.
T.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in answer book.

2) Answer MCQ Objective type questions on Page No. 3 only
3) Figures to right indicate full marks.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) The addressing mode, where operand value is directly specified is called \qquad .
a) Immediate
b) Direct
c) Definite
d) Relative
2) Which representation is most efficient to perform arithmetic operations?
a) Sign magnitude
b) 1's complements
c) 2's complements
d) None of these
3) Which register points to the first instruction to be executed when the processor starts.
a) Accumulator
b) Program counter
c) Data register
d) Instruction register
4) Speedup techniques of computer include \qquad .
a) cache
b) pipeline
c) superscalar
d) all of these
5) Floating point representation consist of \qquad .
a) Mantissa
b) exponent
c) Both a) and b)
d) none of these
6) To read the control words sequentially \qquad is used.
a) PC
b) $I R$
c) $u P C$
d) None of these
7) Data used with assembly language instruction in processors are nothing but \qquad .
a) Opcode
b) Operand
c) Register
d) None of these
8) In Processor DMA Stand for \qquad .
a) Direct Memory Access
b) Division Memory Access
c) Direct mapping Access
d) All of the above
9) What is not true about RISC?
a) Large no of addressing modes
b) Simple instruction
c) Hardwired control unit
d) A single chip processor
10) To interface 2048 bytes of memory, how many address lines are required?
a) 8
b) 9
c) 10
d) 11

Seat	
No.	

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION

Day \& Date: Thursday, 28-12-2019
Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No.2.
2) Figures to right indicate full marks.
Q. 2 Attempt any four (each 10 marks)
a) Write note Virtual memory system.
b) Explain instruction set formats in detail.
c) Explain CISC and RISC Architecture in detail.
d) Explain GCD processor hardwired control unit.
e) Explain memory allocation schemes in details.
f) Explain in detail cache memory organization.

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION

Day \& Date: Thursday, 28-12-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in answer book.
2) Answer MCQ Objective type questions on Page No. 3 only
3) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10

Q. 1 Choose the correct alternatives from the options and rewrite the 10 sentence.

1) To read the control words sequentially \qquad is used.
a) PC
b) $I R$
c) $u P C$
d) None of these
2) Data used with assembly language instruction in processors are nothing but \qquad .
a) Opcode
b) Operand
c) Register
d) None of these
3) In Processor DMA Stand for \qquad .
a) Direct Memory Access
b) Division Memory Access
c) Direct mapping Access
d) All of the above
4) What is not true about RISC?
a) Large no of addressing modes
b) Simple instruction
c) Hardwired control unit
d) A single chip processor
5) To interface 2048 bytes of memory, how many address lines are required?
a) 8
b) 9
c) 10
d) 11
6) The addressing mode, where operand value is directly specified is called \qquad .
a) Immediate
b) Direct
c) Definite
d) Relative
7) Which representation is most efficient to perform arithmetic operations?
a) Sign magnitude
b) 1's complements
c) 2's complements
d) None of these
8) Which register points to the first instruction to be executed when the processor starts.
a) Accumulator
b) Program counter
c) Data register
d) Instruction register
9) Speedup techniques of computer include \qquad .
a) cache
b) pipeline
c) superscalar
d) all of these
10) Floating point representation consist of
a) Mantissa
b) exponent
c) Both a) and b)
d) none of these

Seat	
No.	

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION

Day \& Date: Thursday, 28-12-2019
Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No.2.
2) Figures to right indicate full marks.
Q. 2 Attempt any four (each 10 marks)
a) Write note Virtual memory system.
b) Explain instruction set formats in detail.
c) Explain CISC and RISC Architecture in detail.
d) Explain GCD processor hardwired control unit.
e) Explain memory allocation schemes in details.
f) Explain in detail cache memory organization.
T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION
Day \& Date: Thursday, 28-12-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in

 answer book.2) Answer MCQ Objective type questions on Page No. 3 only
3) Figures to right indicate full marks.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options and rewrite the 10 sentence.

1) What is not true about RISC?
a) Large no of addressing modes
b) Simple instruction
c) Hardwired control unit
d) A single chip processor
2) To interface 2048 bytes of memory, how many address lines are required?
a) 8
b) 9
c) 10
d) 11
3) The addressing mode, where operand value is directly specified is called \qquad .
a) Immediate
b) Direct
c) Definite
d) Relative
4) Which representation is most efficient to perform arithmetic operations?
a) Sign magnitude
b) 1's complements
c) 2's complements
d) None of these
5) Which register points to the first instruction to be executed when the processor starts.
a) Accumulator
b) Program counter
c) Data register
d) Instruction register
6) Speedup techniques of computer include \qquad .
a) cache
b) pipeline
c) superscalar
d) all of these
7) Floating point representation consist of \qquad .
a) Mantissa
b) exponent
c) Both a) and b)
d) none of these
8) To read the control words sequentially \qquad is used.
a) PC
b) $\quad \mathrm{IR}$
c) $u P C$
d) None of these
9) Data used with assembly language instruction in processors are nothing but \qquad .
a) Opcode
b) Operand
c) Register
d) None of these
10) In Processor DMA Stand for
a) Direct Memory Access
b) Division Memory Access
c) Direct mapping Access
d) All of the above

Seat No.	

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION

Day \& Date: Thursday, 28-12-2019
Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No.2.
2) Figures to right indicate full marks.
Q. 2 Attempt any four (each 10 marks)
a) Write note Virtual memory system.
b) Explain instruction set formats in detail.
c) Explain CISC and RISC Architecture in detail.
d) Explain GCD processor hardwired control unit.
e) Explain memory allocation schemes in details.
f) Explain in detail cache memory organization.
T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in answer book.

2) Answer MCQ Objective type questions on Page No. 3 only
3) Figures to right indicate full marks.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options and rewrite the 10 sentence.

1) Which register points to the first instruction to be executed when the processor starts.
a) Accumulator
b) Program counter
c) Data register
d) Instruction register
2) Speedup techniques of computer include \qquad .
a) cache
b) pipeline
c) superscalar
d) all of these
3) Floating point representation consist of \qquad .
a) Mantissa
b) exponent
c) Both a) and b)
d) none of these
4) To read the control words sequentially \qquad is used.
a) PC
b) $I R$
c) uPC
d) None of these
5) Data used with assembly language instruction in processors are nothing but \qquad .
a) Opcode
b) Operand
c) Register
d) None of these
6) In Processor DMA Stand for \qquad .
a) Direct Memory Access
b) Division Memory Access
c) Direct mapping Access
d) All of the above
7) What is not true about RISC?
a) Large no of addressing modes
b) Simple instruction
c) Hardwired control unit
d) A single chip processor
8) To interface 2048 bytes of memory, how many address lines are required?
a) 8
b) 9
c) 10
d) 11
9) The addressing mode, where operand value is directly specified is called \qquad .
a) Immediate
b) Direct
c) Definite
d) Relative
10) Which representation is most efficient to perform arithmetic operations?
a) Sign magnitude
b) 1's complements
c) 2's complements
d) None of these

Seat	
No.	

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering COMPUTER ORGANIZATION

Day \& Date: Thursday, 28-12-2019
Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No.2.
2) Figures to right indicate full marks.
Q. 2 Attempt any four (each 10 marks)
a) Write note Virtual memory system.
b) Explain instruction set formats in detail.
c) Explain CISC and RISC Architecture in detail.
d) Explain GCD processor hardwired control unit.
e) Explain memory allocation schemes in details.
f) Explain in detail cache memory organization.
T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019

Max. Marks: 50
Time: 10:00 AM To 12:00 PM

Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 20 minutes in answer book.

2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) Process is \qquad .
a) program in High level language kept on disk
b) contents of main memory
c) a program in execution
d) a job in secondary memory
2) The strategy of allowing processes that are logically runnable to be temporarily suspended is called \qquad .
a) preemptive scheduling
b) non preemptive scheduling
c) Shortest job first
d) first come first served
3) A non-relocatable program is one which \qquad .
a) cannot be made to execute in any area of storage other than the one designated for it at the time of its coding or translation.
b) consists of a program and relevant information for its relocation.
c) can itself performs the relocation of its address-sensitive portions.
d) all of the above
4) Operating system \qquad .
a) links a program with the subroutines it references
b) provides a layered, user-friendly interface
c) enables the programmer to draw a flowchart
d) all of the above
5) Which of the following is not true about the memory management?
a) virtual memory is used only in multi-user systems
b) segmentation suffers from external fragmentation
c) paging suffers from internal fragmentation
d) segmented memory can be paged
6) Which of the following is characteristic of an operating system?
a) resource management
b) error recovery
c) memory management
d) All the above
7) A thread is a \qquad .
a) Task
b) Process
c) Program
d) Light weight process
8) In \qquad the processes under consideration must be independent: that is, the order in which they execute must be unconstrained by any synchronization requirements.
a) deadlock prevention
b) deadlock avoidance
c) deadlock detection
d) deadlock deletion
9) In almost all modern multi programming systems, principal operation of memory management involves a sophisticated scheme known as
a) memory partitioning
b) virtual memory
c) real memory
d) memory organization
10) To access the services of operating system, the interface is provided by the \qquad .
a) System calls
b) API
c) library
d) Assembly instructions

Seat	
No.	

Set

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019 Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) All the questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
Q. 2 Attempt any four of the following questions.
a) Why we need the operating system? Explain following types of operating system

1) Time sharing system
2) Real time system
b) What do you mean by process in operating system? List different process States and explain it with the help of diagram of process state transitions.
c) Draw and explain queuing diagram representation of process scheduling, what is the difference between long term scheduler and short term scheduler?
d) What are necessary conditions for deadlock situation? Explain resource allocation graph with dead lock.
e) Discuss in detail paging as memory management scheme.

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM

Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 20 minutes in answer book.

2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) Which of the following is characteristic of an operating system?
a) resource management
b) error recovery
c) memory management
d) All the above
2) A thread is a \qquad .
a) Task
b) Process
c) Program
d) Light weight process
3) $\quad \mathrm{In}$ \qquad the processes under consideration must be independent: that is, the order in which they execute must be unconstrained by any synchronization requirements.
a) deadlock prevention
b) deadlock avoidance
c) deadlock detection
d) deadlock deletion
4) In almost all modern multi programming systems, principal operation of memory management involves a sophisticated scheme known as
\qquad .
a) memory partitioning
b) virtual memory
c) real memory
d) memory organization
5) To access the services of operating system, the interface is provided by the \qquad .
a) System calls
b) API
c) library
d) Assembly instructions
6) Process is \qquad .
a) program in High level language kept on disk
b) contents of main memory
c) a program in execution
d) a job in secondary memory
7) The strategy of allowing processes that are logically runnable to be temporarily suspended is called \qquad .
a) preemptive scheduling
b) non preemptive scheduling
c) Shortest job first
d) first come first served
8) A non-relocatable program is one which \qquad .
a) cannot be made to execute in any area of storage other than the one designated for it at the time of its coding or translation.
b) consists of a program and relevant information for its relocation.
c) can itself performs the relocation of its address-sensitive portions.
d) all of the above
9) Operating system \qquad .
a) links a program with the subroutines it references
b) provides a layered, user-friendly interface
c) enables the programmer to draw a flowchart
d) all of the above
10) Which of the following is not true about the memory management?
a) virtual memory is used only in multi-user systems
b) segmentation suffers from external fragmentation
c) paging suffers from internal fragmentation
d) segmented memory can be paged

Seat
No.
Set
T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering OPERATING SYSTEM
Day \& Date: Thursday, 28-11-2019 Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) All the questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
Q. 2 Attempt any four of the following questions.
a) Why we need the operating system? Explain following types of operating system

1) Time sharing system
2) Real time system
b) What do you mean by process in operating system? List different process States and explain it with the help of diagram of process state transitions.
c) Draw and explain queuing diagram representation of process scheduling, what is the difference between long term scheduler and short term scheduler?
d) What are necessary conditions for deadlock situation? Explain resource allocation graph with dead lock.
e) Discuss in detail paging as memory management scheme.
T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019

Max. Marks: 50
Time: 10:00 AM To 12:00 PM

Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 20 minutes in answer book.

2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) In almost all modern multi programming systems, principal operation of memory management involves a sophisticated scheme known as
\qquad .
a) memory partitioning
b) virtual memory
c) real memory
d) memory organization
2) To access the services of operating system, the interface is provided by the \qquad .
a) System calls
b) API
c) library
d) Assembly instructions
3) Process is \qquad .
a) program in High level language kept on disk
b) contents of main memory
c) a program in execution
d) a job in secondary memory
4) The strategy of allowing processes that are logically runnable to be temporarily suspended is called \qquad .
a) preemptive scheduling
b) non preemptive scheduling
c) Shortest job first
d) first come first served
5) A non-relocatable program is one which \qquad .
a) cannot be made to execute in any area of storage other than the one designated for it at the time of its coding or translation.
b) consists of a program and relevant information for its relocation.
c) can itself performs the relocation of its address-sensitive portions.
d) all of the above
6) Operating system \qquad .
a) links a program with the subroutines it references
b) provides a layered, user-friendly interface
c) enables the programmer to draw a flowchart
d) all of the above
7) Which of the following is not true about the memory management?
a) virtual memory is used only in multi-user systems
b) segmentation suffers from external fragmentation
c) paging suffers from internal fragmentation
d) segmented memory can be paged
8) Which of the following is characteristic of an operating system?
a) resource management
b) error recovery
c) memory management
d) All the above
9) A thread is a \qquad .
a) Task
b) Process
c) Program
d) Light weight process
10) In \qquad the processes under consideration must be independent: that is, the order in which they execute must be unconstrained by any synchronization requirements.
a) deadlock prevention
b) deadlock avoidance
c) deadlock detection
d) deadlock deletion

Seat	
No.	

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019 Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) All the questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
Q. 2 Attempt any four of the following questions.
a) Why we need the operating system? Explain following types of operating system

1) Time sharing system
2) Real time system
b) What do you mean by process in operating system? List different process States and explain it with the help of diagram of process state transitions.
c) Draw and explain queuing diagram representation of process scheduling, what is the difference between long term scheduler and short term scheduler?
d) What are necessary conditions for deadlock situation? Explain resource allocation graph with dead lock.
e) Discuss in detail paging as memory management scheme.

T.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019

Max. Marks: 50
Time: 10:00 AM To 12:00 PM

Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 20 minutes in answer book.

2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) A non-relocatable program is one which \qquad .
a) cannot be made to execute in any area of storage other than the one designated for it at the time of its coding or translation.
b) consists of a program and relevant information for its relocation.
c) can itself performs the relocation of its address-sensitive portions.
d) all of the above
2) Operating system \qquad .
a) links a program with the subroutines it references
b) provides a layered, user-friendly interface
c) enables the programmer to draw a flowchart
d) all of the above
3) Which of the following is not true about the memory management?
a) virtual memory is used only in multi-user systems
b) segmentation suffers from external fragmentation
c) paging suffers from internal fragmentation
d) segmented memory can be paged
4) Which of the following is characteristic of an operating system?
a) resource management
b) error recovery
c) memory management
d) All the above
5) A thread is a \qquad .
a) Task
b) Process
c) Program
d) Light weight process
6) $\quad \mathrm{In}$ \qquad the processes under consideration must be independent: that is, the order in which they execute must be unconstrained by any synchronization requirements.
a) deadlock prevention
b) deadlock avoidance
c) deadlock detection
d) deadlock deletion
7) In almost all modern multi programming systems, principal operation of memory management involves a sophisticated scheme known as
\qquad .
a) memory partitioning
b) virtual memory
c) real memory
d) memory organization
8) To access the services of operating system, the interface is provided by the \qquad .
a) System calls
b) API
c) library
d) Assembly instructions
9) Process is \qquad .
a) program in High level language kept on disk
b) contents of main memory
c) a program in execution
d) a job in secondary memory
10) The strategy of allowing processes that are logically runnable to be temporarily suspended is called \qquad .
a) preemptive scheduling
b) non preemptive scheduling
c) Shortest job first
d) first come first served

Seat	
No.	

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering OPERATING SYSTEM

Day \& Date: Thursday, 28-11-2019 Max. Marks: 40
Time: 10:00 AM To 12:00 PM
Instructions: 1) All the questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
Q. 2 Attempt any four of the following questions.
a) Why we need the operating system? Explain following types of operating system

1) Time sharing system
2) Real time system
b) What do you mean by process in operating system? List different process States and explain it with the help of diagram of process state transitions.
c) Draw and explain queuing diagram representation of process scheduling, what is the difference between long term scheduler and short term scheduler?
d) What are necessary conditions for deadlock situation? Explain resource allocation graph with dead lock.
e) Discuss in detail paging as memory management scheme.

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ROBOTICS

Day \& Date: Thursday, 28-11-2019

Max. Marks: 50
Time: 10:00 AM To 12:00 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in answer Book.

2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) Which of the following is a sensor that measures the movement of an object?
a) Pressure sensor
b) Motion sensor
c) Action sensor
d) Touch sensor
2) The common robotic arm has \qquad degrees of freedom.
a) Six
b) Five
c) Four
d) Three
3) The process of extracting, characterizing and interpreting information from images of 3 D world is referred as \qquad .
a) Robot vision
b) Robochar
c) Robo 3D
d) Roboextract
4) Robotic vehicles are used in \qquad .
a) Remotely operated communication systems
b) Space vehicles
c) Undersea exploration
d) All of the above
5) Programming of a robot can be done by \qquad .
a) Force sensors
b) Teach pendant programming
c) Tactile sensors
d) Touch sensors
6) The main objective(s) of Industrial robot is to \qquad .
a) To minimise the labour requirement
b) To increase productivity
c) To enhance the life of production machines
d) All of the above
7) The following sensor can detect nearby objects \qquad .
a) Touch sensor
b) Humidity sensor
c) Proximity sensor
d) Pressure sensor
8) A robot is a \qquad .
a) multifunctional and reprogrammable manipulator
b) unifunctional and reprogrammable manipulator
c) multifunctional and non-programmable manipulator
d) unifunctional and non-programmable manipulator
9) \qquad can be used to measure the distance from a reference to the object in the field.
a) Force sensor
b) Pressure sensor
c) Range sensor
d) Torque sensor
10) The speed regulation is good in \qquad .
a) Series wound motor
b) Shunt wound motor
c) Can be series wound or shunt wound.
d) None of the above

Seat	
No.	

T.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering
 ROBOTICS

Day \& Date: Thursday, 28-11-2019
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No. 2.
2) Figures to the right indicate full marks.
Q. 2 Attempt any four of the following:
a) Explain motion control of robots.
b) Explain robotic applications.
c) Explain the following terms related to robotics :

1) Accuracy
2) Precision
3) Resolution
4) Repeatability
5) Speed
d) Explain in brief about types of sensors.
e) Explain Microelectromechanical systems and write in brief about classification of MEMS.
f) What is machine Intelligence? Explain Computer and robotics - Future trends.
g) Explain electrical drives for robotic articulation.

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ROBOTICS

Day \& Date: Thursday, 28-11-2019

Max. Marks: 50
Time: 10:00 AM To 12:00 PM

> Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in answer Book.
> 2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) The main objective(s) of Industrial robot is to \qquad .
a) To minimise the labour requirement
b) To increase productivity
c) To enhance the life of production machines
d) All of the above
2) The following sensor can detect nearby objects \qquad .
a) Touch sensor
b) Humidity sensor
c) Proximity sensor
d) Pressure sensor
3) A robot is a \qquad _.
a) multifunctional and reprogrammable manipulator
b) unifunctional and reprogrammable manipulator
c) multifunctional and non-programmable manipulator
d) unifunctional and non-programmable manipulator
4) \qquad can be used to measure the distance from a reference to the $\overline{\text { object }}$ in the field.
a) Force sensor
b) Pressure sensor
c) Range sensor
d) Torque sensor
5) The speed regulation is good in \qquad .
a) Series wound motor
b) Shunt wound motor
c) Can be series wound or shunt wound.
d) None of the above
6) Which of the following is a sensor that measures the movement of an object?
a) Pressure sensor
b) Motion sensor
c) Action sensor
d) Touch sensor
7) The common robotic arm has \qquad degrees of freedom.
a) Six
b) Five
c) Four
d) Three
8) The process of extracting, characterizing and interpreting information from images of 3 D world is referred as \qquad .
a) Robot vision
b) Robochar
c) Robo 3D
d) Roboextract
9) Robotic vehicles are used in \qquad .
a) Remotely operated communication systems
b) Space vehicles
c) Undersea exploration
d) All of the above
10) Programming of a robot can be done by
a) Force sensors
b) Teach pendant programming
c) Tactile sensors
d) Touch sensors

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering
 ROBOTICS

Day \& Date: Thursday, 28-11-2019
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No. 2.
2) Figures to the right indicate full marks.
Q. 2 Attempt any four of the following:
a) Explain motion control of robots.
b) Explain robotic applications.
c) Explain the following terms related to robotics :

1) Accuracy
2) Precision
3) Resolution
4) Repeatability
5) Speed
d) Explain in brief about types of sensors.
e) Explain Microelectromechanical systems and write in brief about classification of MEMS.
f) What is machine Intelligence? Explain Computer and robotics - Future trends.
g) Explain electrical drives for robotic articulation.

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ROBOTICS

Day \& Date: Thursday, 28-11-2019
Max. Marks: 50
Time: 10:00 AM To 12:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in answer Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) $\overline{\text { object in the field. }}$
a) Force sensor
b) Pressure sensor
c) Range sensor
d) Torque sensor
2) The speed regulation is good in \qquad .
a) Series wound motor
b) Shunt wound motor
c) Can be series wound or shunt wound.
d) None of the above
3) Which of the following is a sensor that measures the movement of an object?
a) Pressure sensor
b) Motion sensor
c) Action sensor
d) Touch sensor
4) The common robotic arm has \qquad degrees of freedom.
a) Six
b) Five
c) Four
d) Three
5) The process of extracting, characterizing and interpreting information from images of 3 D world is referred as \qquad .
a) Robot vision
b) Robochar
c) Robo 3D
d) Roboextract
6) Robotic vehicles are used in \qquad .
a) Remotely operated communication systems
b) Space vehicles
c) Undersea exploration
d) All of the above
7) Programming of a robot can be done by \qquad .
a) Force sensors
b) Teach pendant programming
c) Tactile sensors
d) Touch sensors
8) The main objective(s) of Industrial robot is to \qquad .
a) To minimise the labour requirement
b) To increase productivity
c) To enhance the life of production machines
d) All of the above
9) The following sensor can detect nearby objects
a) Touch sensor
b) Humidity sensor
c) Proximity sensor
d) Pressure sensor
10) A robot is a \qquad .
a) multifunctional and reprogrammable manipulator
b) unifunctional and reprogrammable manipulator
c) multifunctional and non-programmable manipulator
d) unifunctional and non-programmable manipulator

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering
 ROBOTICS

Day \& Date: Thursday, 28-11-2019
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No. 2.
2) Figures to the right indicate full marks.
Q. 2 Attempt any four of the following:
a) Explain motion control of robots.
b) Explain robotic applications.
c) Explain the following terms related to robotics :

1) Accuracy
2) Precision
3) Resolution
4) Repeatability
5) Speed
d) Explain in brief about types of sensors.
e) Explain Microelectromechanical systems and write in brief about classification of MEMS.
f) What is machine Intelligence? Explain Computer and robotics - Future trends.
g) Explain electrical drives for robotic articulation.

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ROBOTICS

Day \& Date: Thursday, 28-11-2019

Max. Marks: 50
Time: 10:00 AM To 12:00 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 20 minutes in answer Book.
 2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 20 Minutes
Marks: 10
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 10

1) The process of extracting, characterizing and interpreting information from images of 3 D world is referred as \qquad .
a) Robot vision
b) Robochar
c) Robo 3D
d) Roboextract
2) Robotic vehicles are used in \qquad .
a) Remotely operated communication systems
b) Space vehicles
c) Undersea exploration
d) All of the above
3) Programming of a robot can be done by \qquad .
a) Force sensors
b) Teach pendant programming
c) Tactile sensors
d) Touch sensors
4) The main objective(s) of Industrial robot is to \qquad .
a) To minimise the labour requirement
b) To increase productivity
c) To enhance the life of production machines
d) All of the above
5) The following sensor can detect nearby objects \qquad .
a) Touch sensor
b) Humidity sensor
c) Proximity sensor
d) Pressure sensor
6) A robot is a \qquad .
a) multifunctional and reprogrammable manipulator
b) unifunctional and reprogrammable manipulator
c) multifunctional and non-programmable manipulator
d) unifunctional and non-programmable manipulator
7) ___ can be used to measure the distance from a reference to the object in the field.
a) Force sensor
b) Pressure sensor
c) Range sensor
d) Torque sensor
8) The speed regulation is good in \qquad .
a) Series wound motor
b) Shunt wound motor
c) Can be series wound or shunt wound.
d) None of the above
9) Which of the following is a sensor that measures the movement of an object?
a) Pressure sensor
b) Motion sensor
c) Action sensor
d) Touch sensor
10) The common robotic arm has \qquad degrees of freedom.
a) Six
b) Five
c) Four
d) Three

T.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering
 ROBOTICS

Day \& Date: Thursday, 28-11-2019
Time: 10:00 AM To 12:00 PM
Instructions: 1) Attempt any four questions from Q. No. 2.
2) Figures to the right indicate full marks.
Q. 2 Attempt any four of the following:
a) Explain motion control of robots.
b) Explain robotic applications.
c) Explain the following terms related to robotics :

1) Accuracy
2) Precision
3) Resolution
4) Repeatability
5) Speed
d) Explain in brief about types of sensors.
e) Explain Microelectromechanical systems and write in brief about classification of MEMS.
f) What is machine Intelligence? Explain Computer and robotics - Future trends.
g) Explain electrical drives for robotic articulation.

Seat
No.
Set

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday, 07-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Number of links to connect n nodes in a mesh topology is $=$ \qquad .
a) $\mathrm{N}(\mathrm{N}-1) / 2$
b) $\mathrm{N}(\mathrm{N}-2)$
c) N
d) N 2
2) Which is the central device in star topology?
a) STP server
b) Hub
c) PDC
d) Router
3) The process-to-process delivery of the entire message is the responsibility of the \qquad layer.
a) Transport
b) Application
c) Physical
d) Network
4) HDLC is an acronym for \qquad .
a) Half-duplex digital link combination
b) Host double-level circuit
c) High-duplex line communication
d) High-level data link control
5) The hamming distance between dataword, 110101 and 100010 is \qquad .
a) 3
b) 4
c) 2
d) 1
6) Urgent data requires the urgent pointer field as well as the URG bit in the
\qquad field.
a) Control
b) Offset
c) Sequence number
d) None
7) To accomplish flow control, TCP uses a \qquad window protocol.
a) limited-size
b) Sliding
c) fixed-size
d) None
8) An ACK segment, if carrying no data, consumes \qquad sequence number(s).
a) One
b) Two
c) NO
d) Sixteen bit
9) The Ethernet address of system is of \qquad bytes.
a) 6
b) 4
c) 32
d) 8
10) The bridge is suitable at \qquad layer of OSI reference model.
a) Application
b) Transport
c) Data-link
d) Network
11) \qquad is a Network device, used for repackage and convert data going from one environment to another.
a) Router
b) Gateway
c) Repeater
d) Switch
12) The formal protocol that defines the MTA client and server in the Internet is called \qquad .
a) Systematic mail transfer protocol
b) Simple mail transfer protocol
c) DHCP
d) None of the above
13) \qquad provide both static and dynamic address allocation which can be manual / automated.
a) SMTP
b) DHCP
c) TELNET
d) ICMP
14) The length of IPv6 is \qquad bits.
a) 32
b) 64
c) 128
d) 16

Seat
No.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday, 07-12-2019 Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Solve any three.
a) Explain the bit stuffing method of framing with suitable example.
b) If message to be transmitted is 1101011011 and $G(x)=X^{4}+X+1$. What is the transmitted bit pattern according to CRC?
c) What is layered architecture? Draw OSI model with function of each layer in brief.
d) Explain different classes of IP addresses along with their address ranges.
Q. 3 Solve Any two.
a) What is subnet masking? Explain with suitable example. If a router inside an organization receives some packet with destination address 190.240.33.91/19 find the subnet work address to route the packet.
b) Draw TCP header format and explain each field.
c) Write a note on.

1) Star Topology
2) Stop and wait protocol

Section - II

Q. 4 Solve any three.
a) Write a short note on IEEE 802.4.
b) Explain shortest path routing with an example.
c) What are Gateways? Explain its function.
d) Write a short note on IPv6.
Q. 5 Solve any two.
a) Explain ICMP along with its any 4 different message types.
b) Write a note on.

1) Repeaters
2) Routers
c) What is Internet Domain Name System? Explain domain name space and domain name sections.

SLR-FM-258

Seat

No.
Set

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday, 07-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) An ACK segment, if carrying no data, consumes \qquad sequence number(s).
a) One
b) Two
c) NO
d) Sixteen bit
2) The Ethernet address of system is of \qquad bytes.
a) 6
b) 4
c) 32
d) 8
3) The bridge is suitable at \qquad layer of OSI reference model.
a) Application
b) Transport
c) Data-link
d) Network
4) \qquad is a Network device, used for repackage and convert data going from one environment to another.
a) Router
b) Gateway
c) Repeater
d) Switch
5) The formal protocol that defines the MTA client and server in the Internet is called \qquad .
a) Systematic mail transfer protocol
b) Simple mail transfer protocol
c) DHCP
d) None of the above
6) \qquad provide both static and dynamic address allocation which can be manual / automated.
a) SMTP
b) DHCP
c) TELNET
d) ICMP
7) The length of IPv6 is \qquad bits.
a) 32
b) 64
c) 128
d) 16
8) Number of links to connect n nodes in a mesh topology is $=$ \qquad .
a) $\mathrm{N}(\mathrm{N}-1) / 2$
b) $\mathrm{N}(\mathrm{N}-2)$
c) N
d) N 2
9) Which is the central device in star topology?
a) STP server
b) Hub
c) PDC
d) Router
10) The process-to-process delivery of the entire message is the responsibility of the \qquad layer.
a) Transport
b) Application
c) Physical
d) Network
11) HDLC is an acronym for \qquad .
a) Half-duplex digital link combination
b) Host double-level circuit
c) High-duplex line communication
d) High-level data link control
12) The hamming distance between dataword, 110101 and 100010 is \qquad .
a) 3
b) 4
c) 2
d) 1
13) Urgent data requires the urgent pointer field as well as the URG bit in the _ field.
a) Control
b) Offset
c) Sequence number
d) None
14) To accomplish flow control, TCP uses a \qquad window protocol.
a) limited-size
b) Sliding
c) fixed-size
d) None

Seat
No.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday, 07-12-2019 Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Solve any three.
a) Explain the bit stuffing method of framing with suitable example.
b) If message to be transmitted is 1101011011 and $G(x)=X^{4}+X+1$. What is the transmitted bit pattern according to CRC?
c) What is layered architecture? Draw OSI model with function of each layer in brief.
d) Explain different classes of IP addresses along with their address ranges.
Q. 3 Solve Any two.
a) What is subnet masking? Explain with suitable example. If a router inside an organization receives some packet with destination address 190.240.33.91/19 find the subnet work address to route the packet.
b) Draw TCP header format and explain each field.
c) Write a note on.

1) Star Topology
2) Stop and wait protocol

Section - II

Q. 4 Solve any three.
a) Write a short note on IEEE 802.4.
b) Explain shortest path routing with an example.
c) What are Gateways? Explain its function.
d) Write a short note on IPv6.
Q. 5 Solve any two.
a) Explain ICMP along with its any 4 different message types.
b) Write a note on.

1) Repeaters
2) Routers
c) What is Internet Domain Name System? Explain domain name space and domain name sections.

Seat

No.
Set

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday, 07-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The hamming distance between dataword, 110101 and 100010 is \qquad .
a) 3
b) 4
c) 2
d) 1
2) Urgent data requires the urgent pointer field as well as the URG bit in the
\qquad field.
a) Control
b) Offset
c) Sequence number
d) None
3) To accomplish flow control, TCP uses a \qquad window protocol.
a) limited-size
b) Sliding
c) fixed-size
d) None
4) An ACK segment, if carrying no data, consumes \qquad sequence number(s).
a) One
b) Two
c) NO
d) Sixteen bit
5) The Ethernet address of system is of \qquad bytes.
a) 6
b) 4
c) 32
d) 8
6) The bridge is suitable at \qquad layer of OSI reference model.
a) Application
b) Transport
c) Data-link
d) Network
7) is a Network device, used for repackage and convert data going from one environment to another.
a) Router
b) Gateway
c) Repeater
d) Switch
8) The formal protocol that defines the MTA client and server in the Internet is called \qquad .
a) Systematic mail transfer protocol
b) Simple mail transfer protocol
c) DHCP
d) None of the above
9) \qquad provide both static and dynamic address allocation which can be manual / automated.
a) SMTP
b) DHCP
c) TELNET
d) ICMP
10) The length of IPv6 is \qquad bits.
a) 32
b) 64
c) 128
d) 16
11) Number of links to connect n nodes in a mesh topology is $=$
a) $\mathrm{N}(\mathrm{N}-1) / 2$
b) $\mathrm{N}(\mathrm{N}-2)$
c) N
d) N 2
12) Which is the central device in star topology?
a) STP server
b) Hub
c) PDC
d) Router
13) The process-to-process delivery of the entire message is the responsibility of the \qquad layer.
a) Transport
b) Application
c) Physical
d) Network
14) HDLC is an acronym for \qquad .
a) Half-duplex digital link combination
b) Host double-level circuit
c) High-duplex line communication
d) High-level data link control

Seat
No.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday, 07-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Solve any three.
a) Explain the bit stuffing method of framing with suitable example.
b) If message to be transmitted is 1101011011 and $G(x)=X^{4}+X+1$. What is the transmitted bit pattern according to CRC?
c) What is layered architecture? Draw OSI model with function of each layer in brief.
d) Explain different classes of IP addresses along with their address ranges.
Q. 3 Solve Any two.
a) What is subnet masking? Explain with suitable example. If a router inside an organization receives some packet with destination address 190.240.33.91/19 find the subnet work address to route the packet.
b) Draw TCP header format and explain each field.
c) Write a note on.

1) Star Topology
2) Stop and wait protocol

Section - II

Q. 4 Solve any three.
a) Write a short note on IEEE 802.4.
b) Explain shortest path routing with an example.
c) What are Gateways? Explain its function.
d) Write a short note on IPv6.
Q. 5 Solve any two.
a) Explain ICMP along with its any 4 different message types.
b) Write a note on.

1) Repeaters
2) Routers
c) What is Internet Domain Name System? Explain domain name space and domain name sections.

Seat
No.
Set

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday, 07-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The bridge is suitable at \qquad layer of OSI reference model.
a) Application
b) Transport
c) Data-link
d) Network
2) is a Network device, used for repackage and convert data going from one environment to another.
a) Router
b) Gateway
c) Repeater
d) Switch
3) The formal protocol that defines the MTA client and server in the Internet is called \qquad .
a) Systematic mail transfer protocol
b) Simple mail transfer protocol
c) DHCP
d) None of the above
4) \qquad provide both static and dynamic address allocation which can be manual / automated.
a) SMTP
b) DHCP
c) TELNET
d) ICMP
5) The length of IPv6 is \qquad bits.
a) 32
b) 64
c) 128
d) 16
6) Number of links to connect n nodes in a mesh topology is $=$ \qquad .
a) $\mathrm{N}(\mathrm{N}-1) / 2$
b) $\mathrm{N}(\mathrm{N}-2)$
c) N
d) N 2
7) Which is the central device in star topology?
a) STP server
b) Hub
c) PDC
d) Router
8) The process-to-process delivery of the entire message is the responsibility of the \qquad layer.
a) Transport
b) Application
c) Physical
d) Network
9) HDLC is an acronym for \qquad .
a) Half-duplex digital link combination
b) Host double-level circuit
c) High-duplex line communication
d) High-level data link control
10) The hamming distance between dataword, 110101 and 100010 is \qquad .
a) 3
b) 4
c) 2
d) 1
11) Urgent data requires the urgent pointer field as well as the URG bit in the _ field.
a) Control
b) Offset
c) Sequence number
d) None
12) To accomplish flow control, TCP uses a \qquad window protocol.
a) limited-size
b) Sliding
c) fixed-size
d) None
13) An ACK segment, if carrying no data, consumes \qquad sequence number(s).
a) One
b) Two
c) NO
d) Sixteen bit
14) The Ethernet address of system is of \qquad bytes.
a) 6
b) 4
c) 32
d) 8

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday, 07-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Solve any three.
a) Explain the bit stuffing method of framing with suitable example.
b) If message to be transmitted is 1101011011 and $G(x)=X^{4}+X+1$. What is the transmitted bit pattern according to CRC?
c) What is layered architecture? Draw OSI model with function of each layer in brief.
d) Explain different classes of IP addresses along with their address ranges.
Q. 3 Solve Any two.
a) What is subnet masking? Explain with suitable example. If a router inside an organization receives some packet with destination address 190.240.33.91/19 find the subnet work address to route the packet.
b) Draw TCP header format and explain each field.
c) Write a note on.

1) Star Topology
2) Stop and wait protocol

Section - II

Q. 4 Solve any three.
a) Write a short note on IEEE 802.4.
b) Explain shortest path routing with an example.
c) What are Gateways? Explain its function.
d) Write a short note on IPv6.
Q. 5 Solve any two.
a) Explain ICMP along with its any 4 different message types.
b) Write a note on.

1) Repeaters
2) Routers
c) What is Internet Domain Name System? Explain domain name space and domain name sections.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering EMBEDDED SYSTEM DESIGN

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) LPC2148 has \qquad on chip flash program memory.
a) 32 KB
b) 64 KB
c) 8 KB
d) 16 KB
2) Total number of available ADC inputs for LPC 2148 is \qquad .
a) 06
b) 08
c) 12
d) 14
3) In I ${ }^{2}$ c standard mode, speed is given as
a) 200 kbps
b) 400 kbps
c) 100 kbps
d) None of above
4) ARM 7 Architecture support total \qquad interrupt sources.
a) 20
b) 30
c) 32
d) 10
5) Inter-task or inter process communication in $\mu \cos$ II RTOS takes place using \qquad .
a) Semaphore
b) Message mailbox
c) Message queues
d) All
6) \qquad software is the part of kernel responsible for determining which task will run next.
a) Scheduler
b) Semaphore
c) Mailbox
d) Mutex
7) SWAP instruction in the instruction set of ARM processor is a special case of \qquad instruction.
a) Arithmetic
b) Logical
c) Load-Store
d) Branch
8) Exception priorities are in the following descending order \qquad .
a) Reset, Data, Abort, FIQ, IRQ, Pre Fetch Abort, SWI or Undet
b) Reset, Data, Abort, FIQ, IRQ, Pre Fetch Abort, SWI and Undet
c) Reset, FIQ, IRQ, Data, Abort, Pre Fetch Abort, SWI or Undet
d) Not in fixed order
9) Which of the following VIC having the highest priority?
a) Vectored interrupt request
b) Non vectored interrupt request
c) Fast interrupt request
d) None of the above
10) A thread is a \qquad process.
a) Multi process
b) Inter thread process
c) Light weight
d) None of above
11) Round robin scheduling \qquad .
a) Allows interactive task quicker access to processor
b) Is quite complex to implement
c) Gives each task the same chance at the processor
d) None of above
12) The FIFO algorithm \qquad .
a) Execute first the job that last entered the queue
b) Execute first the job that first entered the queue
c) Execute first the job that has been in the queue the longest
d) None of above
13) Inter process can be done through \qquad .
a) Mails
b) Messages
c) System calls
d) Trap
14) A binary semaphore \qquad -
a) has value one or zero
b) is essential to binary commuter
c) is used for synchronization
d) is used for mutual exclusion

| Seat |
| :--- | :--- |
| No. |

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering EMBEDDED SYSTEM DESIGN

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM

Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Solve any Four.
a) Draw \& explain Hardware architecture of embedded system.
b) What are the different applications of embedded system?
c) Write the features of LPC 2148.
d) Explain with code Interfacing of Relay to LPC 2148 in detail.
e) Explain the communication protocol $\mathrm{I}^{2} \mathrm{C}$ details.
Q. 3 Solve any Two.
a) Draw ARM core architecture \& explain each block of ARM core architecture in detail.
b) Explain the following on chip peripherals of ARM 2148 in detail.

RTC, WDT, PLL
c) Explain the communication protocol USB in details.
Section - II

Q. 4 Solve any Four.

a) What are the features of $\mu \cos$ II RTOS?
b) What is task scheduling? Explain various task scheduling algorithms.
c) Explain with code Interfacing of LED for LPC 2148 in detail.
d) Explain the concept of Semaphores with example.
e) Explain Round Robin architecture. States its advantages and disadvantage.
Q. 5 Solve any Two.
a) Write a short note on.

1) Massage queues and mailboxes
2) Pipes
b) Explain in detail with neat diagrams Mobile Phones.
c) Explain with code Interfacing of DAC to LPC 2148 in detail.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering EMBEDDED SYSTEM DESIGN

Day \& Date: Tuesday, 10-12-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Exception priorities are in the following descending order \qquad .
a) Reset, Data, Abort, FIQ, IRQ, Pre Fetch Abort, SWI or Undet
b) Reset, Data, Abort, FIQ, IRQ, Pre Fetch Abort, SWI and Undet
c) Reset, FIQ, IRQ, Data, Abort, Pre Fetch Abort, SWI or Undet
d) Not in fixed order
2) Which of the following VIC having the highest priority?
a) Vectored interrupt request
b) Non vectored interrupt request
c) Fast interrupt request
d) None of the above
3) A thread is a \qquad process.
a) Multi process
b) Inter thread process
c) Light weight
d) None of above
4) Round robin scheduling \qquad .
a) Allows interactive task quicker access to processor
b) Is quite complex to implement
c) Gives each task the same chance at the processor
d) None of above
5) The FIFO algorithm \qquad .
a) Execute first the job that last entered the queue
b) Execute first the job that first entered the queue
c) Execute first the job that has been in the queue the longest
d) None of above
6) Inter process can be done through \qquad .
a) Mails
b) Messages
c) System calls
d) Trap
7) A binary semaphore \qquad .
a) has value one or zero
b) is essential to binary commuter
c) is used for synchronization
d) is used for mutual exclusion
8) LPC2148 has \qquad on chip flash program memory.
a) 32 KB
b) 64 KB
c) 8 KB
d) 16 KB

SLR-FM-259
 Set

9) Total number of available ADC inputs for LPC 2148 is \qquad .
a) 06
b) 08
c) 12
d) 14
10) In I ${ }^{2} \mathrm{c}$ standard mode, speed is given as \qquad .
a) 200 kbps
b) 400 kbps
c) 100 kbps
d) None of above
11) ARM 7 Architecture support total \qquad interrupt sources.
a) 20
b) 30
c) 32
d) 10
12) Inter-task or inter process communication in $\mu \cos$ II RTOS takes place using \qquad .
a) Semaphore
b) Message mailbox
c) Message queues
d) All
13) \qquad software is the part of kernel responsible for determining which task will run next.
a) Scheduler
b) Semaphore
c) Mailbox
d) Mutex
14) SWAP instruction in the instruction set of ARM processor is a special case of \qquad instruction.
a) Arithmetic
b) Logical
c) Load-Store
d) Branch

| Seat |
| :--- | :--- |
| No. |

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering EMBEDDED SYSTEM DESIGN

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM

Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Solve any Four.
a) Draw \& explain Hardware architecture of embedded system.
b) What are the different applications of embedded system?
c) Write the features of LPC 2148.
d) Explain with code Interfacing of Relay to LPC 2148 in detail.
e) Explain the communication protocol $\mathrm{I}^{2} \mathrm{C}$ details.
Q. 3 Solve any Two.
a) Draw ARM core architecture \& explain each block of ARM core architecture in detail.
b) Explain the following on chip peripherals of ARM 2148 in detail.

RTC, WDT, PLL
c) Explain the communication protocol USB in details.
Section - II

Q. 4 Solve any Four.

a) What are the features of $\mu c o s$ II RTOS?
b) What is task scheduling? Explain various task scheduling algorithms.
c) Explain with code Interfacing of LED for LPC 2148 in detail.
d) Explain the concept of Semaphores with example.
e) Explain Round Robin architecture. States its advantages and disadvantage.
Q. 5 Solve any Two.
a) Write a short note on.

1) Massage queues and mailboxes
2) Pipes
b) Explain in detail with neat diagrams Mobile Phones.
c) Explain with code Interfacing of DAC to LPC 2148 in detail.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering EMBEDDED SYSTEM DESIGN

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Inter-task or inter process communication in $\mu \cos$ II RTOS takes place using \qquad .
a) Semaphore
b) Message mailbox
c) Message queues
d) All
2) \qquad software is the part of kernel responsible for determining which task will run next.
a) Scheduler
b) Semaphore
c) Mailbox
d) Mutex
3) SWAP instruction in the instruction set of ARM processor is a special case of \qquad instruction.
a) Arithmetic
b) Logical
c) Load-Store
d) Branch
4) Exception priorities are in the following descending order \qquad .
a) Reset, Data, Abort, FIQ, IRQ, Pre Fetch Abort, SWI or Undet
b) Reset, Data, Abort, FIQ, IRQ, Pre Fetch Abort, SWI and Undet
c) Reset, FIQ, IRQ, Data, Abort, Pre Fetch Abort, SWI or Undet
d) Not in fixed order
5) Which of the following VIC having the highest priority?
a) Vectored interrupt request
b) Non vectored interrupt request
c) Fast interrupt request
d) None of the above
6) A thread is a \qquad process.
a) Multi process
b) Inter thread process
c) Light weight
d) None of above
7) Round robin scheduling \qquad .
a) Allows interactive task quicker access to processor
b) Is quite complex to implement
c) Gives each task the same chance at the processor
d) None of above
8) The FIFO algorithm \qquad .
a) Execute first the job that last entered the queue
b) Execute first the job that first entered the queue
c) Execute first the job that has been in the queue the longest
d) None of above
9) Inter process can be done through \qquad .
a) Mails
b) Messages
c) System calls
d) Trap
10) A binary semaphore \qquad .
a) has value one or zero
b) is essential to binary commuter
c) is used for synchronization
d) is used for mutual exclusion
11) LPC2148 has \qquad on chip flash program memory.
a) 32 KB
b) 64 KB
c) 8 KB
d) 16 KB
12) Total number of available ADC inputs for LPC 2148 is \qquad .
a) 06
b) 08
c) 12
d) 14
13) In I ${ }^{2} \mathrm{c}$ standard mode, speed is given as
a) 200 kbps
b) 400 kbps
c) 100 kbps
d) None of above
14) ARM 7 Architecture support total \qquad interrupt sources.
a) 20
b) 30
c) 32
d) 10

| Seat |
| :--- | :--- |
| No. |

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering EMBEDDED SYSTEM DESIGN

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM

Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Solve any Four.
a) Draw \& explain Hardware architecture of embedded system.
b) What are the different applications of embedded system?
c) Write the features of LPC 2148.
d) Explain with code Interfacing of Relay to LPC 2148 in detail.
e) Explain the communication protocol $\mathrm{I}^{2} \mathrm{C}$ details.
Q. 3 Solve any Two.
a) Draw ARM core architecture \& explain each block of ARM core architecture in detail.
b) Explain the following on chip peripherals of ARM 2148 in detail.

RTC, WDT, PLL
c) Explain the communication protocol USB in details.
Section - II

Q. 4 Solve any Four.

a) What are the features of $\mu \cos$ II RTOS?
b) What is task scheduling? Explain various task scheduling algorithms.
c) Explain with code Interfacing of LED for LPC 2148 in detail.
d) Explain the concept of Semaphores with example.
e) Explain Round Robin architecture. States its advantages and disadvantage.
Q. 5 Solve any Two.
a) Write a short note on.

1) Massage queues and mailboxes
2) Pipes
b) Explain in detail with neat diagrams Mobile Phones.
c) Explain with code Interfacing of DAC to LPC 2148 in detail.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering EMBEDDED SYSTEM DESIGN

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) A thread is a \qquad process.
a) Multi process
b) Inter thread process
c) Light weight
d) None of above
2) Round robin scheduling \qquad .
a) Allows interactive task quicker access to processor
b) Is quite complex to implement
c) Gives each task the same chance at the processor
d) None of above
3) The FIFO algorithm \qquad .
a) Execute first the job that last entered the queue
b) Execute first the job that first entered the queue
c) Execute first the job that has been in the queue the longest
d) None of above
4) Inter process can be done through \qquad .
a) Mails
b) Messages
c) System calls
d) Trap
5) A binary semaphore \qquad .
a) has value one or zero
b) is essential to binary commuter
c) is used for synchronization
d) is used for mutual exclusion
6) LPC2148 has \qquad on chip flash program memory.
a) 32 KB
b) 64 KB
c) 8 KB
d) 16 KB
7) Total number of available ADC inputs for LPC 2148 is \qquad .
a) 06
b) 08
c) 12
d) 14
8) In I ${ }^{2} \mathrm{c}$ standard mode, speed is given as \qquad .
a) 200 kbps
b) 400 kbps
c) 100 kbps
d) None of above
9) ARM 7 Architecture support total \qquad interrupt sources.
a) 20
b) 30
c) 32
d) 10
10) Inter-task or inter process communication in $\mu \cos$ II RTOS takes place using
a) Semaphore
b) Message mailbox
c) Message queues
d) All
11) ___ software is the part of kernel responsible for determining which task will run next.
a) Scheduler
b) Semaphore
c) Mailbox
d) Mutex
12) SWAP instruction in the instruction set of ARM processor is a special case of \qquad instruction.
a) Arithmetic
b) Logical
c) Load-Store
d) Branch
13) Exception priorities are in the following descending order \qquad .
a) Reset, Data, Abort, FIQ, IRQ, Pre Fetch Abort, SWI or Undet
b) Reset, Data, Abort, FIQ, IRQ, Pre Fetch Abort, SWI and Undet
c) Reset, FIQ, IRQ, Data, Abort, Pre Fetch Abort, SWI or Undet
d) Not in fixed order
14) Which of the following VIC having the highest priority?
a) Vectored interrupt request
b) Non vectored interrupt request
c) Fast interrupt request
d) None of the above

| Seat |
| :--- | :--- |
| No. |

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering EMBEDDED SYSTEM DESIGN

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM

Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Solve any Four.
a) Draw \& explain Hardware architecture of embedded system.
b) What are the different applications of embedded system?
c) Write the features of LPC 2148.
d) Explain with code Interfacing of Relay to LPC 2148 in detail.
e) Explain the communication protocol $\mathrm{I}^{2} \mathrm{C}$ details.
Q. 3 Solve any Two.
a) Draw ARM core architecture \& explain each block of ARM core architecture in detail.
b) Explain the following on chip peripherals of ARM 2148 in detail.

RTC, WDT, PLL
c) Explain the communication protocol USB in details.
Section - II
Q. 4 Solve any Four.
a) What are the features of $\mu \cos$ II RTOS?
b) What is task scheduling? Explain various task scheduling algorithms.
c) Explain with code Interfacing of LED for LPC 2148 in detail.
d) Explain the concept of Semaphores with example.
e) Explain Round Robin architecture. States its advantages and disadvantage.
Q. 5 Solve any Two.
a) Write a short note on.

1) Massage queues and mailboxes
2) Pipes
b) Explain in detail with neat diagrams Mobile Phones.
c) Explain with code Interfacing of DAC to LPC 2148 in detail.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

Day \& Date: Thursday, 12-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Apogee is \qquad .
a) The point farthest from the Earth
b) The point closest approach to the earth
c) The point on the earth surface
d) The point on the Equator
2) What is the application of satellite systems?
a) Weather forecasting
b) Terrestrial communication
c) Point to Point communication
d) None of above
3) IN GPS which code has high accuracy?
a) C / A
b) P
c) Both a and b
d) None of above
4) Bent pipe is a type of \qquad .
a) Waveguide
b) LNB
c) Transponder
d) Antenna
5) The transmitter-receiver combination in the satellite is known as a
\qquad
a) Relay
b) Repeater
c) Transponder
d) Duplexer
6) The downlink frequency is lower than the uplink frequency.
a) True
b) False
7) What is the reason for carrying multiple transponders in a satellite?
a) More number of operating channel
b) Better reception
c) More gain
d) Redundancy
8) Which of the following bands cannot be used for satellite communication?
a) MF
b) Ku
c) X
d) C
9) Assuming earth to be a sphere of radius 6400 km and height of a geosynchronous satellite above Earth as 36000 km , the velocity of a geosynchronous satellite is \qquad $\mathrm{km} / \mathrm{hr}$.
a) 28000
b) 15000
c) 36000
d) 11100
10) To cover all inhabited regions of the Earth, the number of geosynchronous communication satellites required \qquad ..
a) 5
b) 3
c) 10
d) 2
11) A geosynchronous satellite \qquad .
a) has the same period a that of the Earth
b) has a circular orbit
c) rotates in the equatorial plane
d) has all of the above
12) Frequency range of C -Band is \qquad .
a) $16-32 \mathrm{GHZ}$
b) $8-16 \mathrm{GHZ}$
c) $4-8 \mathrm{GHZ}$
d) 1-2 GHZ
13) GPS satellites are \qquad Satellites.
a) GEO
b) MEO
c) LEO
d) None of above
14) The one way propagation time delay of MEO satellite is \qquad .
a) 2.7 ms
b) 34.5 ms
c) 110 ms
d) 119.3 ms

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

Day \& Date: Thursday, 12-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.
 a) A quasi-GEO satellite is in a circular orbit close to geosynchronous altitude. The quasi-GEO, satellite, however does not have a period of one sidereal day, its orbital period is exactly 24 h , i.e one solar day. Calculate
 1) The radius of the orbit.
 2) The rate of drift around the equator of the sub satellite point in degree per solar day.
 3) The satellite is drifting across the sky, is the satellite moving towards

 the east or towards the west.b) A satellite is at a distance of $40,000 \mathrm{~km}$ from a point on the earth's surface radiates a power of 10 W from an antenna with a gain of 17 dB in the direction of the observer. Find flux density at the receiving point, and the power received by the antenna at this point with an effective area of $10 \mathrm{~m}^{2}$.
c) Write a short note on development of satellite communication.
d) Describe Attitude and Orbit Control System.
e) Describe Uplink design.
Q. 3 Attempt any two.
a) Explain Orbital perturbations, Launchers and Launch vehicles.
b) Explain calculations for system noise temperature.
c) Explain Communication subsystem of satellite.

Section - II

Q. 4 Attempt any four.
a) Explain in detail RF Equipment for earth station.
b) Explain Tropospheric and ionospheric Scintillations.
c) What is GPS position location principle? Explain in detail.
d) Describe in detail VSAT system.
e) Explain Earth station testing.
Q. 5 Attempt any two.
a) Explain earth station design considerations.
b) Write a short note on Digital DBS TV.
c) Explain different propagation effects in satellite communication.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

Day \& Date: Thursday, 12-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Which of the following bands cannot be used for satellite communication?
a) MF
b) Ku
c) X
d) C
2) Assuming earth to be a sphere of radius 6400 km and height of a geosynchronous satellite above Earth as 36000 km , the velocity of a geosynchronous satellite is \qquad $\mathrm{km} / \mathrm{hr}$.
a) 28000
b) 15000
c) 36000
d) 11100
3) To cover all inhabited regions of the Earth, the number of geosynchronous communication satellites required \qquad ..
a) 5
b) 3
c) 10
d) 2
4) A geosynchronous satellite \qquad .
a) has the same period a that of the Earth
b) has a circular orbit
c) rotates in the equatorial plane
d) has all of the above
5) Frequency range of C -Band is \qquad .
a) $16-32 \mathrm{GHZ}$
b) 8 -16 GHZ
c) $4-8 \mathrm{GHZ}$
d) $1-2 \mathrm{GHZ}$
6) GPS satellites are \qquad Satellites.
a) GEO
b) MEO
c) LEO
d) None of above
7) The one way propagation time delay of MEO satellite is \qquad .
a) 2.7 ms
b) 34.5 ms
c) 110 ms
d) 119.3 ms
8) Apogee is \qquad .
a) The point farthest from the Earth
b) The point closest approach to the earth
c) The point on the earth surface
d) The point on the Equator
9) What is the application of satellite systems?
a) Weather forecasting
b) Terrestrial communication
c) Point to Point communication
d) None of above
10) IN GPS which code has high accuracy?
a) C / A
b) P
c) Both a and b
d) None of above
11) Bent pipe is a type of \qquad .
a) Waveguide
b) LNB
c) Transponder
d) Antenna
12) The transmitter-receiver combination in the satellite is known as a
a) Relay
b) Repeater
c) Transponder
d) Duplexer
13) The downlink frequency is lower than the uplink frequency.
a) True
b) False
14) What is the reason for carrying multiple transponders in a satellite?
a) More number of operating channel
b) Better reception
c) More gain
d) Redundancy

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

Day \& Date: Thursday, 12-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.
a) A quasi-GEO satellite is in a circular orbit close to geosynchronous
altitude. The quasi-GEO, satellite, however does not have a period of one
sidereal day, its orbital period is exactly 24 h, i.e one solar day. Calculate

1) The radius of the orbit.
2) The rate of drift around the equator of the sub satellite point in degree
3) per solar day.
a) A quasi-GEO satellite is in a circular orbit close to geosynchronous altitude. The quasi-GEO, satellite, however does not have a period of one sidereal day, its orbital period is exactly 24 h , i.e one solar day. Calculate
4) The radius of the orbit.
5) The rate of drift around the equator of the sub satellite point in degree per solar day.
6) The satellite is drifting across the sky, is the satellite moving towards the east or towards the west.
b) A satellite is at a distance of $40,000 \mathrm{~km}$ from a point on the earth's surface radiates a power of 10 W from an antenna with a gain of 17 dB in the direction of the observer. Find flux density at the receiving point, and the power received by the antenna at this point with an effective area of $10 \mathrm{~m}^{2}$.
c) Write a short note on development of satellite communication.
d) Describe Attitude and Orbit Control System.
e) Describe Uplink design.
Q. 3 Attempt any two.
a) Explain Orbital perturbations, Launchers and Launch vehicles.
b) Explain calculations for system noise temperature.
c) Explain Communication subsystem of satellite.

Section - II

Q. 4 Attempt any four.
a) Explain in detail RF Equipment for earth station.
b) Explain Tropospheric and ionospheric Scintillations.
c) What is GPS position location principle? Explain in detail.
d) Describe in detail VSAT system.
e) Explain Earth station testing.
Q. 5 Attempt any two.
a) Explain earth station design considerations.
b) Write a short note on Digital DBS TV.
c) Explain different propagation effects in satellite communication.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

Day \& Date: Thursday, 12-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The transmitter-receiver combination in the satellite is known as a
\qquad .
a) Relay
b) Repeater
c) Transponder
d) Duplexer
2) The downlink frequency is lower than the uplink frequency.
a) True
b) False
3) What is the reason for carrying multiple transponders in a satellite?
a) More number of operating channel
b) Better reception
c) More gain
d) Redundancy
4) Which of the following bands cannot be used for satellite communication?
a) MF
b) Ku
c) X
d) C
5) Assuming earth to be a sphere of radius 6400 km and height of a geosynchronous satellite above Earth as 36000 km , the velocity of a geosynchronous satellite is \qquad km/hr.
a) 28000
b) 15000
c) 36000
d) 11100
6) To cover all inhabited regions of the Earth, the number of geosynchronous communication satellites required \qquad ..
a) 5
b) 3
c) 10
d) 2
7) A geosynchronous satellite \qquad .
a) has the same period a that of the Earth
b) has a circular orbit
c) rotates in the equatorial plane
d) has all of the above
8) Frequency range of C -Band is \qquad .
a) $16-32 \mathrm{GHZ}$
b) $8-16 \mathrm{GHZ}$
c) $4-8 \mathrm{GHZ}$
d) 1-2 GHZ
9) GPS satellites are \qquad Satellites.
a) GEO
b) MEO
c) LEO
d) None of above
10) The one way propagation time delay of MEO satellite is \qquad .
a) 2.7 ms
b) 34.5 ms
c) 110 ms
d) 119.3 ms
11) Apogee is \qquad .
a) The point farthest from the Earth
b) The point closest approach to the earth
c) The point on the earth surface
d) The point on the Equator
12) What is the application of satellite systems?
a) Weather forecasting
b) Terrestrial communication
c) Point to Point communication
d) None of above
13) IN GPS which code has high accuracy?
a) C / A
b) P
c) Both a and b
d) None of above
14) Bent pipe is a type of \qquad .
a) Waveguide
b) LNB
c) Transponder
d) Antenna

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

Day \& Date: Thursday, 12-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.
 a) A quasi-GEO satellite is in a circular orbit close to geosynchronous altitude. The quasi-GEO, satellite, however does not have a period of one sidereal day, its orbital period is exactly 24 h , i.e one solar day. Calculate
 1) The radius of the orbit.
 2) The rate of drift around the equator of the sub satellite point in degree per solar day.
 3) The satellite is drifting across the sky, is the satellite moving towards

 the east or towards the west.b) A satellite is at a distance of $40,000 \mathrm{~km}$ from a point on the earth's surface radiates a power of 10 W from an antenna with a gain of 17 dB in the direction of the observer. Find flux density at the receiving point, and the power received by the antenna at this point with an effective area of $10 \mathrm{~m}^{2}$.
c) Write a short note on development of satellite communication.
d) Describe Attitude and Orbit Control System.
e) Describe Uplink design.
Q. 3 Attempt any two.
a) Explain Orbital perturbations, Launchers and Launch vehicles.
b) Explain calculations for system noise temperature.
c) Explain Communication subsystem of satellite.

Section - II

Q. 4 Attempt any four.

a) Explain in detail RF Equipment for earth station.
b) Explain Tropospheric and ionospheric Scintillations.
c) What is GPS position location principle? Explain in detail.
d) Describe in detail VSAT system.
e) Explain Earth station testing.
Q. 5 Attempt any two.
a) Explain earth station design considerations.
b) Write a short note on Digital DBS TV.
c) Explain different propagation effects in satellite communication.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

Day \& Date: Thursday, 12-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) To cover all inhabited regions of the Earth, the number of
geosynchronous communication satellites required \qquad ..
a) 5
b) 3
c) 10
d) 2
2) A geosynchronous satellite \qquad .
a) has the same period a that of the Earth
b) has a circular orbit
c) rotates in the equatorial plane
d) has all of the above
3) Frequency range of C -Band is \qquad .
a) $16-32 \mathrm{GHZ}$
b) $8-16 \mathrm{GHZ}$
c) 4-8 GHZ
d) 1-2 GHZ
4) GPS satellites are \qquad Satellites.
a) GEO
b) MEO
c) LEO
d) None of above
5) The one way propagation time delay of MEO satellite is \qquad .
a) 2.7 ms
b) 34.5 ms
c) 110 ms
d) 119.3 ms
6) Apogee is \qquad .
a) The point farthest from the Earth
b) The point closest approach to the earth
c) The point on the earth surface
d) The point on the Equator
7) What is the application of satellite systems?
a) Weather forecasting
b) Terrestrial communication
c) Point to Point communication
d) None of above
8) IN GPS which code has high accuracy?
a) C / A
b) P
c) Both a and b
d) None of above
9) Bent pipe is a type of \qquad .
a) Waveguide
b) LNB
c) Transponder
d) Antenna
10) The transmitter-receiver combination in the satellite is known as a
a) Relay
b) Repeater
c) Transponder
d) Duplexer
11) The downlink frequency is lower than the uplink frequency.
a) True
b) False
12) What is the reason for carrying multiple transponders in a satellite?
a) More number of operating channel
b) Better reception
c) More gain
d) Redundancy
13) Which of the following bands cannot be used for satellite communication?
a) MF
b) Ku
c) X
d) C
14) Assuming earth to be a sphere of radius 6400 km and height of a geosynchronous satellite above Earth as 36000 km , the velocity of a geosynchronous satellite is \qquad $\mathrm{km} / \mathrm{hr}$.
a) 28000
b) 15000
c) 36000
d) 11100

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

Day \& Date: Thursday, 12-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.
a) A quasi-GEO satellite is in a circular orbit close to geosynchronous
altitude. The quasi-GEO, satellite, however does not have a period of one
sidereal day, its orbital period is exactly 24 h, i.e one solar day. Calculate

1) The radius of the orbit.
2) The rate of drift around the equator of the sub satellite point in degree
3) per solar day.
4) The satellite is drifting across the sky, is the satellite moving towards the east or towards the west.
b) A satellite is at a distance of $40,000 \mathrm{~km}$ from a point on the earth's surface radiates a power of 10 W from an antenna with a gain of 17 dB in the direction of the observer. Find flux density at the receiving point, and the power received by the antenna at this point with an effective area of $10 \mathrm{~m}^{2}$.
c) Write a short note on development of satellite communication.
d) Describe Attitude and Orbit Control System.
e) Describe Uplink design.
Q. 3 Attempt any two.
a) Explain Orbital perturbations, Launchers and Launch vehicles.
b) Explain calculations for system noise temperature.
c) Explain Communication subsystem of satellite.

Section - II

Q. 4 Attempt any four.

a) Explain in detail RF Equipment for earth station.
b) Explain Tropospheric and ionospheric Scintillations.
c) What is GPS position location principle? Explain in detail.
d) Describe in detail VSAT system.
e) Explain Earth station testing.
Q. 5 Attempt any two.
a) Explain earth station design considerations.
b) Write a short note on Digital DBS TV.
c) Explain different propagation effects in satellite communication.

Seat

No.
B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATABASE MANAGEMENT SYSTEM (DBMS)
Day \& Date: Saturday,14-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
4) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) What is an Instance of a Database?
a) The logical design of the database system
b) The entire set of attributes of the Database
c) The state of the database system at any given point of time
d) The initial values inserted into the Database immediately after its creation
2) A command to remove a relation from an SQL database.
a) Delete Table < table name>
b) Drop Table <table name>
c) Erase Table <table name>
d) Alter Table <table name>
3) σ year >2009 (book \bowtie borrow) will \qquad .
a) Select all tuples from the Cartesian product of book and borrow
b) Select all tuples from the natural join of book and borrow where the year is greater than 2009
c) Select all the books which are borrowed after the year 2009
d) Both b) and c)
4) We apply the aggregate function to a group of sets of tuples using the
\qquad clause.
a) group by
b) Group
c) group set
d) group attribute
5) The operator that performs pattern matching is \qquad .
a) BETWEEN
b) EXISTS
c) LIKE
d) None of these
6) Which SQL command is used to sort the result set?
a) Sort by
b) Sort
c) Order
d) Order by
7) A transaction is in \qquad state after the final statement has been executed.
a) Active
b) Committed
c) Partially Committed
d) None of these
8) The characteristic/s of transaction/s is/are \qquad .
a) Atomicity
b) Durability
c) Isolation
d) All the above

SLR-FM-261
 Set
 P

9) Collection of operations that form a single logical unit of work are called
a) Transaction
b) Data Commit
c) Data Rollback
d) Data Automation
10) The "all-or-none" property is commonly referred to as \qquad .
a) Isolation
b) Atomicity
c) Durability
d) All the above
11) Two phase locking protocol ensures \qquad .
a) Serializability
b) Freedom from deadlock
c) Cascadeless Schedule
d) None of these
12) A deadlock exists in the system if and only if the wait for graph contains a
a) Cycle
b) Direction
c) Rotation
d) Bi -direction
13) I and J are \qquad if they are operations in different transactions performed on the same data item, and at least one of them is a write operation.
a) Conflicting
b) Overwriting
c) Isolated
d) Durable
14) \qquad index has an index entry for every search key value in the data file.
a) Sparse
b) Dense
c) Both a and b
d) None of these

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATABASE MANAGEMENT SYSTEM (DBMS)

Day \& Date: Saturday,14-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I
Q. 2 Attempt any three.
a) Define the following terms with example:

Entity, Multi-valued Attribute, Composite Attribute, Derived Attribute
b) Define and explain second normal form.
c) Explain different types of keys for entity set in database with example for each.
d) Explain any four aggregate functions with example.

Q. 3 Attempt any two.

a) Write SQL queries for following statements.

Student (Enrno, name, courseld, emailld, cellno)
Course (courseld, course_nm, duration)

1) Find out list of students who have enrolled in "computer" course.
2) List name of all courses with their duration.
3) List name of all students start with 'a'.
4) List email Id and cell no of all mechanical engineering students.
b) What is DBMS? Name at least 3 DBMSs. List and explain the drawbacks of file system.
c) Explain Fundamental and additional relational algebra operations with example.

Section - II

Q. 4 Attempt any three.
a) Explain the various transaction states with a neat transaction state diagram.
b) Explain ACID properties of transaction.
c) Explain types of failures.
d) Define deadlock. Explain the concept of deadlock in transactions with example.

Q. 5 Attempt any two.

a) What is concurrency control? Explain two-phase locking protocol in detail and list its two drawbacks.
b) What is the need for indexing? Explain primary, clustering and secondary index.
c) Write short note on conflict and view serializability.

SLR-FM-261

Seat

No.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATABASE MANAGEMENT SYSTEM (DBMS)

Day \& Date: Saturday,14-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.

2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) The characteristic/s of transaction/s is/are \qquad .
a) Atomicity
b) Durability
c) Isolation
d) All the above
2) Collection of operations that form a single logical unit of work are called
a) Transaction
b) Data Commit
c) Data Rollback
d) Data Automation
3) The "all-or-none" property is commonly referred to as \qquad .
a) Isolation
b) Atomicity
c) Durability
d) All the above
4) Two phase locking protocol ensures \qquad .
a) Serializability
b) Freedom from deadlock
c) Cascadeless Schedule
d) None of these
5) A deadlock exists in the system if and only if the wait for graph contains a
\qquad
a) Cycle
b) Direction
c) Rotation
d) Bi -direction
6) I and J are \qquad if they are operations in different transactions performed on the same data item, and at least one of them is a write operation.
a) Conflicting
b) Overwriting
c) Isolated
d) Durable
7) index has an index entry for every search key value in the data file.
a) Sparse
b) Dense
c) Both a and b
d) None of these
8) What is an Instance of a Database?
a) The logical design of the database system
b) The entire set of attributes of the Database
c) The state of the database system at any given point of time
d) The initial values inserted into the Database immediately after its creation
9) A command to remove a relation from an SQL database.
a) Delete Table < table name>
b) Drop Table <table name>
c) Erase Table <table name>
d) Alter Table <table name>
10) σ year >2009 (book \bowtie borrow) will \qquad .
a) Select all tuples from the Cartesian product of book and borrow
b) Select all tuples from the natural join of book and borrow where the year is greater than 2009
c) Select all the books which are borrowed after the year 2009
d) Both b) and c)
11) We apply the aggregate function to a group of sets of tuples using the __ clause.
a) group by
b) Group
c) group set
d) group attribute
12) The operator that performs pattern matching is \qquad .
a) BETWEEN
b) EXISTS
c) LIKE
d) None of these
13) Which SQL command is used to sort the result set?
a) Sort by
b) Sort
c) Order
d) Order by
14) A transaction is in \qquad state after the final statement has been executed.
a) Active
b) Committed
c) Partially Committed
d) None of these

SLR-FM-261

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATABASE MANAGEMENT SYSTEM (DBMS)

Day \& Date: Saturday,14-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I
Q. 2 Attempt any three.
a) Define the following terms with example:

Entity, Multi-valued Attribute, Composite Attribute, Derived Attribute
b) Define and explain second normal form.
c) Explain different types of keys for entity set in database with example for each.
d) Explain any four aggregate functions with example.

Q. 3 Attempt any two.

a) Write SQL queries for following statements.

Student (Enrno, name, courseld, emailld, cellno)
Course (courseld, course_nm, duration)

1) Find out list of students who have enrolled in "computer" course.
2) List name of all courses with their duration.
3) List name of all students start with 'a'.
4) List email Id and cell no of all mechanical engineering students.
b) What is DBMS? Name at least 3 DBMSs. List and explain the drawbacks of file system.
c) Explain Fundamental and additional relational algebra operations with example.

Section - II

Q. 4 Attempt any three.
a) Explain the various transaction states with a neat transaction state diagram.
b) Explain ACID properties of transaction.
c) Explain types of failures.
d) Define deadlock. Explain the concept of deadlock in transactions with example.

Q. 5 Attempt any two.

a) What is concurrency control? Explain two-phase locking protocol in detail and list its two drawbacks.
b) What is the need for indexing? Explain primary, clustering and secondary index.
c) Write short note on conflict and view serializability.

SLR-FM-261

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATABASE MANAGEMENT SYSTEM (DBMS)

Day \& Date: Saturday,14-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.

2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) The operator that performs pattern matching is \qquad .
a) BETWEEN
b) EXISTS
c) LIKE
d) None of these
2) Which SQL command is used to sort the result set?
a) Sort by
b) Sort
c) Order
d) Order by
3) A transaction is in \qquad state after the final statement has been executed.
a) Active
b) Committed
c) Partially Committed
d) None of these
4) The characteristic/s of transaction/s is/are \qquad .
a) Atomicity
b) Durability
c) Isolation
d) All the above
5) Collection of operations that form a single logical unit of work are called
a) Transaction
b) Data Commit
c) Data Rollback
d) Data Automation
6) The "all-or-none" property is commonly referred to as \qquad .
a) Isolation
b) Atomicity
c) Durability
d) All the above
7) Two phase locking protocol ensures \qquad .
a) Serializability
b) Freedom from deadlock
c) Cascadeless Schedule
d) None of these
8) A deadlock exists in the system if and only if the wait for graph contains a
a) Cycle
b) Direction
c) Rotation
d) Bi-direction
9) I I and J are \qquad if they are operations in different transactions performed on the same data item, and at least one of them is a write operation.
a) Conflicting
b) Overwriting
c) Isolated
d) Durable
10) ___ index has an index entry for every search key value in the data file.
a) Sparse
b) Dense
c) Both a and b
d) None of these
11) What is an Instance of a Database?
a) The logical design of the database system
b) The entire set of attributes of the Database
c) The state of the database system at any given point of time
d) The initial values inserted into the Database immediately after its creation
12) A command to remove a relation from an SQL database.
a) Delete Table < table name>
b) Drop Table <table name>
c) Erase Table <table name>
d) Alter Table <table name>
13) σ year >2009 (book \bowtie borrow) will \qquad .
a) Select all tuples from the Cartesian product of book and borrow
b) Select all tuples from the natural join of book and borrow where the year is greater than 2009
c) Select all the books which are borrowed after the year 2009
d) Both b) and c)
14) We apply the aggregate function to a group of sets of tuples using the __ clause.
a) group by
b) Group
c) group set
d) group attribute

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATABASE MANAGEMENT SYSTEM (DBMS)

Day \& Date: Saturday,14-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I
Q. 2 Attempt any three.
a) Define the following terms with example:

Entity, Multi-valued Attribute, Composite Attribute, Derived Attribute
b) Define and explain second normal form.
c) Explain different types of keys for entity set in database with example for each.
d) Explain any four aggregate functions with example.

Q. 3 Attempt any two.

a) Write SQL queries for following statements.

Student (Enrno, name, courseld, emailld, cellno)
Course (courseld, course_nm, duration)

1) Find out list of students who have enrolled in "computer" course.
2) List name of all courses with their duration.
3) List name of all students start with 'a'.
4) List email Id and cell no of all mechanical engineering students.
b) What is DBMS? Name at least 3 DBMSs. List and explain the drawbacks of file system.
c) Explain Fundamental and additional relational algebra operations with example.

Section - II

Q. 4 Attempt any three.
a) Explain the various transaction states with a neat transaction state diagram.
b) Explain ACID properties of transaction.
c) Explain types of failures.
d) Define deadlock. Explain the concept of deadlock in transactions with example.

Q. 5 Attempt any two.

a) What is concurrency control? Explain two-phase locking protocol in detail and list its two drawbacks.
b) What is the need for indexing? Explain primary, clustering and secondary index.
c) Write short note on conflict and view serializability.

SLR-FM-261

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATABASE MANAGEMENT SYSTEM (DBMS)

Day \& Date: Saturday,14-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.

2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) The "all-or-none" property is commonly referred to as \qquad .
a) Isolation
b) Atomicity
c) Durability
d) All the above
2) Two phase locking protocol ensures \qquad .
a) Serializability
b) Freedom from deadlock
c) Cascadeless Schedule
d) None of these
3) A deadlock exists in the system if and only if the wait for graph contains a
\qquad
a) Cycle
b) Direction
c) Rotation
d) Bi-direction
4) I I and J are \qquad if they are operations in different transactions performed on the same data item, and at least one of them is a write operation.
a) Conflicting
b) Overwriting
c) Isolated
d) Durable
5)

a) Sparse
b) Dense
c) Both a and b
d) None of these
6) What is an Instance of a Database?
a) The logical design of the database system
b) The entire set of attributes of the Database
c) The state of the database system at any given point of time
d) The initial values inserted into the Database immediately after its creation
7) A command to remove a relation from an SQL database.
a) Delete Table < table name>
b) Drop Table <table name>
c) Erase Table <table name>
d) Alter Table <table name>
8) $\quad \sigma$ year >2009 (book \bowtie borrow) will \qquad .
a) Select all tuples from the Cartesian product of book and borrow
b) Select all tuples from the natural join of book and borrow where the year is greater than 2009
c) Select all the books which are borrowed after the year 2009
d) Both b) and c)
9) We apply the aggregate function to a group of sets of tuples using the
\qquad clause.
a) group by
b) Group
c) group set
d) group attribute
10) The operator that performs pattern matching is \qquad .
a) BETWEEN
b) EXISTS
c) LIKE
d) None of these
11) Which SQL command is used to sort the result set?
a) Sort by
b) Sort
c) Order
d) Order by
12) A transaction is in \qquad state after the final statement has been executed.
a) Active
b) Committed
c) Partially Committed
d) None of these
13) The characteristic/s of transaction/s is/are \qquad .
a) Atomicity
b) Durability
c) Isolation
d) All the above
14) Collection of operations that form a single logical unit of work are called
a) Transaction
b) Data Commit
c) Data Rollback
d) Data Automation

SLR-FM-261

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATABASE MANAGEMENT SYSTEM (DBMS)

Day \& Date: Saturday,14-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I
Q. 2 Attempt any three.
a) Define the following terms with example:

Entity, Multi-valued Attribute, Composite Attribute, Derived Attribute
b) Define and explain second normal form.
c) Explain different types of keys for entity set in database with example for each.
d) Explain any four aggregate functions with example.
Q. 3 Attempt any two.
a) Write SQL queries for following statements.

Student (Enrno, name, courseld, emailld, cellno)
Course (courseld, course_nm, duration)

1) Find out list of students who have enrolled in "computer" course.
2) List name of all courses with their duration.
3) List name of all students start with 'a'.
4) List email Id and cell no of all mechanical engineering students.
b) What is DBMS? Name at least 3 DBMSs. List and explain the drawbacks of file system.
c) Explain Fundamental and additional relational algebra operations with example.

Section - II

Q. 4 Attempt any three.
a) Explain the various transaction states with a neat transaction state diagram.
b) Explain ACID properties of transaction.
c) Explain types of failures.
d) Define deadlock. Explain the concept of deadlock in transactions with example.

Q. 5 Attempt any two.

a) What is concurrency control? Explain two-phase locking protocol in detail and list its two drawbacks.
b) What is the need for indexing? Explain primary, clustering and secondary index.
c) Write short note on conflict and view serializability.

B.E. (Part -I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE \& VIDEO PROCESSING

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 70

Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data wherever.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) Smallest part of an neighbour pixels is called as \qquad .
a) Pixel
b) Pel
c) Kernel
d) Coefficient
2) Pixel having Euclidean distance from $f(x, y)$ from a shape \qquad with radius centred at (x, y).
a) Disk
b) Diamond
c) Square
d) Pyramid
3) YUV color models family are useful in \qquad applications.
a) Display devices
b) Printing applications
c) Color TV broadcasting
d) None
4) $\mathrm{S}=\mathrm{c} r^{v}$, where S -output grey level, r -input grey level, c -positive constant, v positive constant; means \qquad .
a) Negative
b) Log transform
c) Bit plane slicing
d) Power law
5) If number of storage bits are 524288 for 8 -bit image, then size of image is
a) 256×256
b) 128×128
c) 512×512
d) 1024×1024
6) $H(U, V)=1-e \frac{-D^{2}(U, V)}{2 \sigma^{2}}$ is equation for \qquad in frequency domain.
a) Butterworth HPF
b) Gaussian HPF
c) Ideal HPF
d) None of these
7) Full color image means \qquad .
a) 8-bit
b) 24-bit
c) 16-bit
d) 4-bit
8) The symbol \star indicates \qquad .
a) Correlation
b) Convolution
c) Multiplication
d) None
9) The equation $\operatorname{Hi}(\mathrm{U}, \mathrm{V})=\frac{1}{\mathrm{H}(\mathrm{U}, \mathrm{V})}$ for \qquad filter.
a) Inverse filter
b) Pseudo-Inverse
c) Weiner
d) None
10) Digital video can be obtained by sampling analog video in the \qquad direction along the scan lines.
a) Horizontal
b) Vertical
c) Ratsra
d) None
11) 2-D motion, also called \qquad .
a) Rejected motion
b) Projected motion
c) Optical flow motion
d) None
12) $\frac{\partial s_{c}(x ; t)}{\partial x_{1}} v_{1}(x, t)+\frac{\partial s_{c}(x ; t)}{\partial x_{2}} v_{2}(x, t)+\frac{\partial s_{c}(x ; t)}{\partial t}=0 \quad$ is called as \qquad -
a) Optical flow equation
b) Motion estimation
c) optimization method
d) None
13) The symbolrepresents \qquad operation.
a) Erosion
b) Dilation
c) Thinning
d) Thickening
14) The PDF of pepper and salt noise is represented by \qquad .
a) $\mathrm{P}(\mathrm{z})=\mathrm{Pa}$ for $\mathrm{Z}=\mathrm{a}$
$=\mathrm{Pb}$ for $\mathrm{Z}=\mathrm{b}$
$=0$ otherwise
b) $\mathrm{P}(\mathrm{z})=\frac{1}{\mathrm{~b}-\mathrm{a}}$ for $\mathrm{a}<\mathrm{z}<\mathrm{b}$
c) $\mathrm{P}(\mathrm{z})=\mathrm{ae}^{-\mathrm{az}}$ for $\mathrm{Z}>0$
d) none

Seat
No.

B.E. (Part -I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE \& VIDEO PROCESSING

Day \& Date: Tuesday, 17-12-2019
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Attempt any Four.
a) Explain Image sampling and quantization.
b) Explain the types of Log transformation.
c) Explain types Low pass filters used for image smoothing.
d) Explain Image opening and closing process with example.
e) Draw intensity level slicing on 3 BPP image. Let $r_{1}=3$ and $r_{2}=5$.

2	1	2	2	1
2	3	4	5	2
6	2	7	6	0
2	6	6	5	1
0	3	2	2	1

Q. 3 Attempt any two.
a) Explain K-L transform in details.
b) Explain the following edge detection operators-

1) Gradient operator
2) Pewits' operator
3) Soble operator
c) Explain Regional Processing method for edge linking.

Section - II

Q. 4 Attempt any Four.
a) Explain Image degradation Model.
b) Explain Sampling structure for Digital Video.
c) Explain Principle of Color Video camera.
d) Explain 3-D sampling.
e) Explain Gaussian Noise and Rayleigh noise mode.
Q. 5 Attempt any two.
a) Explain Inverse Filter for image restoration.
b) Explain 2-D rectangular sampling.
c) Explain Optical flow equation.

B.E. (Part -I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE \& VIDEO PROCESSING

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data wherever.

MCQ/Objective Type Questions

Duration: 30 Minutes
Q. 1 Choose the correct alternatives from the options.

1) The symbol \star indicates \qquad .
a) Correlation
b) Convolution
c) Multiplication
d) None
2) The equation $\mathrm{Hi}(\mathrm{U}, \mathrm{V})=\frac{1}{\mathrm{H}(\mathrm{U}, \mathrm{V})}$ for \qquad filter.
a) Inverse filter
b) Pseudo-Inverse
c) Weiner
d) None
3) Digital video can be obtained by sampling analog video in the \qquad direction along the scan lines.
a) Horizontal
b) Vertical
c) Ratsra
d) None
4) 2-D motion, also called \qquad .
a) Rejected motion
b) Projected motion
c) Optical flow motion
d) None
5) $\frac{\partial s_{c}(x ; t)}{\partial x_{1}} v_{1}(x, t)+\frac{\partial s_{c}(x ; t)}{\partial x_{2}} v_{2}(x, t)+\frac{\partial s_{c}(x ; t)}{\partial t}=0 \quad$ is called as \qquad .
a) Optical flow equation
b) Motion estimation
c) optimization method
d) None
6) The symbol \bigodot represents \qquad operation.
a) Erosion
b) Dilation
c) Thinning
d) Thickening
7) The PDF of pepper and salt noise is represented by \qquad .
a) $\mathrm{P}(\mathrm{z})=\mathrm{Pa}$ for $\mathrm{Z}=\mathrm{a}$

$$
\begin{aligned}
& =\mathrm{Pb} \text { for } \mathrm{Z}=\mathrm{b} \\
& =0 \text { otherwise }
\end{aligned}
$$

b) $\mathrm{P}(\mathrm{z})=\frac{1}{\mathrm{~b}-\mathrm{a}}$ for $\mathrm{a}<\mathrm{z}<\mathrm{b}$
c) $\mathrm{P}(\mathrm{z})=\mathrm{ae}^{-\mathrm{az}}$ for $\mathrm{Z}>0$
d) none
8) Smallest part of an neighbour pixels is called as \qquad .
a) Pixel
b) Pel
c) Kernel
d) Coefficient
9) Pixel having Euclidean distance from $f(x, y)$ from a shape \qquad with radius centred at (x, y).
a) Disk
b) Diamond
c) Square
d) Pyramid
10) YUV color models family are useful in \qquad applications.
a) Display devices
b) Printing applications
c) Color TV broadcasting
d) None
11) $s=c r^{v}$, where S-output grey level, r-input grey level, c-positive constant, v positive constant; means \qquad .
a) Negative
b) Log transform
c) Bit plane slicing
d) Power law
12) If number of storage bits are 524288 for 8 -bit image, then size of image is
a) 256×256
b) 128×128
c) 512×512
d) 1024×1024
13) $H(U, V)=1-e \frac{-D^{2}(U, V)}{2 \sigma^{2}}$ is equation for \qquad in frequency domain.
a) Butterworth HPF
b) Gaussian HPF
c) Ideal HPF
d) None of these
14) Full color image means \qquad .
a) 8-bit
b) 24-bit
c) 16-bit
d) 4-bit

Seat

No.

B.E. (Part -I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE \& VIDEO PROCESSING

Day \& Date: Tuesday, 17-12-2019
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Attempt any Four.
a) Explain Image sampling and quantization.
b) Explain the types of Log transformation.
c) Explain types Low pass filters used for image smoothing.
d) Explain Image opening and closing process with example.
e) Draw intensity level slicing on 3 BPP image. Let $r_{1}=3$ and $r_{2}=5$.

2	1	2	2	1
2	3	4	5	2
6	2	7	6	0
2	6	6	5	1
0	3	2	2	1

Q. 3 Attempt any two.
a) Explain K-L transform in details.
b) Explain the following edge detection operators-

1) Gradient operator
2) Pewits' operator
3) Soble operator
c) Explain Regional Processing method for edge linking.
Section - II
Q. 4 Attempt any Four.
a) Explain Image degradation Model.
b) Explain Sampling structure for Digital Video.
c) Explain Principle of Color Video camera.
d) Explain 3-D sampling.
e) Explain Gaussian Noise and Rayleigh noise mode.
Q. 5 Attempt any two.
a) Explain Inverse Filter for image restoration.
b) Explain 2-D rectangular sampling.
c) Explain Optical flow equation.

B.E. (Part -I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE \& VIDEO PROCESSING

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data wherever.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) If number of storage bits are 524288 for 8 -bit image, then size of image is
a) 256×256
b) 128×128
c) 512×512
d) 1024×1024
2) $H(U, V)=1-e \frac{-D^{2}(U, V)}{2 \sigma^{2}}$ is equation for \qquad in frequency domain.
a) Butterworth HPF
b) Gaussian HPF
c) Ideal HPF
d) None of these
3) Full color image means \qquad .
a) 8-bit
b) 24-bit
c) 16-bit
d) 4-bit
4) The symbol \star indicates \qquad .
a) Correlation
b) Convolution
c) Multiplication
d) None
5) The equation $\operatorname{Hi}(\mathrm{U}, \mathrm{V})=\frac{1}{\mathrm{H}(\mathrm{U}, \mathrm{V})}$ for \qquad filter.
a) Inverse filter
b) Pseudo-Inverse
c) Weiner
d) None
6) Digital video can be obtained by sampling analog video in the \qquad direction along the scan lines.
a) Horizontal
b) Vertical
c) Ratsra
d) None
7) 2-D motion, also called \qquad .
a) Rejected motion
b) Projected motion
c) Optical flow motion
d) None
8) $\frac{\partial s_{c}(x ; t)}{\partial x_{1}} v_{1}(x, t)+\frac{\partial s_{c}(x ; t)}{\partial x_{2}} v_{2}(x, t)+\frac{\partial s_{c}(x ; t)}{\partial t}=0 \quad$ is called as \qquad -
a) Optical flow equation
b) Motion estimation
c) optimization method
d) None
9) The symbol Θ represents \qquad operation.
a) Erosion
b) Dilation
c) Thinning
d) Thickening
10) The PDF of pepper and salt noise is represented by
a) $\mathrm{P}(\mathrm{z})=\mathrm{Pa}$ for $\mathrm{Z}=\mathrm{a}$
$=\mathrm{Pb}$ for $\mathrm{Z}=\mathrm{b}$
$=0$ otherwise
b) $\mathrm{P}(\mathrm{z})=\frac{1}{\mathrm{~b}-\mathrm{a}}$ for $\mathrm{a}<\mathrm{z}<\mathrm{b}$
c) $\mathrm{P}(\mathrm{z})=\mathrm{ae}^{-\mathrm{az}}$ for $\mathrm{Z}>0$
d) none
11) Smallest part of an neighbour pixels is called as \qquad .
a) Pixel
b) Pel
c) Kernel
d) Coefficient
12) Pixel having Euclidean distance from $f(x, y)$ from a shape \qquad with radius centred at (x, y).
a) Disk
b) Diamond
c) Square
d) Pyramid
13) YUV color models family are useful in \qquad applications.
a) Display devices
b) Printing applications
c) Color TV broadcasting
d) None
14) $s=c r^{v}$, where S-output grey level, r-input grey level, c-positive constant, v positive constant; means \qquad .
a) Negative
b) Log transform
c) Bit plane slicing
d) Power law

Seat
No.

B.E. (Part -I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE \& VIDEO PROCESSING

Day \& Date: Tuesday, 17-12-2019
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Attempt any Four.
a) Explain Image sampling and quantization.
b) Explain the types of Log transformation.
c) Explain types Low pass filters used for image smoothing.
d) Explain Image opening and closing process with example.
e) Draw intensity level slicing on 3 BPP image. Let $r_{1}=3$ and $r_{2}=5$.

2	1	2	2	1
2	3	4	5	2
6	2	7	6	0
2	6	6	5	1
0	3	2	2	1

Q. 3 Attempt any two.
a) Explain K-L transform in details.
b) Explain the following edge detection operators-

1) Gradient operator
2) Pewits' operator
3) Soble operator
c) Explain Regional Processing method for edge linking.
Section - II
Q. 4 Attempt any Four.
a) Explain Image degradation Model.
b) Explain Sampling structure for Digital Video.
c) Explain Principle of Color Video camera.
d) Explain 3-D sampling.
e) Explain Gaussian Noise and Rayleigh noise mode.
Q. 5 Attempt any two.
a) Explain Inverse Filter for image restoration.
b) Explain 2-D rectangular sampling.
c) Explain Optical flow equation.

B.E. (Part -I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE \& VIDEO PROCESSING

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data wherever.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

Digital video can be obtained by sampling analog video in the \qquad

1) direction along the scan lines.
a) Horizontal
b) Vertical
c) Ratsra
d) None
2) 2-D motion, also called \qquad .
a) Rejected motion
b) Projected motion
c) Optical flow motion
d) None
3) $\frac{\partial s_{c}(x ; t)}{\partial x_{1}} v_{1}(x, t)+\frac{\partial s_{c}(x ; t)}{\partial x_{2}} v_{2}(x, t)+\frac{\partial s_{c}(x ; t)}{\partial t}=0 \quad$ is called as \qquad -
a) Optical flow equation
b) Motion estimation
c) optimization method
d) None
4) The symbol \bigodot represents \qquad operation.
a) Erosion
b) Dilation
c) Thinning
d) Thickening
5) The PDF of pepper and salt noise is represented by \qquad .
a) $\mathrm{P}(\mathrm{z})=\mathrm{Pa}$ for $\mathrm{Z}=\mathrm{a}$
$=\mathrm{Pb}$ for $\mathrm{Z}=\mathrm{b}$
$=0$ otherwise
b) $\mathrm{P}(\mathrm{z})=\frac{1}{\mathrm{~b}-\mathrm{a}}$ for $\mathrm{a}<\mathrm{z}<\mathrm{b}$
c) $\mathrm{P}(\mathrm{z})=\mathrm{ae}^{-\mathrm{az}}$ for $\mathrm{Z}>0$
d) none
6) Smallest part of an neighbour pixels is called as \qquad .
a) Pixel
b) Pel
c) Kernel
d) Coefficient
7) Pixel having Euclidean distance from $f(x, y)$ from a shape \qquad with radius centred at (x, y).
a) Disk
b) Diamond
c) Square
d) Pyramid
8) YUV color models family are useful in \qquad applications.
a) Display devices
b) Printing applications
c) Color TV broadcasting
d) None
9) $s=c r^{v}$, where S-output grey level, r-input grey level, c-positive constant, v positive constant; means \qquad .
a) Negative
b) Log transform
c) Bit plane slicing
d) Power law
10) If number of storage bits are 524288 for 8 -bit image, then size of image is
a) 256×256
b) 128×128
c) 512×512
d) 1024×1024
11) $H(U, V)=1-e \frac{-D^{2}(U, V)}{2 \sigma^{2}}$ is equation for \qquad in frequency domain.
a) Butterworth HPF
b) Gaussian HPF
c) Ideal HPF
d) None of these
12) Full color image means \qquad .
a) 8-bit
b) 24-bit
c) 16-bit
d) 4-bit
13) The symbol \star indicates \qquad .
a) Correlation
b) Convolution
c) Multiplication
d) None
14) The equation $\mathrm{Hi}(\mathrm{U}, \mathrm{V})=\frac{1}{\mathrm{H}(\mathrm{U}, \mathrm{V})}$ for \qquad filter.
a) Inverse filter
b) Pseudo-Inverse
c) Weiner
d) None

Seat
No.

B.E. (Part -I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE \& VIDEO PROCESSING

Day \& Date: Tuesday, 17-12-2019
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Attempt any Four.
a) Explain Image sampling and quantization.
b) Explain the types of Log transformation.
c) Explain types Low pass filters used for image smoothing.
d) Explain Image opening and closing process with example.
e) Draw intensity level slicing on 3 BPP image. Let $r_{1}=3$ and $r_{2}=5$.

2	1	2	2	1
2	3	4	5	2
6	2	7	6	0
2	6	6	5	1
0	3	2	2	1

Q. 3 Attempt any two.
a) Explain K-L transform in details.
b) Explain the following edge detection operators-

1) Gradient operator
2) Pewits' operator
3) Soble operator
c) Explain Regional Processing method for edge linking.
Section - II
Q. 4 Attempt any Four.
a) Explain Image degradation Model.
b) Explain Sampling structure for Digital Video.
c) Explain Principle of Color Video camera.
d) Explain 3-D sampling.
e) Explain Gaussian Noise and Rayleigh noise mode.
Q. 5 Attempt any two.
a) Explain Inverse Filter for image restoration.
b) Explain 2-D rectangular sampling.
c) Explain Optical flow equation.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ADVANCED DSP

Day \& Date: Tuesday, 17-12-2019

Time: 02:30 PM To 05:30 PM
Instructions: 1
Instructions: 1 Q. No
Book. Q. No
Book.
2) Figures to the right indicate full marks.
MCQ/Objective Type Questions

Max. Marks: 70
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.14

1) To what value should the bandwidth of $x(n)$ has to be reduced in order to avoid aliasing?
a) F/D
b) $F / 2 D$
c) $F / 4 D$
d) None of the mentioned
2) The linear filtering operation followed by down sampling on $x(n)$ is not time invariant.
a) True
b) False
3) Sampling rate conversion by the rational factor I/D is accomplished by what connection of interpolator and decimator?
a) Parallel
b) Cascade
c) Convolution
d) None of the mentioned
4) Which of the following methods are used in sampling rate conversion of a digital signal?
a) D/A convertor and A/D convertor
b) Performing entirely in digital domain
c) None of the mentioned
d) Both of the mentioned
5) Which of the following is the disadvantage of sampling rate conversion by converting the signal into analog signal?
a) Signal distortion
b) Quantization effects
c) New sampling rate can be arbitrarily selected
d) Signal distortion \& Quantization effects
6) Power spectral density function is a \qquad .
a) Real and even function
b) Non negative function
c) Periodic
d) All of the mentioned
7) Power spectrum describes distribution of \qquad under frequency domain.
a) Mean
b) Variance
c) Gaussian
d) None of the mentioned
8) According to Parseval's theorem the energy spectral density curve is equal to \qquad .
a) Area under magnitude of the signal
b) Area under square of the magnitude of the signal
c) Area under square root of magnitude of the signal
d) None of the mentioned
9) Autocorrelation function of periodic signal is equal to \qquad .
a) Energy of the signal
b) Power of the signal
c) Its area in frequency domain
d) None of the mentioned
10) Autocorrelation function of white noise will have?
a) Strong peak
b) Infinite peak
c) Weak peak
d) None of the mentioned
11) Rate of convergence is defined by \qquad of algorithm.
a) Time span
b) Number of iterations
c) Accuracy
d) Complexity
12) Computational complexity is a measure of \qquad .
a) Time
b) Number of iterations
c) Number of operations
d) Accuracy
13) Which of the following is a method for implementing a FIR system?
a) Direct form
b) Cascade form
c) Lattice structure
d) All of the mentioned
14) In IIR Filter design by the Bilinear Transformation, the Bilinear Transformation is a mapping from \qquad
a) Z-plane to S-plane
b) S-plane to Z-plane
c) S-plane to J-plane
d) J-plane to Z-plane

Seat
 No.

 B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019

 B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering Electronics \& Telecommunication Engineering ADVANCED DSP

 ADVANCED DSP}
Day \& Date: Tuesday, 17-12-2019 Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.2) Figures to the right indicate full marks.
Section - I
Q. 2 Attempt any two.14
a) Design an ideal low pass filter with a frequency response.

$$
\begin{aligned}
H_{d}\left(e^{j w}\right) & =1 \text { for } 0 \leq|w| \leq \pi / 4 \\
& =0 \text { otherwise }
\end{aligned}
$$

Find the values for $\mathrm{h}(\mathrm{n})$ for $\mathrm{N}=7$.
b) Explain digital filter banks with polyphase structures.c) Explain FIR Wiener filter for filtering and prediction.
Q. 3 Attempt any two. 14a) Draw the direct form II structure for the system.
$y(n)=-0.1 y(n-1)+0.72 y(n-2)+0.7 x(n)-0.252 x(n-2)$.
b) Explain Sampling rate conversion using interpolation and decimation.
c) Explain AR and ARMA model.

Section - II

Q. 4 Attempt any two.

14a) Explain LMS algorithm used in adaptive filters.
b) Explain power spectrum estimation using parametric method.
c) Write a note on wavelet transform.
Q. 5 Attempt any two.
a) Explain MUSIC algorithm used for spectrum estimation.
b) Explain application of adaptive filter for noise cancellation.
c) Explain Minimum Mean Square (MMS) criterion in adaptive filters.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ADV ANCED DSP

Day \& Date: Tuesday, 17-12-2019
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.
\section*{MCQ/Objective Type Questions}

Max. Marks: 70

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) According to Parseval's theorem the energy spectral density curve is equal to \qquad .
a) Area under magnitude of the signal
b) Area under square of the magnitude of the signal
c) Area under square root of magnitude of the signal
d) None of the mentioned
2) Autocorrelation function of periodic signal is equal to \qquad .
a) Energy of the signal
b) Power of the signal
c) Its area in frequency domain
d) None of the mentioned
3) Autocorrelation function of white noise will have?
a) Strong peak
b) Infinite peak
c) Weak peak
d) None of the mentioned
4) Rate of convergence is defined by \qquad of algorithm.
a) Time span
b) Number of iterations
c) Accuracy
d) Complexity
5) Computational complexity is a measure of \qquad .
a) Time
b) Number of iterations
c) Number of operations
d) Accuracy
6) Which of the following is a method for implementing a FIR system?
a) Direct form
b) Cascade form
c) Lattice structure
d) All of the mentioned
7) In IIR Filter design by the Bilinear Transformation, the Bilinear Transformation is a mapping from \qquad .
a) Z-plane to S-plane
b) S-plane to Z-plane
c) S-plane to J-plane
d) J-plane to Z-plane
8) To what value should the bandwidth of $x(n)$ has to be reduced in order to avoid aliasing?
a) F/D
b) $F / 2 D$
c) $F / 4 D$
d) None of the mentioned
9) The linear filtering operation followed by down sampling on $x(n)$ is not time invariant.
a) True
b) False
10) Sampling rate conversion by the rational factor I/D is accomplished by what connection of interpolator and decimator?
a) Parallel
b) Cascade
c) Convolution
d) None of the mentioned
11) Which of the following methods are used in sampling rate conversion of a digital signal?
a) D / A convertor and A / D convertor
b) Performing entirely in digital domain
c) None of the mentioned
d) Both of the mentioned
12) Which of the following is the disadvantage of sampling rate conversion by converting the signal into analog signal?
a) Signal distortion
b) Quantization effects
c) New sampling rate can be arbitrarily selected
d) Signal distortion \& Quantization effects
13) Power spectral density function is a \qquad .
a) Real and even function
b) Non negative function
c) Periodic
d) All of the mentioned
14) Power spectrum describes distribution of \qquad under frequency domain.
a) Mean
b) Variance
c) Gaussian
d) None of the mentioned

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ADVANCED DSP

Day \& Date: Tuesday, 17-12-2019 Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
Section - I
Q. 2 Attempt any two.14
a) Design an ideal low pass filter with a frequency response.

$$
\begin{aligned}
H_{d}\left(e^{j w}\right) & =1 \text { for } 0 \leq|w| \leq \pi / 4 \\
& =0 \text { otherwise }
\end{aligned}
$$

Find the values for $\mathrm{h}(\mathrm{n})$ for $\mathrm{N}=7$.
b) Explain digital filter banks with polyphase structures.c) Explain FIR Wiener filter for filtering and prediction.
Q. 3 Attempt any two. 14a) Draw the direct form II structure for the system.
$y(n)=-0.1 y(n-1)+0.72 y(n-2)+0.7 x(n)-0.252 x(n-2)$.
b) Explain Sampling rate conversion using interpolation and decimation.
c) Explain AR and ARMA model.

Section - II

Q. 4 Attempt any two.

14a) Explain LMS algorithm used in adaptive filters.
b) Explain power spectrum estimation using parametric method.
c) Write a note on wavelet transform.
Q. 5 Attempt any two.
a) Explain MUSIC algorithm used for spectrum estimation.
b) Explain application of adaptive filter for noise cancellation.
c) Explain Minimum Mean Square (MMS) criterion in adaptive filters.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ADV ANCED DSP

Day \& Date: Tuesday, 17-12-2019

Max. Marks: 70

Time: 02:30 PM To 05:30 PM
Instructions: 1 Q. No
Book.
2) Figures to the right indicate full marks.
MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options. 14

1) Which of the following is the disadvantage of sampling rate conversion by converting the signal into analog signal?
a) Signal distortion
b) Quantization effects
c) New sampling rate can be arbitrarily selected
d) Signal distortion \& Quantization effects
2) Power spectral density function is a \qquad .
a) Real and even function
b) Non negative function
c) Periodic
d) All of the mentioned
3) Power spectrum describes distribution of \qquad under frequency domain.
a) Mean
b) Variance
c) Gaussian
d) None of the mentioned
4) According to Parseval's theorem the energy spectral density curve is equal to \qquad .
a) Area under magnitude of the signal
b) Area under square of the magnitude of the signal
c) Area under square root of magnitude of the signal
d) None of the mentioned
5) Autocorrelation function of periodic signal is equal to \qquad .
a) Energy of the signal
b) Power of the signal
c) Its area in frequency domain
d) None of the mentioned
6) Autocorrelation function of white noise will have?
a) Strong peak
b) Infinite peak
c) Weak peak
d) None of the mentioned
7) Rate of convergence is defined by \qquad of algorithm.
a) Time span
b) Number of iterations
c) Accuracy
d) Complexity
8) Computational complexity is a measure of \qquad .
a) Time
b) Number of iterations
c) Number of operations
d) Accuracy
9) Which of the following is a method for implementing a FIR system?
a) Direct form
b) Cascade form
c) Lattice structure
d) All of the mentioned
10) In IIR Filter design by the Bilinear Transformation, the Bilinear Transformation is a mapping from \qquad .
a) Z-plane to S-plane
b) S-plane to Z-plane
c) S-plane to J-plane
d) J-plane to Z-plane
11) To what value should the bandwidth of $x(n)$ has to be reduced in order to avoid aliasing?
a) F / D
b) $F / 2 D$
c) $F / 4 D$
d) None of the mentioned
12) The linear filtering operation followed by down sampling on $x(n)$ is not time invariant.
a) True
b) False
13) Sampling rate conversion by the rational factor I / D is accomplished by what connection of interpolator and decimator?
a) Parallel
b) Cascade
c) Convolution
d) None of the mentioned
14) Which of the following methods are used in sampling rate conversion of a digital signal?
a) D/A convertor and A/D convertor
b) Performing entirely in digital domain
c) None of the mentioned
d) Both of the mentioned

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ADV ANCED DSP

Day \& Date: Tuesday, 17-12-2019 Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
Section - I
Q. 2 Attempt any two.14
a) Design an ideal low pass filter with a frequency response.

$$
\begin{aligned}
H_{d}\left(e^{j w}\right) & =1 \text { for } 0 \leq|w| \leq \pi / 4 \\
& =0 \text { otherwise }
\end{aligned}
$$

Find the values for $\mathrm{h}(\mathrm{n})$ for $\mathrm{N}=7$.
b) Explain digital filter banks with polyphase structures.
c) Explain FIR Wiener filter for filtering and prediction.
Q. 3 Attempt any two. 14
a) Draw the direct form II structure for the system.

$$
y(n)=-0.1 y(n-1)+0.72 y(n-2)+0.7 x(n)-0.252 x(n-2)
$$

b) Explain Sampling rate conversion using interpolation and decimation.
c) Explain AR and ARMA model.

Section - II

Q. 4 Attempt any two.

14a) Explain LMS algorithm used in adaptive filters.
b) Explain power spectrum estimation using parametric method.
c) Write a note on wavelet transform.
Q. 5 Attempt any two.
a) Explain MUSIC algorithm used for spectrum estimation.
b) Explain application of adaptive filter for noise cancellation.
c) Explain Minimum Mean Square (MMS) criterion in adaptive filters.

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ADVANCED DSP

Day \& Date: Tuesday, 17-12-2019

Max. Marks: 70

Time: 02:30 PM To 05:30 PM
Instructions: 1 Q. No
Book.
2) Figures to the right indicate full marks.
MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.141) Autocorrelation function of white noise will have?
a) Strong peak
b) Infinite peak
c) Weak peak
d) None of the mentioned
2) Rate of convergence is defined by \qquad of algorithm.
a) Time span
b) Number of iterations
c) Accuracy
d) Complexity
3) Computational complexity is a measure of \qquad -
a) Time
b) Number of iterations
c) Number of operations
d) Accuracy
4) Which of the following is a method for implementing a FIR system?
a) Direct form
b) Cascade form
c) Lattice structure
d) All of the mentioned
5) In IIR Filter design by the Bilinear Transformation, the Bilinear Transformation is a mapping from \qquad .
a) Z-plane to S-plane
b) S-plane to Z-plane
c) S-plane to J-plane
d) J-plane to Z-plane
6) To what value should the bandwidth of $x(n)$ has to be reduced in order to avoid aliasing?
a) F / D
b) $F / 2 D$
c) $F / 4 D$
d) None of the mentioned
7) The linear filtering operation followed by down sampling on $x(n)$ is not time invariant.
a) True
b) False
8) Sampling rate conversion by the rational factor I / D is accomplished by what connection of interpolator and decimator?
a) Parallel
b) Cascade
c) Convolution
d) None of the mentioned
9) Which of the following methods are used in sampling rate conversion of a digital signal?
a) D/A convertor and A/D convertor
b) Performing entirely in digital domain
c) None of the mentioned
d) Both of the mentioned
10) Which of the following is the disadvantage of sampling rate conversion by converting the signal into analog signal?
a) Signal distortion
b) Quantization effects
c) New sampling rate can be arbitrarily selected
d) Signal distortion \& Quantization effects
11) Power spectral density function is a \qquad .
a) Real and even function
b) Non negative function
c) Periodic
d) All of the mentioned
12) Power spectrum describes distribution of \qquad under frequency domain.
a) Mean
b) Variance
c) Gaussian
d) None of the mentioned
13) According to Parseval's theorem the energy spectral density curve is equal to \qquad .
a) Area under magnitude of the signal
b) Area under square of the magnitude of the signal
c) Area under square root of magnitude of the signal
d) None of the mentioned
14) Autocorrelation function of periodic signal is equal to \qquad .
a) Energy of the signal
b) Power of the signal
c) Its area in frequency domain
d) None of the mentioned

B.E. (Part - I) (New) (CBCS) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ADVANCED DSP

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM

Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any two.
a) Design an ideal low pass filter with a frequency response.

$$
\begin{aligned}
H_{d}\left(e^{j w}\right) & =1 \text { for } 0 \leq|w| \leq \pi / 4 \\
& =0 \text { otherwise }
\end{aligned}
$$

Find the values for $\mathrm{h}(\mathrm{n})$ for $\mathrm{N}=7$.
b) Explain digital filter banks with polyphase structures.
c) Explain FIR Wiener filter for filtering and prediction.
Q. 3 Attempt any two.
a) Draw the direct form II structure for the system.

$$
y(n)=-0.1 y(n-1)+0.72 y(n-2)+0.7 x(n)-0.252 x(n-2)
$$

b) Explain Sampling rate conversion using interpolation and decimation.
c) Explain AR and ARMA model.

Section - II

Q. 4 Attempt any two.

a) Explain LMS algorithm used in adaptive filters.
b) Explain power spectrum estimation using parametric method.
c) Write a note on wavelet transform.
Q. 5 Attempt any two.
a) Explain MUSIC algorithm used for spectrum estimation.
b) Explain application of adaptive filter for noise cancellation.
c) Explain Minimum Mean Square (MMS) criterion in adaptive filters.

B.E. (Part - I) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday,07-12-2019
Max. Marks: 70
Time: 02.30 PM To 05.30 PM
Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The topology requires multipoint connection \qquad .
a) Star
b) Mesh
c) Ring
d) Bus
2) In this topology there is a central controller or hub \qquad .
a) Star
b) Mesh
c) Ring
d) Bus
3) The physical layer is responsible for moving \qquad from one (node) to the next.
a) segments
b) Frames
c) bits
d) Datagram
4) Which one of the following task is not done by data link layer?
a) framing
b) error control
c) flow control
d) channel coding
5) The address space of IPV4 is \qquad .
a) 2^{32}
b) $\quad 2^{16}$
c) 2^{8}
d) None of these
6) The port number 1011 is \qquad port number.
a) registered
b) well-known
c) dynamic
d) none of these
7)

a) IP
b) TCP
c) UDP
d) None of these
8) Which protocol does Ping use?
a) TCP
b) ARP
c) ICMP
d) BootP
9) Which of the following devices is a PC component that connects the computer to the network?
a) Bridge
b) NIC
c) DNS Server
d) Gateway
10) To deliver a message to the correct application program running on a host, the \qquad address must be consulted.
a) IP
b) MAC
c) Port
d) None of the above
11) The time taken by a packet to travel from client to server and then back to the client is called \qquad
a) STT
b) RTT
c) PTT
d) None of the these
12) Mode of data transfer in FTP, using protocol is \qquad .
a) Stream mode
b) Block mode
c) Compressed mode
d) None of these
13) The DHCP server can provide the \qquad of the IP addresses.
a) dynamic allocation
b) automatic allocation
c) static allocation
d) all of these
14) Header size of the ICMP message is \qquad .
a) 8-bytes
b) 8 -bits
c) 16-bytes
d) 16-bits

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday,07-12-2019
Max. Marks: 56

Time: 02.30 PM To 05.30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any three:
a) Write difference between TCP and UDP.
b) Explain in short Media Access Control.
c) Draw and explain 3 topologies along with it's advantages and disadvantages.
d) Draw and explain hamming code error detection technique.
e) With a neat sketch explain mode transition in HDLC.

> Q. 3 Attempt any two:
> a) Explain the working of stop and wait flow control and Sliding window flow control. Comment on the channel utilization in both the cases.
> b) Explain concept of subnetting with one example. Also write about special IP addresses.
> c) With the help of neat sketch explain connection establishment, data transfer and connection termination phases of TCP.

Section - II

Q. 4 Attempt any three:

a) Explain in short RARP and BOOTP protocols.
b) Explain in short ICMP query messages.
c) Explain various name spaces used in DNS.
d) Explain how connection is established in FTP for file transfer.
e) Explain in short shortest path routing.
Q. 5 Attempt any two.
a) Draw and explain DHCP packet format.
b) Explain architecture of Email using four scenarios which includes user agents (UA), Message Transfer agents (MTA) and Message Access Agents (MAA).
c) What is count to infinity problem in distance vector routing? Give it's solution.

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday,07-12-2019
Max. Marks: 70
Time: 02.30 PM To 05.30 PM
Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Which protocol does Ping use?
a) TCP
b) ARP
c) ICMP
d) BootP
2) Which of the following devices is a PC component that connects the computer to the network?
a) Bridge
b) NIC
c) DNS Server
d) Gateway
3) To deliver a message to the correct application program running on a host, the \qquad address must be consulted.
a) IP
b) MAC
c) Port
d) None of the above
4) The time taken by a packet to travel from client to server and then back to the client is called \qquad
a) STT
b) RTT
c) PTT
d) None of the these
5) Mode of data transfer in FTP, using protocol is \qquad .
a) Stream mode
b) Block mode
c) Compressed mode
d) None of these
6) The DHCP server can provide the \qquad of the IP addresses.
a) dynamic allocation
b) automatic allocation
c) static allocation
d) all of these
7) Header size of the ICMP message is \qquad .
a) 8-bytes
b) 8-bits
c) 16-bytes
d) 16-bits
8) The topology requires multipoint connection \qquad .
a) Star
b) Mesh
c) Ring
d) Bus
9) In this topology there is a central controller or hub \qquad .
a) Star
b) Mesh
c) Ring
d) Bus
10) The physical layer is responsible for moving \qquad from one (node) to the next.
a) segments
b) Frames
c) bits
d) Datagram
11) Which one of the following task is not done by data link layer?
a) framing
b) error control
c) flow control
d) channel coding
12) The address space of IPV4 is \qquad b) $\quad 2^{16}$
a) 2^{32}
d) None of these
13) The port number 1011 is \qquad port number.
a) registered
b) well-known
c) dynamic
d) none of these
14) ___ is an example of connectionless simple protocol.
a) IP
b) TCP
c) UDP
d) None of these

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday,07-12-2019
Max. Marks: 56

Time: 02.30 PM To 05.30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any three:
a) Write difference between TCP and UDP.
b) Explain in short Media Access Control.
c) Draw and explain 3 topologies along with it's advantages and disadvantages.
d) Draw and explain hamming code error detection technique.
e) With a neat sketch explain mode transition in HDLC.

> Q. 3 Attempt any two:
> a) Explain the working of stop and wait flow control and Sliding window flow control. Comment on the channel utilization in both the cases.
> b) Explain concept of subnetting with one example. Also write about special IP addresses.
> c) With the help of neat sketch explain connection establishment, data transfer and connection termination phases of TCP.

Section - II

Q. 4 Attempt any three:

a) Explain in short RARP and BOOTP protocols.
b) Explain in short ICMP query messages.
c) Explain various name spaces used in DNS.
d) Explain how connection is established in FTP for file transfer.
e) Explain in short shortest path routing.
Q. 5 Attempt any two.
a) Draw and explain DHCP packet format.
b) Explain architecture of Email using four scenarios which includes user agents (UA), Message Transfer agents (MTA) and Message Access Agents (MAA).
c) What is count to infinity problem in distance vector routing? Give it's solution.

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday,07-12-2019
Max. Marks: 70
Time: 02.30 PM To 05.30 PM

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in answer

 book.2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The address space of IPV4 is \qquad .
a) 2^{32}
b) $\quad 2^{16}$
c) 2^{8}
d) None of these
2) The port number 1011 is \qquad port number.
a) registered
b) well-known
c) dynamic
d) none of these
3) is an example of connectionless simple protocol.
a) IP
b) TCP
c) UDP
d) None of these
4) Which protocol does Ping use?
a) TCP
b) ARP
c) ICMP
d) BootP
5) Which of the following devices is a PC component that connects the computer to the network?
a) Bridge
b) NIC
c) DNS Server
d) Gateway
6) To deliver a message to the correct application program running on a host, the \qquad address must be consulted.
a) IP
b) MAC
c) Port
d) None of the above
7) The time taken by a packet to travel from client to server and then back to the client is called \qquad
a) STT
b) RTT
c) PTT
d) None of the these
8) Mode of data transfer in FTP, using protocol is \qquad .
a) Stream mode
b) Block mode
c) Compressed mode
d) None of these
9) The DHCP server can provide the \qquad of the IP addresses.
a) dynamic allocation
b) automatic allocation
c) static allocation
d) all of these
10) Header size of the ICMP message is
a) 8-bytes
c) 16-bytes
b) 8-bits
d) 16-bits
\qquad
11) The topology requires multipoint connection \qquad .
a) Star
b) Mesh
c) Ring
d) Bus
12) In this topology there is a central controller or hub \qquad .
a) Star
b) Mesh
c) Ring
d) Bus
13) The physical layer is responsible for moving \qquad from one (node) to the next.
a) segments
b) Frames
c) bits
d) Datagram
14) Which one of the following task is not done by data link layer?
a) framing
b) error control
c) flow control
d) channel coding

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday,07-12-2019
Max. Marks: 56

Time: 02.30 PM To 05.30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any three:
a) Write difference between TCP and UDP.
b) Explain in short Media Access Control.
c) Draw and explain 3 topologies along with it's advantages and disadvantages.
d) Draw and explain hamming code error detection technique.
e) With a neat sketch explain mode transition in HDLC.

$$
\begin{aligned}
& \text { Q. } 3 \text { Attempt any two: } \\
& \text { a) Explain the working of stop and wait flow control and Sliding window flow } \\
& \text { control. Comment on the channel utilization in both the cases. } \\
& \text { b) Explain concept of subnetting with one example. Also write about special } \\
& \text { IP addresses. } \\
& \text { c) With the help of neat sketch explain connection establishment, data } \\
& \text { transfer and connection termination phases of TCP. }
\end{aligned}
$$

Section - II

Q. 4 Attempt any three:

a) Explain in short RARP and BOOTP protocols.
b) Explain in short ICMP query messages.
c) Explain various name spaces used in DNS.
d) Explain how connection is established in FTP for file transfer.
e) Explain in short shortest path routing.
Q. 5 Attempt any two.
a) Draw and explain DHCP packet format.
b) Explain architecture of Email using four scenarios which includes user agents (UA), Message Transfer agents (MTA) and Message Access Agents (MAA).
c) What is count to infinity problem in distance vector routing? Give it's solution.

B.E. (Part - I) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday,07-12-2019
Max. Marks: 70
Time: 02.30 PM To 05.30 PM
Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) To deliver a message to the correct application program running on a host, the \qquad address must be consulted.
a) IP
b) MAC
c) Port
d) None of the above
2) The time taken by a packet to travel from client to server and then back to the client is called \qquad
b) RTT
a) STT
d) None of the these
3) Mode of data transfer in FTP, using protocol is \qquad .
a) Stream mode
b) Block mode
c) Compressed mode
d) None of these
4) The DHCP server can provide the \qquad of the IP addresses.
a) dynamic allocation
b) automatic allocation
c) static allocation
d) all of these
5) Header size of the ICMP message is \qquad B.
a) 8-bytes
b) 8-bits
c) 16-bytes
d) 16-bits
6) The topology requires multipoint connection \qquad .
a) Star
b) Mesh
c) Ring
d) Bus
7) In this topology there is a central controller or hub \qquad .
a) Star
b) Mesh
c) Ring
d) Bus
8) The physical layer is responsible for moving \qquad from one (node) to the next.
a) segments
b) Frames
c) bits
d) Datagram
9) Which one of the following task is not done by data link layer?
a) framing
b) error control
c) flow control
d) channel coding
10) The address space of IPV4 is \qquad b)
a) 2^{32}
b) $\quad 2^{16}$
C) 2^{8}
d) None of these
11) The port number 1011 is \qquad port number.
a) registered
b) well-known
c) dynamic
d) none of these
12) $\quad \ldots \quad$ is an example of connectionless simple protocol.
a) IP
b) TCP
c) UDP
d) None of these
13) Which protocol does Ping use?
a) TCP
b) ARP
c) ICMP
d) BootP
14) Which of the following devices is a PC component that connects the computer to the network?
a) Bridge
b) NIC
c) DNS Server
d) Gateway

SLR-FM-266

Seat

No.
Set

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering COMPUTER COMMUNICATION NETWORK

Day \& Date: Saturday,07-12-2019

Max. Marks: 56
Time: 02.30 PM To 05.30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any three:
a) Write difference between TCP and UDP.
b) Explain in short Media Access Control.
c) Draw and explain 3 topologies along with it's advantages and disadvantages.
d) Draw and explain hamming code error detection technique.
e) With a neat sketch explain mode transition in HDLC.
Q. 3 Attempt any two:
a) Explain the working of stop and wait flow control and Sliding window flow control. Comment on the channel utilization in both the cases.
b) Explain concept of subnetting with one example. Also write about special IP addresses.
c) With the help of neat sketch explain connection establishment, data transfer and connection termination phases of TCP.

Section - II

Q. 4 Attempt any three:

a) Explain in short RARP and BOOTP protocols.
b) Explain in short ICMP query messages.
c) Explain various name spaces used in DNS.
d) Explain how connection is established in FTP for file transfer.
e) Explain in short shortest path routing.
Q. 5 Attempt any two.
a) Draw and explain DHCP packet format.
b) Explain architecture of Email using four scenarios which includes user agents (UA), Message Transfer agents (MTA) and Message Access Agents (MAA).
c) What is count to infinity problem in distance vector routing? Give it's solution.

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering VLSI DESIGN

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicates full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Variables in VHDL can be used in \qquad -.
a) Process
b) Procedure
c) Function
d) All of the above
2) The power dissipation of CMOS IC will \qquad .
a) increase with frequency
b) decrease with frequency
c) both a and b
d) none of these
3) Which among the following is a process of transforming design entry information of the circuit into a set of logic equations?
a) Simulation
b) Optimization
c) Synthesis
d) Verification
4) In VHDL which object is used to connect entities together for the model formation?
a) Constant
b) Variable
c) Signal
d) All of the above
5) For Complex gate design in CMOS, OR function needs to be implemented by \qquad .
a) Series
b) Parallel
c) Both series and parallel
d) None of the above
6) In enhancement MOSFET, the magnitude of output current \qquad due to an increase in the magnitude of the gate potential.
a) increases
b) remains constant
c) decreases
d) none of the above
7) In concurrent code which of the statements can be used?
a) When else statement
b) Generate Statement
c) Block statement
d) All of the above
8) To test AND gate for stuck- at-1 we apply \qquad to the input being tested and \qquad to other input.
a) 0 and 1
b) 1 and 0
c) 1 and 1
d) 0 and 0
9) The CPLD contains several PAL-type simple programmable logic devices (SPLDs) called \qquad .
a) Macrocell
b) Microcell
c) AND/OR arrays
d) Fuse-link arrays
10) Propagation delay is more in \qquad than \qquad .
a) FPGA, CPLD
b) CPLD, FPGA
c) Can't say
d) None of these
11) In XC 9500 one macrocell can have maximum \qquad product terms.
a) 72
b) 36
c) 90
d) 18
12) To detect N bit sequence using Moore machine, the number of states required is \qquad .
a) 2 N
b) $\mathrm{N}+1$
c) $\mathrm{N}-1$
d) $2 \mathrm{~N}-1$
13) In which of the following programming method is used for FPGA?
a) SRAM
b) Fuse
c) both a and b
d) none of these
14) In Moore circuits, the output depends on \qquad .
a) Present state
b) Present state and input
c) Inputs
d) None of these

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering VLSI DESIGN

Day \& Date: Tuesday, 10-12-2019 Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Answer any Four.

a) Design a VHDL module for BCD to 7 segment decoder.
b) With the help of DC characteristics explain operation of CMOS inverter.
c) Realize the Boolean expression $Y=[A(B+C)]$ ' using CMOS logic.
d) Compare signal, variable and constant in VDHL.
e) Explain WAIT statements in VHDL.
Q. 3 Answer any Two.
a) 1) Derive the expression for dynamic power dissipation in CMOS inverter.
2) Calculate dynamic power dissipation in CMOS inverter when $\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{C}=10 \mathrm{pF}, \mathrm{F}=100 \mathrm{MHz}$.
b) Write a VHDL code to realize 4×4 Array multiplier.
c) With example explain generic and generate statement in VHDL.

Section - II

Q. 4 Answer any Four.
a) Draw Macrocell and explain its working.
b) With example explain testing of Combinational logic.
c) Write a test bench for 4: 2 encoder.
d) How Built-In Self-Test is used to check ICs?
e) Draw state diagram and write VHDL code for T flip flop.
Q. 5 Answer any Two.
a) Explain in detail different architectures of FPGA.
b) Draw state diagram and write VHDL code to realize Coffee vending machine.
c) Draw state diagram and write VHDL code for ADD and SHIFT multiplier.

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering VLSI DESIGN

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicates full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) To test AND gate for stuck- at-1 we apply \qquad to the input being tested and \qquad to other input.
a) 0 and 1
b) 1 and 0
c) 1 and 1
d) 0 and 0
2) The CPLD contains several PAL-type simple programmable logic devices (SPLDs) called \qquad .
a) Macrocell
b) Microcell
c) AND/OR arrays
d) Fuse-link arrays
3) Propagation delay is more in \qquad than \qquad .
a) FPGA, CPLD
b) CPLD, FPGA
c) Can't say
d) None of these
4) In XC 9500 one macrocell can have maximum \qquad product terms.
a) 72
b) 36
c) 90
d) 18
5) To detect N bit sequence using Moore machine, the number of states required is \qquad .
a) 2 N
b) $\mathrm{N}+1$
c) $\mathrm{N}-1$
d) $2 \mathrm{~N}-1$
6) In which of the following programming method is used for FPGA?
a) SRAM
b) Fuse
c) both a and b
d) none of these
7) In Moore circuits, the output depends on \qquad .
a) Present state
b) Present state and input
c) Inputs
d) None of these
8) Variables in VHDL can be used in \qquad .
a) Process
b) Procedure
c) Function
d) All of the above
9) The power dissipation of CMOS IC will \qquad .
a) increase with frequency
b) decrease with frequency
c) both a and b
d) none of these
10) Which among the following is a process of transforming design entry information of the circuit into a set of logic equations?
a) Simulation
b) Optimization
c) Synthesis
d) Verification
11) In VHDL which object is used to connect entities together for the model formation?
a) Constant
b) Variable
c) Signal
d) All of the above
12) For Complex gate design in CMOS, OR function needs to be implemented by \qquad _.
a) Series
b) Parallel
c) Both series and parallel
d) None of the above
13) In enhancement MOSFET, the magnitude of output current \qquad due to an increase in the magnitude of the gate potential.
a) increases
b) remains constant
c) decreases
d) none of the above
14) In concurrent code which of the statements can be used?
a) When else statement
b) Generate Statement
c) Block statement
d) All of the above

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering VLSI DESIGN

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Answer any Four. 16

a) Design a VHDL module for BCD to 7 segment decoder.
b) With the help of DC characteristics explain operation of CMOS inverter.
c) Realize the Boolean expression $Y=[A(B+C)]$ ' using CMOS logic.
d) Compare signal, variable and constant in VDHL.
e) Explain WAIT statements in VHDL.
Q. 3 Answer any Two. 12
a) 1) Derive the expression for dynamic power dissipation in CMOS inverter.
2) Calculate dynamic power dissipation in CMOS inverter when $\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{C}=10 \mathrm{pF}, \mathrm{F}=100 \mathrm{MHz}$.
b) Write a VHDL code to realize 4×4 Array multiplier.
c) With example explain generic and generate statement in VHDL.

Section - II

Q. 4 Answer any Four.

a) Draw Macrocell and explain its working.
b) With example explain testing of Combinational logic.
c) Write a test bench for 4: 2 encoder.
d) How Built-In Self-Test is used to check ICs?
e) Draw state diagram and write VHDL code for T flip flop.

Q. 5 Answer any Two.

a) Explain in detail different architectures of FPGA.
b) Draw state diagram and write VHDL code to realize Coffee vending machine.
c) Draw state diagram and write VHDL code for ADD and SHIFT multiplier.

Seat	
No.	

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering VLSI DESIGN

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicates full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) For Complex gate design in CMOS, OR function needs to be implemented by \qquad .
a) Series
b) Parallel
c) Both series and parallel
d) None of the above
2) In enhancement MOSFET, the magnitude of output current \qquad due to an increase in the magnitude of the gate potential.
a) increases
b) remains constant
c) decreases
d) none of the above
3) In concurrent code which of the statements can be used?
a) When else statement
b) Generate Statement
c) Block statement
d) All of the above
4) To test AND gate for stuck- at-1 we apply \qquad to the input being tested and \qquad to other input.
a) 0 and 1
b) 1 and 0
c) 1 and 1
d) 0 and 0
5) The CPLD contains several PAL-type simple programmable logic devices (SPLDs) called \qquad .
a) Macrocell
b) Microcell
c) AND/OR arrays
d) Fuse-link arrays
6) Propagation delay is more in \qquad than \qquad .
a) FPGA, CPLD
b) $\overline{\text { CPLD, FPGA }}$
c) Can't say
d) None of these
7) In XC 9500 one macrocell can have maximum \qquad product terms.
a) 72
b) 36
c) 90
d) 18
8) To detect N bit sequence using Moore machine, the number of states required is \qquad .
a) 2 N
b) $\mathrm{N}+1$
c) $\mathrm{N}-1$
d) $2 \mathrm{~N}-1$
9) In which of the following programming method is used for FPGA?
a) SRAM
b) Fuse
c) both a and b
d) none of these
10) In Moore circuits, the output depends on \qquad .
a) Present state
b) Present state and input
c) Inputs
d) None of these
11) Variables in VHDL can be used in \qquad .
a) Process
b) Procedure
c) Function
d) All of the above
12) The power dissipation of CMOS IC will \qquad .
a) increase with frequency
b) decrease with frequency
c) both a and b
d) none of these
13) Which among the following is a process of transforming design entry information of the circuit into a set of logic equations?
a) Simulation
b) Optimization
c) Synthesis
d) Verification
14) In VHDL which object is used to connect entities together for the model formation?
a) Constant
b) Variable
c) Signal
d) All of the above

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering VLSI DESIGN

Day \& Date: Tuesday, 10-12-2019 Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Answer any Four.

a) Design a VHDL module for BCD to 7 segment decoder.
b) With the help of DC characteristics explain operation of CMOS inverter.
c) Realize the Boolean expression $Y=[A(B+C)]$ ' using CMOS logic.
d) Compare signal, variable and constant in VDHL.
e) Explain WAIT statements in VHDL.
Q. 3 Answer any Two.
a) 1) Derive the expression for dynamic power dissipation in CMOS inverter.
2) Calculate dynamic power dissipation in CMOS inverter when $\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{C}=10 \mathrm{pF}, \mathrm{F}=100 \mathrm{MHz}$.
b) Write a VHDL code to realize 4×4 Array multiplier.
c) With example explain generic and generate statement in VHDL.

Section - II

Q. 4 Answer any Four.
a) Draw Macrocell and explain its working.
b) With example explain testing of Combinational logic.
c) Write a test bench for 4: 2 encoder.
d) How Built-In Self-Test is used to check ICs?
e) Draw state diagram and write VHDL code for T flip flop.
Q. 5 Answer any Two.
a) Explain in detail different architectures of FPGA.
b) Draw state diagram and write VHDL code to realize Coffee vending machine.
c) Draw state diagram and write VHDL code for ADD and SHIFT multiplier.

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering VLSI DESIGN

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicates full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Propagation delay is more in \qquad than
a) FPGA, CPLD
b) CPLD, FPGA
c) Can't say
d) None of these
2) In XC 9500 one macrocell can have maximum \qquad product terms.
a) 72
b) 36
c) 90
d) 18
3) To detect N bit sequence using Moore machine, the number of states required is \qquad .
a) 2 N
b) $\mathrm{N}+1$
c) $\mathrm{N}-1$
d) $2 \mathrm{~N}-1$
4) In which of the following programming method is used for FPGA?
a) SRAM
b) Fuse
c) both a and b
d) none of these
5) In Moore circuits, the output depends on \qquad .
a) Present state
b) Present state and input
c) Inputs
d) None of these
6) Variables in VHDL can be used in \qquad .
a) Process
b) Procedure
c) Function
d) All of the above
7) The power dissipation of CMOS IC will \qquad .
a) increase with frequency
b) decrease with frequency
c) both a and b
d) none of these
8) Which among the following is a process of transforming design entry information of the circuit into a set of logic equations?
a) Simulation
b) Optimization
c) Synthesis
d) Verification
9) In VHDL which object is used to connect entities together for the model formation?
a) Constant
b) Variable
c) Signal
d) All of the above
10) For Complex gate design in CMOS, OR function needs to be implemented by \qquad .
a) Series
b) Parallel
c) Both series and parallel
d) None of the above
11) In enhancement MOSFET, the magnitude of output current \qquad due to an increase in the magnitude of the gate potential.
a) increases
b) remains constant
c) decreases
d) none of the above
12) In concurrent code which of the statements can be used?
a) When else statement
b) Generate Statement
c) Block statement
d) All of the above
13) To test AND gate for stuck- at-1 we apply \qquad to the input being tested and \qquad to other input.
a) 0 and 1
b) 1 and 0
c) 1 and 1
d) 0 and 0
14) The CPLD contains several PAL-type simple programmable logic devices (SPLDs) called \qquad .
a) Macrocell
b) Microcell
c) AND/OR arrays
d) Fuse-link arrays

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering VLSI DESIGN

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Answer any Four.

a) Design a VHDL module for BCD to 7 segment decoder.
b) With the help of DC characteristics explain operation of CMOS inverter.
c) Realize the Boolean expression $Y=[A(B+C)]$ ' using CMOS logic.
d) Compare signal, variable and constant in VDHL.
e) Explain WAIT statements in VHDL.
Q. 3 Answer any Two.
a) 1) Derive the expression for dynamic power dissipation in CMOS inverter.
2) Calculate dynamic power dissipation in CMOS inverter when $\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{C}=10 \mathrm{pF}, \mathrm{F}=100 \mathrm{MHz}$.
b) Write a VHDL code to realize 4×4 Array multiplier.
c) With example explain generic and generate statement in VHDL.

Section - II

Q. 4 Answer any Four.

a) Draw Macrocell and explain its working.
b) With example explain testing of Combinational logic.
c) Write a test bench for 4: 2 encoder.
d) How Built-In Self-Test is used to check ICs?
e) Draw state diagram and write VHDL code for T flip flop.
Q. 5 Answer any Two.
a) Explain in detail different architectures of FPGA.
b) Draw state diagram and write VHDL code to realize Coffee vending machine.
c) Draw state diagram and write VHDL code for ADD and SHIFT multiplier.

B.E. (Part - I) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

Day \& Date: Thursday,12-12-2019
Max. Marks: 70
Time: 02.30 PM To 05.30 PM

Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer Book Page No. 3

2) Each question carries one mark.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Calculate the radius of a circular orbit for which the period is 1 day?
a) 42.241 Km
b) 42.241 m
c) 4.241 Km
d) 2.241 Km
2) What is application of satellite systems?
a) Whether forecasting
b) Terrestrial communication
c) Point to point communication
d) None of the above
3) Atmospheric drag has negligible effect on \qquad -.
a) Geostationary satellites
b) MEO
c) LEO
d) None of these
4) The down link frequency in the C band transponder is \qquad .
a) 6 GHz
b) 4 GHz
c) 14 GHz
d) 11 GHz
5) A satellite downlink at 12 GHz operates with a transmit power of $6 \mathrm{w} \&$ an antenna gain of 48.2db. Calculate the EIRP in dBw.
a) 56 dBw
b) 16 dBw
c) 48 dBw
d) None of above
6) A 20 meter antenna gives a certain up-link gain at 5 GHz . For getting the same gain at 25 GHz ate antenna size required will be \qquad .
a) 100 m
b) 80 m
c) 20 m
d) 4 m
7) Satellite receives signal from \qquad .
a) Microwave repeater stations
b) TV relay station
c) Appropriate earth station
d) All of the above
8) The Broadcast Satellite services (BSS) uses \qquad .
a) One way Implementation
b) Split Two- way Implementation
c) Two-Way Implementation
d) None of these
9) A satellite may carry \qquad transponders.
a) 32
b) 41
c) 24
d) None of these
10) Which area is least effectively covered by geostationary satellites?
a) Equatorial region
b) Polar region
c) a and b
d) None of the above
11) __ satellites will provide universal broadband Internet access.
a) GPS
b) Iridium
c) Teledesic
d) none of the above
12) A satellite earth station has \qquad .
a) Receiving facilities only
b) Transmitting only
c) a and b
d) a, c and attenuating
13) MATV stands for \qquad .
a) Master antenna TV (MATV)
b) Maximum Angular TV
c) Multi amplitude TV
d) None of these
14) The $24-\mathrm{MHz}$ bandwidth of a transponder is capable of carrying \qquad .
a) One analog television channel
b) Two analog television channel
c) Four analog television channel
d) None of these

B.E. (Part -I) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any Two: 14
a) Explain in detail Launch and Launch Vehicles.
b) Describe different subsystems used in satellite.
c) Derive the expression for system noise temperature \& G/T ratio.
Q. 3 Solve any Two: 14
a) What do you mean by look angle determination and orbital perturbation? Explain.
b) With the help of block diagram, comment on Telemetry, Tracking \& Command (TT \& C) subsystem of satellite.
c) Explain the process of Ku band uplink design.

Section - II

Q. 4 Solve any Two:
a) With the help of block diagram, explain Earth Station Architecture.
b) Compare Elliptical orbits \& Sun-synchronous orbit.
c) Discuss the concept of GPS time in detail.
Q. 5 Solve any Two: 14
a) Comment on R.F equipment for Earth station and Earth Station Testing.
b) Explain Coverage \& frequency consideration.
c) With the help of neat diagram, explain the working of DBS-TV Receiver.

B.E. (Part - I) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

Day \& Date: Thursday,12-12-2019
Max. Marks: 70
Time: 02.30 PM To 05.30 PM

Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer Book Page No. 3

2) Each question carries one mark.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The Broadcast Satellite services (BSS) uses \qquad .
a) One way Implementation
b) Split Two- way Implementation
c) Two-Way Implementation
d) None of these
2) A satellite may carry \qquad transponders.
a) 32
b) 41
c) 24
d) None of these
3) Which area is least effectively covered by geostationary satellites?
a) Equatorial region
b) Polar region
c) a and b
d) None of the above
4) __ satellites will provide universal broadband Internet access.
a) GPS
b) Iridium
c) Teledesic
d) none of the above
5) A satellite earth station has \qquad .
a) Receiving facilities only
b) Transmitting only
c) a and b
d) a, c and attenuating
6) MATV stands for \qquad .
a) Master antenna TV (MATV)
b) Maximum Angular TV
c) Multi amplitude TV
d) None of these
7) The $24-\mathrm{MHz}$ bandwidth of a transponder is capable of carrying \qquad .
a) One analog television channel
b) Two analog television channel
c) Four analog television channel
d) None of these
8) Calculate the radius of a circular orbit for which the period is 1 day?
a) 42.241 Km
b) 42.241 m
c) 4.241 Km
d) 2.241 Km
9) What is application of satellite systems?
a) Whether forecasting
b) Terrestrial communication
c) Point to point communication
d) None of the above
10) Atmospheric drag has negligible effect on \qquad .
a) Geostationary satellites
b) MEO
c) LEO
d) None of these
11) The down link frequency in the C band transponder is \qquad .
a) 6 GHz
b) 4 GHz
c) 14 GHz
d) 11 GHz
12) A satellite downlink at 12 GHz operates with a transmit power of 6 w \& an antenna gain of 48.2 db . Calculate the EIRP in dBw.
a) 56 dBw
b) 16 dBw
c) 48 dBw
d) None of above
13) A 20 meter antenna gives a certain up-link gain at 5 GHz . For getting the same gain at 25 GHz ate antenna size required will be \qquad -.
a) 100 m
b) 80 m
c) 20 m
d) 4 m
14) Satellite receives signal from \qquad .
a) Microwave repeater stations
b) TV relay station
c) Appropriate earth station
d) All of the above

B.E. (Part -I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

Day \& Date: Thursday,12-12-2019
Max. Marks: 56
Time: 02.30 PM To 05.30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any Two: 14
a) Explain in detail Launch and Launch Vehicles.
b) Describe different subsystems used in satellite.
c) Derive the expression for system noise temperature \& G / T ratio.
Q. 3 Solve any Two: 14
a) What do you mean by look angle determination and orbital perturbation? Explain.
b) With the help of block diagram, comment on Telemetry, Tracking \& Command (TT \& C) subsystem of satellite.
c) Explain the process of Ku band uplink design.

Section - II

Q. 4 Solve any Two:
a) With the help of block diagram, explain Earth Station Architecture.
b) Compare Elliptical orbits \& Sun-synchronous orbit.
c) Discuss the concept of GPS time in detail.
Q. 5 Solve any Two:
a) Comment on R.F equipment for Earth station and Earth Station Testing.
b) Explain Coverage \& frequency consideration.
c) With the help of neat diagram, explain the working of DBS-TV Receiver.

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

Day \& Date: Thursday,12-12-2019
Max. Marks: 70
Time: 02.30 PM To 05.30 PM

Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer Book Page No. 3

2) Each question carries one mark.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) A satellite downlink at 12 GHz operates with a transmit power of 6 w \& an antenna gain of 48.2db. Calculate the EIRP in dBw.
a) 56 dBw
b) 16 dBw
c) 48 dBw
d) None of above
2) A 20 meter antenna gives a certain up-link gain at 5 GHz . For getting the same gain at 25 GHz ate antenna size required will be \qquad .
a) 100 m
b) 80 m
c) 20 m
d) 4 m
3) Satellite receives signal from \qquad .
a) Microwave repeater stations
b) TV relay station
c) Appropriate earth station
d) All of the above
4) The Broadcast Satellite services (BSS) uses \qquad .
a) One way Implementation
b) Split Two- way Implementation
c) Two-Way Implementation
d) None of these
5) A satellite may carry \qquad transponders.
a) 32
b) 41
c) 24
d) None of these
6) Which area is least effectively covered by geostationary satellites?
a) Equatorial region
b) Polar region
c) a and b
d) None of the above
7) __ satellites will provide universal broadband Internet access.
a) GPS
b) Iridium
c) Teledesic
d) none of the above
8) A satellite earth station has \qquad .
a) Receiving facilities only
b) Transmitting only
c) a and b
d) a, c and attenuating
9) MATV stands for \qquad .
a) Master antenna TV (MATV)
b) Maximum Angular TV
c) Multi amplitude TV
d) None of these
10) The $24-\mathrm{MHz}$ bandwidth of a transponder is capable of carrying \qquad .
a) One analog television channel
b) Two analog television channel
c) Four analog television channel
d) None of these
11) Calculate the radius of a circular orbit for which the period is 1 day?
a) 42.241 Km
b) 42.241 m
c) 4.241 Km
d) 2.241 Km
12) What is application of satellite systems?
a) Whether forecasting
b) Terrestrial communication
c) Point to point communication
d) None of the above
13) Atmospheric drag has negligible effect on \qquad -.
a) Geostationary satellites
b) MEO
c) LEO
d) None of these
14) The down link frequency in the C band transponder is \qquad .
a) 6 GHz
b) 4 GHz
c) 14 GHz
d) 11 GHz

B.E. (Part -I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

Day \& Date: Thursday,12-12-2019
Max. Marks: 56

Time: 02.30 PM To 05.30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any Two: 14
a) Explain in detail Launch and Launch Vehicles.
b) Describe different subsystems used in satellite.
c) Derive the expression for system noise temperature \& G/T ratio.
Q. 3 Solve any Two: 14
a) What do you mean by look angle determination and orbital perturbation? Explain.
b) With the help of block diagram, comment on Telemetry, Tracking \& Command (TT \& C) subsystem of satellite.
c) Explain the process of Ku band uplink design.

Section - II

Q. 4 Solve any Two:
a) With the help of block diagram, explain Earth Station Architecture.
b) Compare Elliptical orbits \& Sun-synchronous orbit.
c) Discuss the concept of GPS time in detail.
Q. 5 Solve any Two:
a) Comment on R.F equipment for Earth station and Earth Station Testing.
b) Explain Coverage \& frequency consideration.
c) With the help of neat diagram, explain the working of DBS-TV Receiver.

B.E. (Part - I) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

Day \& Date: Thursday,12-12-2019
Max. Marks: 70
Time: 02.30 PM To 05.30 PM

Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer Book Page No. 3

2) Each question carries one mark.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Which area is least effectively covered by geostationary satellites?
a) Equatorial region
b) Polar region
c) a and b
d) None of the above
2) _ satellites will provide universal broadband Internet access.
a) GPS
b) Iridium
c) Teledesic
d) none of the above
3) A satellite earth station has \qquad .
a) Receiving facilities only
b) Transmitting only
c) a and b
d) a, c and attenuating
4) MATV stands for \qquad .
a) Master antenna TV (MATV)
b) Maximum Angular TV
c) Multi amplitude TV
d) None of these
5) The $24-\mathrm{MHz}$ bandwidth of a transponder is capable of carrying \qquad .
a) One analog television channel
b) Two analog television channel
c) Four analog television channel
d) None of these
6) Calculate the radius of a circular orbit for which the period is 1 day?
a) 42.241 Km
b) 42.241 m
c) 4.241 Km
d) 2.241 Km
7) What is application of satellite systems?
a) Whether forecasting
b) Terrestrial communication
c) Point to point communication
d) None of the above
8) Atmospheric drag has negligible effect on \qquad .
a) Geostationary satellites
b) MEO
c) LEO
d) None of these
9) The down link frequency in the C band transponder is \qquad .
a) 6 GHz
b) 4 GHz
c) 14 GHz
d) 11 GHz
10) A satellite downlink at 12 GHz operates with a transmit power of 6 w \& an antenna gain of 48.2db. Calculate the EIRP in dBw.
a) 56 dBw
b) 16 dBw
c) 48 dBw
d) None of above
11) A 20 meter antenna gives a certain up-link gain at 5 GHz . For getting the same gain at 25 GHz ate antenna size required will be \qquad .
a) 100 m
b) 80 m
c) 20 m
d) 4 m
12) Satellite receives signal from \qquad .
a) Microwave repeater stations
b) TV relay station
c) Appropriate earth station
d) All of the above
13) The Broadcast Satellite services (BSS) uses \qquad .
a) One way Implementation
b) Split Two- way Implementation
c) Two-Way Implementation
d) None of these
14) A satellite may carry \qquad transponders.
a) 32
b) 41
c) 24
d) None of these

B.E. (Part -I) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SATELLITE COMMUNICATION

2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any Two: 14
a) Explain in detail Launch and Launch Vehicles.
b) Describe different subsystems used in satellite.
c) Derive the expression for system noise temperature \& G/T ratio.
Q. 3 Solve any Two: 14
a) What do you mean by look angle determination and orbital perturbation? Explain.
b) With the help of block diagram, comment on Telemetry, Tracking \& Command (TT \& C) subsystem of satellite.
c) Explain the process of Ku band uplink design.

Section - II

Q. 4 Solve any Two:
a) With the help of block diagram, explain Earth Station Architecture.
b) Compare Elliptical orbits \& Sun-synchronous orbit.
c) Discuss the concept of GPS time in detail.
Q. 5 Solve any Two: 14
a) Comment on R.F equipment for Earth station and Earth Station Testing.
b) Explain Coverage \& frequency consideration.
c) With the help of neat diagram, explain the working of DBS-TV Receiver.

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CODING THEORY

Day \& Date: Saturday, 14-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) The weight of code 1101101 is \qquad .
a) 6
b) 5
C) 4
d) 3
2) A box contains 4 white and 3 black balls. Three balls are drawn from the box successively. What is the probability that the first two balls are white and third is black?
a) $5 / 35$
b) $3 / 35$
c) $2 / 25$
d) $6 / 35$
3) The starting point on the code tree is at the \qquad and corresponds to the situation before the arrival of the first message bit.
a) extreme right
b) extreme left
c) middle
d) none of these
4) The redundancy of (n, k) code is defined as \qquad .
a) n / k
b) k / n
c) $n-k / n$
d) $n-k / k$
5) For double error correction the minimum distance required is \qquad .
a) 5
b) 4
c) 3
d) 2
6) In convolution code encoder with a six stage shift register, the number of modulo-2 adders is 4 . For an input data stream of 5 bits, the code word size will be \qquad .
a) 68
b) 52
c) 48
d) 44
7) The sequential decoding method is \qquad times faster than the exhaustive method for $\mathrm{k}=6$.
a) 128
b) 25
c) 21
d) 12
8) It is sometimes convenient to represent a universal set, sets and subsets with the help of geometric diagrams known as \qquad .
a) State diagram
b) Tree diagram
c) Venn diagram
d) Trellis diagram
9) The total area under the probability distribution curve is \qquad .
a) 1
b) Depends on the nature of distribution
c) 0
d) None of the above
10) The convolutional encoder in terms of its \qquad , is the response of the encoder to a single one bit that moves through it.
a) real time response
b) response
c) impulse response
d) none of these
11) The stationary process has \qquad $-$
a) Ensemble average equal to time average
b) all the statistical properties dependent on time
c) all the statistical properties independent on time
d) zero variance
12) The tree diagram adds the dimensions of \qquad to the state diagram.
a) Time
b) Branches
c) Direction
d) Weight
13) For each ($k \times n$) generator matrix G, there exists an \qquad matrix P.
a) $(n-k) x k$
b) $k \times n$
c) $k x(n-k)$
d) $(n-k) \times n$
14) A random variable that takes on a finite number of values is known as a \qquad .
a) Continuous random variable
b) Discrete random variable
c) both a and b
d) None of these

Seat	
No.	

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CODING THEORY

Day \& Date: Saturday, 14-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four

a) In a factory 4 machine A1, A2, A3 \& A4 produce $10 \%, 20 \%, 30 \%$ \& 40% of the items respectively. The \% of defective items produced by them is 5%, $4 \%, 3 \%, 2 \%$ respectively. An item selected at random is found to be defective, What is the probability that it was produced by machine A2.
b) State \& prove Baye's theorem.
c) How error detection \& correction is done in linear block code? Explain it with suitable example.
d) What is standard array? How it is useful in decoding linear block code?
e) The generator polynomial of $(6,3)$ cyclic code $g(x)=1+x^{2}$. Find all code words using non systematic method.

Q. 3 Attempt any two

a) The parity check matrix for $(7,4)$ block code is given by
$H=\left[\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

Draw the decoder.
b) The joint probability function of two random variables X and Y is given by $f(x, y)=c\left(x^{2}+2 y\right) \quad x=0,1,2, \quad y=1,2,3,4$
$=0 \quad$ otherwise
Find:

1) Value of C
2) $\mathrm{P}(\mathrm{X}=2, \mathrm{Y}=3)$
3) $\quad P(X \leq 1, Y>2)$
c) Define the following terms with respect to random processes.
4) Stationarity
5) Time average
6) Ergodic process

Section - II

Q. 4 Attempt any four
a) Explain different types of interleavers.
b) With suitable example, explain polynomial representation of convolution coding.
c) Define

1) Coding gain
2) Catastrophic error propagation, of convolution coding
d) Explain in brief about turbo encoder.
e) Explain add - compare - select computation used in decoder implementation of convolutional decoder.

Q. 5 Attempt any two

12
a) For given convolutional encoder (Fig 1) construct code tree and find the output sequence for message 10010.

Fig 1
b) With example explain inpulse response representation technique to convolution coding.
c) Draw trellis diagram for convolution coder given in Fig 1 for input data 11010

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CODING THEORY

Day \& Date: Saturday, 14-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) It is sometimes convenient to represent a universal set, sets and subsets with the help of geometric diagrams known as \qquad .
a) State diagram
b) Tree diagram
c) Venn diagram
d) Trellis diagram
2) The total area under the probability distribution curve is \qquad .
a) 1
b) Depends on the nature of distribution
c) 0
d) None of the above
3) The convolutional encoder in terms of its \qquad is the response of the encoder to a single one bit that moves through it.
a) real time response
b) response
c) impulse response
d) none of these
4) The stationary process has \qquad .
a) Ensemble average equal to time average
b) all the statistical properties dependent on time
c) all the statistical properties independent on time
d) zero variance
5) The tree diagram adds the dimensions of \qquad to the state diagram.
a) Time
b) Branches
c) Direction
d) Weight
6) For each ($k \times n$) generator matrix G, there exists an \qquad matrix P.
a) $(n-k) x k$
b) kxn
c) $k x(n-k)$
d) $(n-k) \times n$
7) A random variable that takes on a finite number of values is known as a \qquad .
a) Continuous random variable
b) Discrete random variable
c) both a and b
d) None of these
8) The weight of code 1101101 is \qquad .
a) 6
b) 5
c) 4
d) 3

SLR-FM-269
 Set

9) A box contains 4 white and 3 black balls. Three balls are drawn from the box successively. What is the probability that the first two balls are white and third is black?
a) $5 / 35$
b) $3 / 35$
c) $2 / 25$
d) $6 / 35$
10) The starting point on the code tree is at the \qquad and corresponds to the situation before the arrival of the first message bit.
a) extreme right
b) extreme left
c) middle
d) none of these
11) The redundancy of (n, k) code is defined as \qquad .
a) n / k
b) k / n
c) $n-k / n$
d) $n-k / k$
12) For double error correction the minimum distance required is \qquad .
a) 5
b) 4
c) 3
d) 2
13) In convolution code encoder with a six stage shift register, the number of modulo-2 adders is 4 . For an input data stream of 5 bits, the code word size will be \qquad .
a) 68
b) 52
c) 48
d) 44
14) The sequential decoding method is \qquad times faster than the exhaustive method for $\mathrm{k}=6$.
a) 128
b) 25
c) 21
d) 12

| Seat |
| :--- | :--- |
| No. |

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CODING THEORY

Day \& Date: Saturday, 14-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four

a) In a factory 4 machine A1, A2, A3 \& A4 produce $10 \%, 20 \%, 30 \%$ \& 40% of the items respectively. The $\%$ of defective items produced by them is 5%, $4 \%, 3 \%, 2 \%$ respectively. An item selected at random is found to be defective, What is the probability that it was produced by machine A2.
b) State \& prove Baye's theorem.
c) How error detection \& correction is done in linear block code? Explain it with suitable example.
d) What is standard array? How it is useful in decoding linear block code?
e) The generator polynomial of $(6,3)$ cyclic code $g(x)=1+x^{2}$. Find all code words using non systematic method.

Q. 3 Attempt any two

a) The parity check matrix for $(7,4)$ block code is given by
$H=\left[\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

Draw the decoder.
b) The joint probability function of two random variables X and Y is given by $f(x, y)=c\left(x^{2}+2 y\right) \quad x=0,1,2, \quad y=1,2,3,4$
$=0 \quad$ otherwise
Find:

1) Value of C
2) $\mathrm{P}(\mathrm{X}=2, \mathrm{Y}=3)$
3) $\quad P(X \leq 1, Y>2)$
c) Define the following terms with respect to random processes.
4) Stationarity
5) Time average
6) Ergodic process
Section - II

Q. 4 Attempt any four

a) Explain different types of interleavers.
b) With suitable example, explain polynomial representation of convolution coding.
c) Define

1) Coding gain
2) Catastrophic error propagation, of convolution coding
d) Explain in brief about turbo encoder.
e) Explain add - compare - select computation used in decoder implementation of convolutional decoder.

Q. 5 Attempt any two

12
a) For given convolutional encoder (Fig 1) construct code tree and find the output sequence for message 10010.

Fig 1
b) With example explain inpulse response representation technique to convolution coding.
c) Draw trellis diagram for convolution coder given in Fig 1 for input data 11010

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CODING THEORY

Day \& Date: Saturday, 14-12-2019
Max. Marks: 70

Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
 2) Figures to the right indicate full marks.
 3) Assume suitable data if necessary.
 MCQ/Objective Type Questions
 Duration: 30 Minutes
 Marks: 14

Q. 1 Choose the correct alternatives from the options.

1) For double error correction the minimum distance required is \qquad .
a) 5
b) 4
c) 3
d) 2
2) In convolution code encoder with a six stage shift register, the number of modulo-2 adders is 4 . For an input data stream of 5 bits, the code word size will be \qquad .
a) 68
b) 52
c) 48
d) 44
3) The sequential decoding method is \qquad times faster than the exhaustive method for $\mathrm{k}=6$.
a) 128
b) 25
c) 21
d) 12
4) It is sometimes convenient to represent a universal set, sets and subsets with the help of geometric diagrams known as \qquad _.
a) State diagram
b) Tree diagram
c) Venn diagram
d) Trellis diagram
5) The total area under the probability distribution curve is \qquad .
a) 1
b) Depends on the nature of distribution
c) 0
d) None of the above
6) The convolutional encoder in terms of its \qquad , is the response of the encoder to a single one bit that moves through it.
a) real time response
b) response
c) impulse response
d) none of these
7) The stationary process has \qquad .
a) Ensemble average equal to time average
b) all the statistical properties dependent on time
c) all the statistical properties independent on time
d) zero variance

SLR-FM-269
 Set

8) The tree diagram adds the dimensions of \qquad to the state diagram.
a) Time
b) Branches
c) Direction
d) Weight
9) For each ($k \times n$) generator matrix G, there exists an \qquad matrix P.
a) $(n-k) x k$
b) $k x n$
c) $k x(n-k)$
d) $(n-k) \times n$
10) A random variable that takes on a finite number of values is known as a \qquad .
a) Continuous random variable
b) Discrete random variable
c) both a and b
d) None of these
11) The weight of code 1101101 is \qquad .
a) 6
b) 5
c) 4
d) 3
12) A box contains 4 white and 3 black balls. Three balls are drawn from the box successively. What is the probability that the first two balls are white and third is black?
a) $5 / 35$
b) $3 / 35$
c) $2 / 25$
d) $6 / 35$
13) The starting point on the code tree is at the \qquad and corresponds to the situation before the arrival of the first message bit.
a) extreme right
b) extreme left
c) middle
d) none of these
14) The redundancy of (n, k) code is defined as \qquad —.
a) n / k
b) k / n
c) $n-k / n$
d) $n-k / k$

Seat	
No.	

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CODING THEORY

Day \& Date: Saturday, 14-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four

a) In a factory 4 machine A1, A2, A3 \& A4 produce $10 \%, 20 \%, 30 \%$ \& 40% of the items respectively. The $\%$ of defective items produced by them is 5%, $4 \%, 3 \%, 2 \%$ respectively. An item selected at random is found to be defective, What is the probability that it was produced by machine A2.
b) State \& prove Baye's theorem.
c) How error detection \& correction is done in linear block code? Explain it with suitable example.
d) What is standard array? How it is useful in decoding linear block code?
e) The generator polynomial of $(6,3)$ cyclic code $g(x)=1+x^{2}$. Find all code words using non systematic method.

Q. 3 Attempt any two

a) The parity check matrix for $(7,4)$ block code is given by
$H=\left[\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

Draw the decoder.
b) The joint probability function of two random variables X and Y is given by $f(x, y)=c\left(x^{2}+2 y\right) \quad x=0,1,2, \quad y=1,2,3,4$
$=0 \quad$ otherwise
Find:

1) Value of C
2) $\mathrm{P}(\mathrm{X}=2, \mathrm{Y}=3)$
3) $\quad P(X \leq 1, Y>2)$
c) Define the following terms with respect to random processes.
4) Stationarity
5) Time average
6) Ergodic process
Section - II
Q. 4 Attempt any four
a) Explain different types of interleavers.
b) With suitable example, explain polynomial representation of convolution coding.
c) Define
7) Coding gain
8) Catastrophic error propagation, of convolution coding
d) Explain in brief about turbo encoder.
e) Explain add - compare - select computation used in decoder implementation of convolutional decoder.

SLR-FM-269
 Set
 12

Q. 5 Attempt any two
a) For given convolutional encoder (Fig 1) construct code tree and find the output sequence for message 10010.

Fig 1
b) With example explain inpulse response representation technique to convolution coding.
c) Draw trellis diagram for convolution coder given in Fig 1 for input data 11010

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CODING THEORY

Day \& Date: Saturday, 14-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
 2) Figures to the right indicate full marks.
 3) Assume suitable data if necessary.
 MCQ/Objective Type Questions
 Duration: 30 Minutes
 Marks: 14

Q. 1 Choose the correct alternatives from the options. 14

1) The convolutional encoder in terms of its \qquad is the response of the encoder to a single one bit that moves through it.
a) real time response
b) response
c) impulse response
d) none of these
2) The stationary process has \qquad .
a) Ensemble average equal to time average
b) all the statistical properties dependent on time
c) all the statistical properties independent on time
d) zero variance
3) The tree diagram adds the dimensions of \qquad to the state diagram.
a) Time
b) Branches
c) Direction
d) Weight
4) For each ($k \times n$) generator matrix G, there exists an \qquad matrix P.
a) $(n-k) \times k$
b) kxn
c) $k x(n-k)$
d) $(n-k) \times n$
5) A random variable that takes on a finite number of values is known as a \qquad .
a) Continuous random variable
b) Discrete random variable
c) both a and b
d) None of these
6) The weight of code 1101101 is \qquad .
a) 6
b) 5
c) 4
d) 3
7) A box contains 4 white and 3 black balls. Three balls are drawn from the box successively. What is the probability that the first two balls are white and third is black?
a) $5 / 35$
b) $3 / 35$
c) $2 / 25$
d) $6 / 35$
8) The starting point on the code tree is at the \qquad and corresponds to the situation before the arrival of the first message bit.
a) extreme right
b) extreme left
c) middle
d) none of these

SLR-FM-269
 Set

9) The redundancy of (n, k) code is defined as
a) n / k
b) k / n
c) $n-k / n$
d) $n-k / k$
10) For double error correction the minimum distance required is \qquad .
a) 5
b) 4
c) 3
d) 2
11) In convolution code encoder with a six stage shift register, the number of modulo-2 adders is 4 . For an input data stream of 5 bits, the code word size will be \qquad .
a) 68
b) 52
c) 48
d) 44
12) The sequential decoding method is \qquad times faster than the exhaustive method for $\mathrm{k}=6$.
a) 128
b) 25
c) 21
d) 12
13) It is sometimes convenient to represent a universal set, sets and subsets with the help of geometric diagrams known as \qquad .
a) State diagram
b) Tree diagram
c) Venn diagram
d) Trellis diagram
14) The total area under the probability distribution curve is \qquad .
a) 1
b) Depends on the nature of distribution
c) 0
d) None of the above

| Seat
 No. |
| :--- | :--- |

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CODING THEORY

Day \& Date: Saturday, 14-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four

a) In a factory 4 machine A1, A2, A3 \& A4 produce $10 \%, 20 \%, 30 \%$ \& 40% of the items respectively. The $\%$ of defective items produced by them is 5%, $4 \%, 3 \%, 2 \%$ respectively. An item selected at random is found to be defective, What is the probability that it was produced by machine A2.
b) State \& prove Baye's theorem.
c) How error detection \& correction is done in linear block code? Explain it with suitable example.
d) What is standard array? How it is useful in decoding linear block code?
e) The generator polynomial of $(6,3)$ cyclic code $g(x)=1+x^{2}$. Find all code words using non systematic method.

Q. 3 Attempt any two

a) The parity check matrix for $(7,4)$ block code is given by
$H=\left[\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

Draw the decoder.
b) The joint probability function of two random variables X and Y is given by $f(x, y)=c\left(x^{2}+2 y\right) \quad x=0,1,2, \quad y=1,2,3,4$
$=0 \quad$ otherwise
Find:

1) Value of C
2) $\mathrm{P}(\mathrm{X}=2, \mathrm{Y}=3)$
3) $\quad P(X \leq 1, Y>2)$
c) Define the following terms with respect to random processes.
4) Stationarity
5) Time average
6) Ergodic process

Section - II

Q. 4 Attempt any four
a) Explain different types of interleavers.
b) With suitable example, explain polynomial representation of convolution coding.
c) Define

1) Coding gain
2) Catastrophic error propagation, of convolution coding
d) Explain in brief about turbo encoder.
e) Explain add - compare - select computation used in decoder implementation of convolutional decoder.
Q. 5 Attempt any two

12
a) For given convolutional encoder (Fig 1) construct code tree and find the output sequence for message 10010.

Fig 1
b) With example explain inpulse response representation technique to convolution coding.
c) Draw trellis diagram for convolution coder given in Fig 1 for input data 11010

B.E. (Part -I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE PROCESSING

2) Figures to the right indicate full mark.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options.

1) D4 distance is called as \qquad .
a) Euclidean distance
b) City block distance
c) Chess board distance
d) None
2) The neighbors of a pixel $p(x, y)$ are given by $(x+1, Y+1),(x+1, y-1),(x-1, y-1)$, $(x-1, y+1)$ Then these neighbors are called \qquad -
a) 4-neighbors
b) diagonal neighbors
c) 8-neighbors
d) None
3) CMYK color model is useful in \qquad .
a) Display devices
b) Printing applications
c) Human color descriptor
d) None
4) $\quad S=L-I-r$, where $s=o l p$ gray level and $r=i / p$ gray level; means \qquad .
a) Image negative
b) Image positive
c) Power law
d) $\quad \mathrm{Log}$
5) Impulse noise is also called as \qquad .
a) Salt and Paper noise
b) Uniform noise
c) Gaussian noise
d) None
6) Expanding the object size is nothing but \qquad .
a) Erosion
b) Dilation
c) Thinning
d) None
7) Statement 1: A median filter is effective in minimizing salt and paper noise in an image.
Statement 2: A median filter is a linear filter.
a) Statement 1 is true whereas Statement 2 is wrong
b) Statement 1 I and 2 is true
c) Statement 1 I and 2 is false
d) Statement 1 is false whereas Statement 2 is true
8) Which is the image processing technique used to improve the quality of image for human viewing?
a) compression
b) Enhancement
c) restoration
d) Analysis
9) Which type of enhancement operations are used to modify pixel values according to the value of the pixel 's neighbors?
a) Point operations
b) local operations
c) global operations
d) Mask operations
10) Which device is used to capture the fingerprint pattern?
a) Capture device
b) Fingerprint sensor
c) 2d sensor
d) Digital sensor
11) Which of the following is a lossy coding?
a) Huffman code
b) Run-length code
c) Uniform code
d) Predictive coding without quantiser
12) The transform used in JPEG image Compression is \qquad .
a) DCT
b) Walsh
c) DFT
d) Harr
13) First order derivative operator is also called as \qquad .
a) Laplacian
b) Compass
c) Gradient
d) None
14) JPEG is \qquad standard.
a) Still image coding
b) Video coding
c) Run-Length coding
d) None

B.E. (Part -I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE PROCESSING

Day \& Date: Tuesday,17-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicates full marks.

SECTION I

Q. 2 Attempt any Four: 14
a) Explain the process of sampling and quantization in image processing.
b) Explain basic morphological operation.
c) What do you mean by non linear transformation?
d) What do you mean by color model and its importance?
e) State Laplacian mask for four neighbors and also state effect of Laplacian operator.
Q. 3 Attempt any Two: 14
a) Explain relation between pixels in terms of connectivity, adjacency and neighbor hood.
b) Define and explain spatial resolution, gray level resolution, histogram in detail.
c) Explain dilation and erosion process with example.

SECTION II

Q. 4 Attempt any four:
a) Explain image segmentation using thresholding.
b) Why need of Image compression, Explain 2-D-DFT transform?
c) Write short note on face recognition.
d) Explain Line detection using gradients in image.
e) Write short note on redundancy and its types.
Q. 5 Attempt any two. 14
a) Explain the term fidelity and its types in detail.
b) Write short note on

1) Chain codes
2) Boundary descriptors
c) Explain image processing application based on remote sensing method in image.

B.E. (Part -I) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE PROCESSING

2) Figures to the right indicate full mark.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options.

1) Which is the image processing technique used to improve the quality of image for human viewing?
a) compression
b) Enhancement
c) restoration
d) Analysis
2) Which type of enhancement operations are used to modify pixel values according to the value of the pixel 's neighbors?
a) Point operations
b) local operations
c) global operations
d) Mask operations
3) Which device is used to capture the fingerprint pattern?
a) Capture device
b) Fingerprint sensor
c) 2d sensor
d) Digital sensor
4) Which of the following is a lossy coding?
a) Huffman code
b) Run-length code
c) Uniform code
d) Predictive coding without quantiser
5) The transform used in JPEG image Compression is \qquad .
a) DCT
b) Walsh
c) DFT
d) Harr
6) First order derivative operator is also called as \qquad .
a) Laplacian
b) Compass
c) Gradient
d) None
7) JPEG is \qquad standard.
a) Still image coding
b) Video coding
c) Run-Length coding
d) None
8) D4 distance is called as \qquad .
a) Euclidean distance
b) City block distance
c) Chess board distance
d) None
9) The neighbors of a pixel $p(x, y)$ are given by $(x+1, Y+1),(x+1, y-1),(x-1, y-1)$, $(x-1, y+1)$ Then these neighbors are called \qquad .
a) 4-neighbors
b) diagonal neighbors
c) 8-neighbors
d) None
10) CMYK color model is useful in \qquad .
a) Display devices
b) Printing applications
c) Human color descriptor
d) None
11) $S=L-I-r$, where $s=o l p$ gray level and $r=i / p$ gray level; means \qquad .
a) Image negative
b) Image positive
c) Power law
d) \log
12) Impulse noise is also called as \qquad .
a) Salt and Paper noise
b) Uniform noise
c) Gaussian noise
d) None
13) Expanding the object size is nothing but \qquad .
a) Erosion
b) Dilation
c) Thinning
d) None
14) Statement 1: A median filter is effective in minimizing salt and paper noise in an image.
Statement 2: A median filter is a linear filter.
a) Statement 1 is true whereas Statement 2 is wrong
b) Statement 1 I and 2 is true
c) Statement 1 I and 2 is false
d) Statement 1 is false whereas Statement 2 is true

B.E. (Part -I) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE PROCESSING

Day \& Date: Tuesday,17-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicates full marks.
SECTION I
Q. 2 Attempt any Four: 14
a) Explain the process of sampling and quantization in image processing.
b) Explain basic morphological operation.
c) What do you mean by non linear transformation?
d) What do you mean by color model and its importance?
e) State Laplacian mask for four neighbors and also state effect of Laplacian operator.

Q. 3 Attempt any Two:

a) Explain relation between pixels in terms of connectivity, adjacency and
neighbor hood.

b) Define and explain spatial resolution, gray level resolution, histogram in
detail.

c) Explain dilation and erosion process with example.

SECTION II

Q. 4 Attempt any four:
a) Explain image segmentation using thresholding.
b) Why need of Image compression, Explain 2-D-DFT transform?
c) Write short note on face recognition.
d) Explain Line detection using gradients in image.
e) Write short note on redundancy and its types.
Q. 5 Attempt any two. 14
a) Explain the term fidelity and its types in detail.
b) Write short note on

1) Chain codes
2) Boundary descriptors
c) Explain image processing application based on remote sensing method in image.

B.E. (Part -I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE PROCESSING

 book.2) Figures to the right indicate full mark.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) Impulse noise is also called as \qquad .
a) Salt and Paper noise
b) Uniform noise
c) Gaussian noise
d) None
2) Expanding the object size is nothing but \qquad .
a) Erosion
b) Dilation
c) Thinning
d) None
3) Statement 1: A median filter is effective in minimizing salt and paper noise in an image.
Statement 2: A median filter is a linear filter.
a) Statement 1 is true whereas Statement 2 is wrong
b) Statement 1 I and 2 is true
c) Statement 1 I and 2 is false
d) Statement 1 is false whereas Statement 2 is true
4) Which is the image processing technique used to improve the quality of image for human viewing?
a) compression
b) Enhancement
c) restoration
d) Analysis
5) Which type of enhancement operations are used to modify pixel values according to the value of the pixel 's neighbors?
a) Point operations
b) local operations
c) global operations
d) Mask operations
6) Which device is used to capture the fingerprint pattern?
a) Capture device
b) Fingerprint sensor
c) 2d sensor
d) Digital sensor
7) Which of the following is a lossy coding?
a) Huffman code
b) Run-length code
c) Uniform code
d) Predictive coding without quantiser
8) The transform used in JPEG image Compression is \qquad .
a) DCT
b) Walsh
c) DFT
d) Harr

SLR-FM-271
 Set

9) First order derivative operator is also called as \qquad .
a) Laplacian
b) Compass
c) Gradient
d) None
10) JPEG is \qquad standard.
a) Still image coding
b) Video coding
c) Run-Length coding
d) None
11) D4 distance is called as \qquad .
a) Euclidean distance
b) City block distance
c) Chess board distance
d) None
12) The neighbors of a pixel $p(x, y)$ are given by $(x+1, Y+1),(x+1, y-1),(x-1, y-1)$, $(x-1, y+1)$ Then these neighbors are called \qquad -
a) 4-neighbors
b) diagonal neighbors
c) 8-neighbors
d) None
13) CMYK color model is useful in \qquad
a) Display devices
b) Printing applications
c) Human color descriptor
d) None
14) $S=L-I-r$, where $s=o / p$ gray level and $r=i / p$ gray level; means \qquad .
a) Image negative
b) Image positive
c) Power law
d) $\quad \log$

B.E. (Part -I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE PROCESSING

Day \& Date: Tuesday,17-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicates full marks.

SECTION I

Q. 2 Attempt any Four: 14
a) Explain the process of sampling and quantization in image processing.
b) Explain basic morphological operation.
c) What do you mean by non linear transformation?
d) What do you mean by color model and its importance?
e) State Laplacian mask for four neighbors and also state effect of Laplacian operator.
Q. 3 Attempt any Two: 14
a) Explain relation between pixels in terms of connectivity, adjacency and neighbor hood.
b) Define and explain spatial resolution, gray level resolution, histogram in detail.
c) Explain dilation and erosion process with example.

SECTION II

Q. 4 Attempt any four:
a) Explain image segmentation using thresholding.
b) Why need of Image compression, Explain 2-D-DFT transform?
c) Write short note on face recognition.
d) Explain Line detection using gradients in image.
e) Write short note on redundancy and its types.
Q. 5 Attempt any two. 14
a) Explain the term fidelity and its types in detail.
b) Write short note on

1) Chain codes
2) Boundary descriptors
c) Explain image processing application based on remote sensing method in image.

B.E. (Part -I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE PROCESSING

2) Figures to the right indicate full mark.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options.

1) Which device is used to capture the fingerprint pattern?
a) Capture device
b) Fingerprint sensor
c) 2d sensor
d) Digital sensor
2) Which of the following is a lossy coding?
a) Huffman code
b) Run-length code
c) Uniform code
d) Predictive coding without quantiser
3) The transform used in JPEG image Compression is \qquad .
a) DCT
b) Walsh
c) DFT
d) Harr
4) First order derivative operator is also called as \qquad .
a) Laplacian
b) Compass
c) Gradient
d) None
5) JPEG is \qquad standard.
a) Still image coding
b) Video coding
c) Run-Length coding
d) None
6) D4 distance is called as \qquad .
a) Euclidean distance
b) City block distance
c) Chess board distance
d) None
7) The neighbors of a pixel $p(x, y)$ are given by $(x+1, Y+1),(x+1, y-1),(x-1, y-1)$, $(x-1, y+1)$ Then these neighbors are called \qquad -
a) 4-neighbors
b) diagonal neighbors
c) 8-neighbors
d) None
8) CMYK color model is useful in \qquad -
a) Display devices
b) Printing applications
c) Human color descriptor
d) None
9) $S=L-I-r$, where $s=o l p$ gray level and $r=i / p$ gray level; means \qquad .
a) Image negative
b) Image positive
c) Power law
d) $\quad \log$
10) Impulse noise is also called as \qquad .
a) Salt and Paper noise
b) Uniform noise
c) Gaussian noise
d) None
11) Expanding the object size is nothing but \qquad .
a) Erosion
b) Dilation
c) Thinning
d) None
12) Statement 1: A median filter is effective in minimizing salt and paper noise in an image.
Statement 2: A median filter is a linear filter.
a) Statement 1 is true whereas Statement 2 is wrong
b) Statement 1 I and 2 is true
c) Statement 1 I and 2 is false
d) Statement 1 is false whereas Statement 2 is true
13) Which is the image processing technique used to improve the quality of image for human viewing?
a) compression
b) Enhancement
c) restoration
d) Analysis
14) Which type of enhancement operations are used to modify pixel values according to the value of the pixel 's neighbors?
a) Point operations
b) local operations
c) global operations
d) Mask operations

B.E. (Part -I) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering IMAGE PROCESSING

Day \& Date: Tuesday,17-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicates full marks.

SECTION I

Q. 2 Attempt any Four: 14
a) Explain the process of sampling and quantization in image processing.
b) Explain basic morphological operation.
c) What do you mean by non linear transformation?
d) What do you mean by color model and its importance?
e) State Laplacian mask for four neighbors and also state effect of Laplacian operator.
Q. 3 Attempt any Two: 14
a) Explain relation between pixels in terms of connectivity, adjacency and neighbor hood.
b) Define and explain spatial resolution, gray level resolution, histogram in detail.
c) Explain dilation and erosion process with example.

SECTION II

Q. 4 Attempt any four:
a) Explain image segmentation using thresholding.
b) Why need of Image compression, Explain 2-D-DFT transform?
c) Write short note on face recognition.
d) Explain Line detection using gradients in image.
e) Write short note on redundancy and its types.
Q. 5 Attempt any two. 14
a) Explain the term fidelity and its types in detail.
b) Write short note on

1) Chain codes
2) Boundary descriptors
c) Explain image processing application based on remote sensing method in image.

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ADVANCED DSP

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1
1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) To what value should the bandwidth of $x(n)$ has to be reduced in order to avoid aliasing?
a) F/D
b) $F / 2 D$
c) $F / 4 D$
d) None of the mentioned
2) The linear filtering operation followed by down sampling on $x(n)$ is not time invariant.
a) True
b) False
3) Sampling rate conversion by the rational factor I/D is accomplished by what connection of interpolator and decimator?
a) Parallel
b) Cascade
c) Convolution
d) None of the mentioned
4) Which of the following methods are used in sampling rate conversion of a digital signal?
a) D/A convertor and A/D convertor
b) Performing entirely in digital domain
c) None of the mentioned
d) Both of the mentioned
5) Which of the following is the disadvantage of sampling rate conversion by converting the signal into analog signal?
a) Signal distortion
b) Quantization effects
c) New sampling rate can be arbitrarily selected
d) Signal distortion \& Quantization effects
6) Power spectral density function is a \qquad .
a) Real and even function
b) Non negative function
c) Periodic
d) All of the mentioned
7) Power spectrum describes distribution of \qquad under frequency domain.
a) Mean
b) Variance
c) Gaussian
d) None of the mentioned
8) According to Parseval's theorem the energy spectral density curve is equal to \qquad .
a) Area under magnitude of the signal
b) Area under square of the magnitude of the signal
c) Area under square root of magnitude of the signal
d) None of the mentioned
9) Autocorrelation function of periodic signal is equal to \qquad .
a) Energy of the signal
b) Power of the signal
c) Its area in frequency domain
d) None of the mentioned
10) Autocorrelation function of white noise will have?
a) Strong peak
b) Infinite peak
c) Weak peak
d) None of the mentioned
11) Rate of convergence is defined by \qquad of algorithm.
a) Time span
b) Number of iterations
c) Accuracy
d) Complexity
12) Computational complexity is a measure of \qquad .
a) Time
b) Number of iterations
c) Number of operations
d) Accuracy
13) Which of the following is a method for implementing a FIR system?
a) Direct form
b) Cascade form
c) Lattice structure
d) All of the mentioned
14) In IIR Filter design by the Bilinear Transformation, the Bilinear Transformation is a mapping from \qquad
a) Z-plane to S-plane
b) S-plane to Z-plane
c) S-plane to J-plane
d) J-plane to Z-plane
SeatNo.

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering ADVANCED DSP

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM

Instructions: 1) All questions are compulsory.

$$
\text { 2) Figures to the right indicate full marks. }
$$

Section - I
Q. 2 Attempt any two.
a) Design an ideal low pass filter with a frequency response.
$H_{d}\left(e^{j w)}=1\right.$ for $0 \leq|w| \leq \pi / 4$
$=0$ otherwise
Find the values for $\mathrm{h}(\mathrm{n})$ for $\mathrm{N}=7$.
b) Explain digital filter banks with polyphase structures.
c) Explain FIR Wiener filter for filtering and prediction.
Q. 3 Attempt any two.
a) Draw the direct form II structure for the system.
$y(n)=-0.1 y(n-1)+0.72 y(n-2)+0.7 x(n)-0.252 x(n-2)$.
b) Explain Sampling rate conversion using interpolation and decimation.
c) Explain AR and ARMA model.

Section - II

Q. 4 Attempt any two.
a) Explain LMS algorithm used in adaptive filters.
b) Explain power spectrum estimation using parametric method.
c) Write a note on wavelet transform.
Q. 5 Attempt any two.
a) Explain MUSIC algorithm used for spectrum estimation.
b) Explain application of adaptive filter for noise cancellation.
c) Explain Minimum Mean Square (MMS) criterion in adaptive filters.

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ADV ANCED DSP

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) According to Parseval's theorem the energy spectral density curve is equal to \qquad .
a) Area under magnitude of the signal
b) Area under square of the magnitude of the signal
c) Area under square root of magnitude of the signal
d) None of the mentioned
2) Autocorrelation function of periodic signal is equal to \qquad .
a) Energy of the signal
b) Power of the signal
c) Its area in frequency domain
d) None of the mentioned
3) Autocorrelation function of white noise will have?
a) Strong peak
b) Infinite peak
c) Weak peak
d) None of the mentioned
4) Rate of convergence is defined by \qquad of algorithm.
a) Time span
b) Number of iterations
c) Accuracy
d) Complexity
5) Computational complexity is a measure of \qquad .
a) Time
b) Number of iterations
c) Number of operations
d) Accuracy
6) Which of the following is a method for implementing a FIR system?
a) Direct form
b) Cascade form
c) Lattice structure
d) All of the mentioned
7) In IIR Filter design by the Bilinear Transformation, the Bilinear Transformation is a mapping from \qquad .
a) Z-plane to S-plane
b) S-plane to Z-plane
c) S-plane to J-plane
d) J-plane to Z-plane
8) To what value should the bandwidth of $x(n)$ has to be reduced in order to avoid aliasing?
a) F/D
b) $F / 2 D$
c) $F / 4 D$
d) None of the mentioned
9) The linear filtering operation followed by down sampling on $x(n)$ is not time invariant.
a) True
b) False
10) Sampling rate conversion by the rational factor I / D is accomplished by what connection of interpolator and decimator?
a) Parallel
b) Cascade
c) Convolution
d) None of the mentioned
11) Which of the following methods are used in sampling rate conversion of a digital signal?
a) D / A convertor and A / D convertor
b) Performing entirely in digital domain
c) None of the mentioned
d) Both of the mentioned
12) Which of the following is the disadvantage of sampling rate conversion by converting the signal into analog signal?
a) Signal distortion
b) Quantization effects
c) New sampling rate can be arbitrarily selected
d) Signal distortion \& Quantization effects
13) Power spectral density function is a \qquad .
a) Real and even function
b) Non negative function
c) Periodic
d) All of the mentioned
14) Power spectrum describes distribution of \qquad under frequency domain.
a) Mean
b) Variance
c) Gaussian
d) None of the mentioned

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering ADV ANCED DSP

Day \& Date: Tuesday, 17-12-2019 Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
Section - I
Q. 2 Attempt any two.14
a) Design an ideal low pass filter with a frequency response.

$$
\begin{aligned}
H_{d}\left(e^{j w}\right) & =1 \text { for } 0 \leq|w| \leq \pi / 4 \\
& =0 \text { otherwise }
\end{aligned}
$$

Find the values for $\mathrm{h}(\mathrm{n})$ for $\mathrm{N}=7$.
b) Explain digital filter banks with polyphase structures.
c) Explain FIR Wiener filter for filtering and prediction.
Q. 3 Attempt any two. 14
a) Draw the direct form II structure for the system.

$$
y(n)=-0.1 y(n-1)+0.72 y(n-2)+0.7 x(n)-0.252 x(n-2)
$$

b) Explain Sampling rate conversion using interpolation and decimation.
c) Explain AR and ARMA model.

Section - II

Q. 4 Attempt any two.

14a) Explain LMS algorithm used in adaptive filters.
b) Explain power spectrum estimation using parametric method.
c) Write a note on wavelet transform.
Q. 5 Attempt any two.
a) Explain MUSIC algorithm used for spectrum estimation.
b) Explain application of adaptive filter for noise cancellation.
c) Explain Minimum Mean Square (MMS) criterion in adaptive filters.

Seat
 No.

Set

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ADVANCED DSP

Day \& Date: Tuesday, 17-12-2019

Time: 02:30 PM To 05:30 PM
Instructions: 1 Q. No. 1 is compulsory. It should be solved in first 30 minutes in answer Book.

2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Max. Marks: 70

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) Which of the following is the disadvantage of sampling rate conversion by converting the signal into analog signal?
a) Signal distortion
b) Quantization effects
c) New sampling rate can be arbitrarily selected
d) Signal distortion \& Quantization effects
2) Power spectral density function is a \qquad .
a) Real and even function
b) Non negative function
c) Periodic
d) All of the mentioned
3) Power spectrum describes distribution of \qquad under frequency domain.
a) Mean
b) Variance
c) Gaussian
d) None of the mentioned
4) According to Parseval's theorem the energy spectral density curve is equal to \qquad .
a) Area under magnitude of the signal
b) Area under square of the magnitude of the signal
c) Area under square root of magnitude of the signal
d) None of the mentioned
5) Autocorrelation function of periodic signal is equal to \qquad .
a) Energy of the signal
b) Power of the signal
c) Its area in frequency domain
d) None of the mentioned
6) Autocorrelation function of white noise will have?
a) Strong peak
b) Infinite peak
c) Weak peak
d) None of the mentioned
7) Rate of convergence is defined by \qquad of algorithm.
a) Time span
b) Number of iterations
c) Accuracy
d) Complexity
8) Computational complexity is a measure of \qquad .
a) Time
b) Number of iterations
c) Number of operations
d) Accuracy
9) Which of the following is a method for implementing a FIR system?
a) Direct form
b) Cascade form
c) Lattice structure
d) All of the mentioned
10) In IIR Filter design by the Bilinear Transformation, the Bilinear Transformation is a mapping from \qquad .
a) Z-plane to S-plane
b) S-plane to Z-plane
c) S-plane to J-plane
d) J-plane to Z-plane
11) To what value should the bandwidth of $x(n)$ has to be reduced in order to avoid aliasing?
a) F / D
b) $F / 2 D$
c) $F / 4 D$
d) None of the mentioned
12) The linear filtering operation followed by down sampling on $x(n)$ is not time invariant.
a) True
b) False
13) Sampling rate conversion by the rational factor I / D is accomplished by what connection of interpolator and decimator?
a) Parallel
b) Cascade
c) Convolution
d) None of the mentioned
14) Which of the following methods are used in sampling rate conversion of a digital signal?
a) D / A convertor and A / D convertor
b) Performing entirely in digital domain
c) None of the mentioned
d) Both of the mentioned

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering ADV ANCED DSP

Day \& Date: Tuesday, 17-12-2019 Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.2) Figures to the right indicate full marks.
Section - I
Q. 2 Attempt any two.14
a) Design an ideal low pass filter with a frequency response.

$$
\begin{aligned}
H_{d}\left(e^{j w}\right) & =1 \text { for } 0 \leq|w| \leq \pi / 4 \\
& =0 \text { otherwise }
\end{aligned}
$$

Find the values for $\mathrm{h}(\mathrm{n})$ for $\mathrm{N}=7$.
b) Explain digital filter banks with polyphase structures.
c) Explain FIR Wiener filter for filtering and prediction.
Q. 3 Attempt any two. 14
a) Draw the direct form II structure for the system.

$$
y(n)=-0.1 y(n-1)+0.72 y(n-2)+0.7 x(n)-0.252 x(n-2)
$$

b) Explain Sampling rate conversion using interpolation and decimation.
c) Explain AR and ARMA model.

Section - II

Q. 4 Attempt any two.

14a) Explain LMS algorithm used in adaptive filters.
b) Explain power spectrum estimation using parametric method.
c) Write a note on wavelet transform.
Q. 5 Attempt any two.
a) Explain MUSIC algorithm used for spectrum estimation.
b) Explain application of adaptive filter for noise cancellation.
c) Explain Minimum Mean Square (MMS) criterion in adaptive filters.

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering ADVANCED DSP

Day \& Date: Tuesday, 17-12-2019

Time: 02:30 PM To 05:30 PM
Instructions: 1
Instructions: 1 Q. No
Book. Q. No
Book.
2) Figures to the right indicate full marks.
MCQ/Objective Type Questions

Max. Marks: 70
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.141) Autocorrelation function of white noise will have?
a) Strong peak
b) Infinite peak
c) Weak peak
d) None of the mentioned
2) Rate of convergence is defined by \qquad of algorithm.
a) Time span
b) Number of iterations
c) Accuracy
d) Complexity
3) Computational complexity is a measure of \qquad -
a) Time
b) Number of iterations
c) Number of operations
d) Accuracy
4) Which of the following is a method for implementing a FIR system?
a) Direct form
b) Cascade form
c) Lattice structure
d) All of the mentioned
5) In IIR Filter design by the Bilinear Transformation, the Bilinear Transformation is a mapping from \qquad .
a) Z-plane to S-plane
b) S-plane to Z-plane
c) S-plane to J-plane
d) J-plane to Z-plane
6) To what value should the bandwidth of $x(n)$ has to be reduced in order to avoid aliasing?
a) F/D
b) $F / 2 D$
c) $F / 4 D$
d) None of the mentioned
7) The linear filtering operation followed by down sampling on $x(n)$ is not time invariant.
a) True
b) False
8) Sampling rate conversion by the rational factor I / D is accomplished by what connection of interpolator and decimator?
a) Parallel
b) Cascade
c) Convolution
d) None of the mentioned
9) Which of the following methods are used in sampling rate conversion of a digital signal?
a) D/A convertor and A/D convertor
b) Performing entirely in digital domain
c) None of the mentioned
d) Both of the mentioned
10) Which of the following is the disadvantage of sampling rate conversion by converting the signal into analog signal?
a) Signal distortion
b) Quantization effects
c) New sampling rate can be arbitrarily selected
d) Signal distortion \& Quantization effects
11) Power spectral density function is a \qquad .
a) Real and even function
b) Non negative function
c) Periodic
d) All of the mentioned
12) Power spectrum describes distribution of \qquad under frequency domain.
a) Mean
b) Variance
c) Gaussian
d) None of the mentioned
13) According to Parseval's theorem the energy spectral density curve is equal to \qquad .
a) Area under magnitude of the signal
b) Area under square of the magnitude of the signal
c) Area under square root of magnitude of the signal
d) None of the mentioned
14) Autocorrelation function of periodic signal is equal to \qquad .
a) Energy of the signal
b) Power of the signal
c) Its area in frequency domain
d) None of the mentioned

B.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ADVANCED DSP

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM

Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any two.
a) Design an ideal low pass filter with a frequency response.

$$
\begin{aligned}
H_{d}\left(e^{j w}\right) & =1 \text { for } 0 \leq|w| \leq \pi / 4 \\
& =0 \text { otherwise }
\end{aligned}
$$

Find the values for $\mathrm{h}(\mathrm{n})$ for $\mathrm{N}=7$.
b) Explain digital filter banks with polyphase structures.
c) Explain FIR Wiener filter for filtering and prediction.
Q. 3 Attempt any two.
a) Draw the direct form II structure for the system.

$$
y(n)=-0.1 y(n-1)+0.72 y(n-2)+0.7 x(n)-0.252 x(n-2)
$$

b) Explain Sampling rate conversion using interpolation and decimation.
c) Explain AR and ARMA model.

Section - II

Q. 4 Attempt any two.
a) Explain LMS algorithm used in adaptive filters.
b) Explain power spectrum estimation using parametric method.
c) Write a note on wavelet transform.
Q. 5 Attempt any two.
a) Explain MUSIC algorithm used for spectrum estimation.
b) Explain application of adaptive filter for noise cancellation.
c) Explain Minimum Mean Square (MMS) criterion in adaptive filters.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \&Telecommunication Engineering BROAD BAND COMMUNICATION

Day \& Date: Friday, 22-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) User data is transferred in which of the frame mode protocol.
a) LAPF control
b) LAPF core
c) Circuit switching
d) None
2) Basic access means \qquad .
a) $30 B+1 D$
b) $2 B+1 D$
c) both $a \& b$
d) None
3) The main data channel for ordinary ISDN user is \qquad .
a) B channel
b) D channel
c) H channel
d) None
4) $X .25$ is standard for \qquad .
a) Frame relay
b) Packet switching
c) both a\&b
d) None
5) ISDN relies on standard voice data rate of \qquad .
a) 192 Kbps
b) 64 Kbps
c) 1.5 Mbps
d) None
6) Which of the following is faster but unreliable protocol?
a) Frame relay
b) Packet switching
c) Circuit switching
d) None
7) Modulation-demodulation is required at every hop of a network using \qquad .
a) Bridge
b) Analog switch
c) Digital switch
d) None
8) CMI means \qquad coding.
a) Coded marked inversion
b) Cell mark integration
c) Coding mark integration
d) None
9) VPI is \qquad bits at the user network interface.
a) 4
b) 8
c) 12
d) 16
10) In the SYNC state, the \qquad is used for error detection and correction.
a) HUNT
b) Pre sync
c) HEC
d) DLCl
11) Email is an example of \qquad service.
a) Interactive
b) Distribution
c) Broadcast
d) None
12) AAL type ___ deal with constant bit rate source.
a) 1
b) 2
c) 3
d) 4
13) The initial specifications of AAL type \qquad and \qquad were very similar in terms of PDU format and functionality.
a) 1,2
b) 2, 3
c) 3, 4
d) 4,5
14) Which traffic type is used by internet access?
a) CBR
b) VBR
c) $A B R$
d) UBR

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \&Telecommunication Engineering BROAD BAND COMMUNICATION

Day \& Date: Friday, 22-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four of the following questions.
a) Explain packet switching along with datagram and virtual circuit approach.
b) With diagram explain I series recommendations.
c) Write a note on ISDN address structure.
d) With suitable diagram explain the effect of packet size on transmission time.
e) Compare basic access and primary access of ISDN channel structure.16
Q. 3 Attempt any two of the following questions.
a) Draw and Explain LAPF Control protocol formats.
b) Draw, Explain and Compare digital vs. Analog switching.
c) Explain ISDN protocols at the user network interface.

Section - II
Q. 4 Attempt any four of the following questions.
a) Explain AAL type I Protocol for ATM.
b) What are the different services provided with B-ISDN?
c) Write a short note on Header Error control (HEC) mechanism used in ATM.
d) With block diagram explain B-ISDN user network interface.
e) Explain header format of ATM Cell.
Q. 5 Attempt any two of the following questions.
a) Write a note on ATM cell processing in a switch.
b) Explain B-ISDN architecture.
c) Compare virtual channel and virtual path connections of ATM.

Seat
 No.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \&Telecommunication Engineering BROAD BAND COMMUNICATION

Day \& Date: Friday, 22-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) CMI means \qquad coding.
a) Coded marked inversion
b) Cell mark integration
c) Coding mark integration
d) None
2) VPI is \qquad bits at the user network interface.
a) 4
b) 8
c) 12
d) 16
3) In the SYNC state, the \qquad is used for error detection and correction.
a) HUNT
b) Pre sync
c) HEC
d) DLCl
4) Email is an example of \qquad service.
a) Interactive
b) Distribution
c) Broadcast
d) None
5) AAL type \qquad deal with constant bit rate source.
a) 1
b) 2
c) 3
d) 4
6) The initial specifications of AAL type \qquad and \qquad were very similar in terms of PDU format and functionality.
a) 1,2
b) 2,3
c) 3, 4
d) 4,5
7) Which traffic type is used by internet access?
a) CBR
b) VBR
c) $A B R$
d) UBR
8) User data is transferred in which of the frame mode protocol.
a) LAPF control
b) LAPF core
c) Circuit switching
d) None
9) Basic access means \qquad .
a) $30 B+1 D$
b) $2 B+1 D$
c) both $a \& b$
d) None
10) The main data channel for ordinary ISDN user is \qquad .
a) B channel
b) D channel
c) H channel
d) None
11) $X .25$ is standard for \qquad .
a) Frame relay
b) Packet switching
c) both a\&b
d) None
12) ISDN relies on standard voice data rate of \qquad .
a) 192 Kbps
b) 64 Kbps
c) 1.5 Mbps
d) None
13) Which of the following is faster but unreliable protocol?
a) Frame relay
b) Packet switching
c) Circuit switching
d) None
14) Modulation-demodulation is required at every hop of a network using \qquad .
a) Bridge
b) Analog switch
c) Digital switch
d) None

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \&Telecommunication Engineering BROAD BAND COMMUNICATION

Day \& Date: Friday, 22-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four of the following questions.
a) Explain packet switching along with datagram and virtual circuit approach.
b) With diagram explain I series recommendations.
c) Write a note on ISDN address structure.
d) With suitable diagram explain the effect of packet size on transmission time.
e) Compare basic access and primary access of ISDN channel structure.16
Q. 3 Attempt any two of the following questions.
a) Draw and Explain LAPF Control protocol formats.
b) Draw, Explain and Compare digital vs. Analog switching.
c) Explain ISDN protocols at the user network interface.

Section - II
Q. 4 Attempt any four of the following questions.
a) Explain AAL type I Protocol for ATM.
b) What are the different services provided with B-ISDN?
c) Write a short note on Header Error control (HEC) mechanism used in ATM.
d) With block diagram explain B-ISDN user network interface.
e) Explain header format of ATM Cell.
Q. 5 Attempt any two of the following questions.
a) Write a note on ATM cell processing in a switch.
b) Explain B-ISDN architecture.
c) Compare virtual channel and virtual path connections of ATM.

| Seat |
| :--- | :--- |
| No. |

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \&Telecommunication Engineering BROAD BAND COMMUNICATION

Day \& Date: Friday, 22-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes

Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) ISDN relies on standard voice data rate of \qquad .
a) 192 Kbps
b) 64 Kbps
c) 1.5 Mbps
d) None
2) Which of the following is faster but unreliable protocol?
a) Frame relay
b) Packet switching
c) Circuit switching
d) None
3) Modulation-demodulation is required at every hop of a network using \qquad .
a) Bridge
b) Analog switch
c) Digital switch
d) None
4) CMI means \qquad coding.
a) Coded marked inversion
b) Cell mark integration
c) Coding mark integration
d) None
5) VPI is \qquad bits at the user network interface.
a) 4
b) 8
c) 12
d) 16
6) In the SYNC state, the \qquad is used for error detection and correction.
a) HUNT
b) Pre sync
c) HEC
d) DLCl
7) Email is an example of \qquad service.
a) Interactive
b) Distribution
c) Broadcast
d) None
8) AAL type \qquad deal with constant bit rate source.
a) 1
b) 2
c) 3
d) 4
9) The initial specifications of AAL type \qquad and \qquad were very similar in terms of PDU format and functionality.
a) 1,2
b) 2, 3
c) 3,4
d) 4,5
10) Which traffic type is used by internet access?
a) CBR
b) VBR
c) $A B R$
d) UBR
11) User data is transferred in which of the frame mode protocol.
a) LAPF control
b) LAPF core
c) Circuit switching
d) None
12) Basic access means \qquad .
a) $30 B+1 D$
b) $2 B+1 D$
c) both $a \& b$
d) None
13) The main data channel for ordinary ISDN user is \qquad .
a) B channel
b) D channel
c) H channel
d) None
14) $X .25$ is standard for \qquad .
a) Frame relay
b) Packet switching
c) both a\&b
d) None

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \&Telecommunication Engineering BROAD BAND COMMUNICATION

Day \& Date: Friday, 22-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four of the following questions.
a) Explain packet switching along with datagram and virtual circuit approach.
b) With diagram explain I series recommendations.
c) Write a note on ISDN address structure.
d) With suitable diagram explain the effect of packet size on transmission time.
e) Compare basic access and primary access of ISDN channel structure.16
Q. 3 Attempt any two of the following questions.
a) Draw and Explain LAPF Control protocol formats.
b) Draw, Explain and Compare digital vs. Analog switching.
c) Explain ISDN protocols at the user network interface.

Section - II
Q. 4 Attempt any four of the following questions.
a) Explain AAL type I Protocol for ATM.
b) What are the different services provided with B-ISDN?
c) Write a short note on Header Error control (HEC) mechanism used in ATM.
d) With block diagram explain B-ISDN user network interface.
e) Explain header format of ATM Cell.
Q. 5 Attempt any two of the following questions.
a) Write a note on ATM cell processing in a switch.
b) Explain B-ISDN architecture.
c) Compare virtual channel and virtual path connections of ATM.

| Seat
 No. |
| :--- | :--- |

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \&Telecommunication Engineering BROAD BAND COMMUNICATION

Day \& Date: Friday, 22-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) In the SYNC state, the \qquad is used for error detection and correction.
a) HUNT
b) Pre sync
c) HEC
d) DLCl
2) Email is an example of \qquad service.
a) Interactive
b) Distribution
c) Broadcast
d) None
3) AAL type \qquad deal with constant bit rate source.
a) 1
b) 2
c) 3
d) 4
4) The initial specifications of AAL type \qquad and \qquad were very similar in terms of PDU format and functionality.
a) 1,2
b) 2, 3
c) 3,4
d) 4,5
5) Which traffic type is used by internet access?
a) CBR
b) VBR
c) $A B R$
d) UBR
6) User data is transferred in which of the frame mode protocol.
a) LAPF control
b) LAPF core
c) Circuit switching
d) None
7) Basic access means \qquad .
a) $30 B+1 D$
b) $2 B+1 D$
c) both $a \& b$
d) None
8) The main data channel for ordinary ISDN user is \qquad .
a) B channel
b) D channel
c) H channel
d) None
9) $X .25$ is standard for \qquad .
a) Frame relay
b) Packet switching
c) both $a \& b$
d) None
10) ISDN relies on standard voice data rate of \qquad .
a) 192 Kbps
b) 64 Kbps
c) 1.5 Mbps
d) None
11) Which of the following is faster but unreliable protocol?
a) Frame relay
b) Packet switching
c) Circuit switching
d) None
12) Modulation-demodulation is required at every hop of a network using \qquad .
a) Bridge
b) Analog switch
c) Digital switch
d) None
13) CMI means \qquad coding.
a) Coded marked inversion
b) Cell mark integration
c) Coding mark integration
d) None
14) VPI is \qquad bits at the user network interface.
a) 4
b) 8
c) 12
d) 16

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \&Telecommunication Engineering BROAD BAND COMMUNICATION

Day \& Date: Friday, 22-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four of the following questions.
a) Explain packet switching along with datagram and virtual circuit approach.
b) With diagram explain I series recommendations.
c) Write a note on ISDN address structure.
d) With suitable diagram explain the effect of packet size on transmission time.
e) Compare basic access and primary access of ISDN channel structure.16
Q. 3 Attempt any two of the following questions.
a) Draw and Explain LAPF Control protocol formats.
b) Draw, Explain and Compare digital vs. Analog switching.
c) Explain ISDN protocols at the user network interface.

Section - II
Q. 4 Attempt any four of the following questions.
a) Explain AAL type I Protocol for ATM.
b) What are the different services provided with B-ISDN?
c) Write a short note on Header Error control (HEC) mechanism used in ATM.
d) With block diagram explain B-ISDN user network interface.
e) Explain header format of ATM Cell.
Q. 5 Attempt any two of the following questions.
a) Write a note on ATM cell processing in a switch.
b) Explain B-ISDN architecture.
c) Compare virtual channel and virtual path connections of ATM.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering MULTIMEDIA COMMUNICATION TECHNIQUES

Day \& Date: Saturday, 23-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.

2) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The number of lines scanned per frame in the raster on the picture tube screen is \qquad .
a) 525
b) 262
c) 20
d) 10
2) In the frame for which interlaced scanning is used, alternate lines are skipped during vertical scanning because \qquad .
a) The trace is slower than the retrace
b) The vertical scanning frequency is doubled from 30 to 60 Hz
c) The horizontal scanning is slower than vertical scanning
d) The frame has a 4:3 aspect ratio
3) How many H lines are there in each field?
a) $8 \frac{1}{2}$ lines
b) $10 \frac{1}{2}$ lines
c) $262 \frac{1}{2}$ lines
d) 325 lines
4) How many H lines are there in each V retrace?
a) one
b) two
c) three
d) four
5) Which one of the following is false?
a) the I video hues are orange or cyan
b) The transmitter matrix output includes Y , I, and Q video
c) A three-gun picture tube that can serve as a matrix
d) A fully saturated color is mostly white
6) The color with the most luminance is \qquad .
a) Red
b) Yellow
c) Green
d) Blue
7) The aspect ratio HDTV is \qquad .
a) $4: 3$
b) $18: 5$
c) $14: 8$
d) $16: 9$
8) \qquad is a standard to allow telephones on the public network to talk to computers connected to the Internet.
a) SIP
b) $\mathrm{H}: 323$
c) Q. 991
d) none of the above
9) ___ is the protocol designed to handle real-time traffic on the Internet.
a) TCP
b) UDP
c) RTP
d) none of the above.
10) In a real-time video conference, data from the server is \qquad to the client sites.
a) Unicast
b) Multicast
c) Broadcast
d) None of the above
11) We can divide audio and video services into \qquad broad categories.
a) three
b) two
c) four
d) none of the above
12) ___audio/video refers to on-demand requests for compressed $\overline{\text { audio/video files. }}$
a) Streaming live
b) Streaming stored
c) Interactive
d) None of the above
13) A \qquad adds signals from different sources to create a single signal.
a) Timestamp
b) Sequence number
c) Mixer
d) None of the above
14) A \qquad changes the format of a high-bandwidth video signal to a lower quality narrow bandwidth signal.
a) Timestamp
b) Sequence number
c) Translator
d) None of the above
B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
Electronics \& Telecommunication Engineering MULTIMEDIA COMMUNICATION TECHNIQUES
Day \& Date: Saturday, 23-11-2019 Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
15) Figures to right indicates full marks.
Q. 2 Attempt any four of the following questions. 16
a) Compare Compact and Conventional Discs.b) Explain TV transmitter block diagrams.
c) Write Note on:
i) Luminance signal
ii) Chrominance signal
d) With neat block diagram explain Video IF amplifier.e) Write short note on High Definition TV.
Q. 3 Attempt any two of the following questions. 12a) Briefly explain Principle of disc recording and reproduction.b) Write short note on NTSC, SECAM and PAL colour TV systems.c) With neat block diagram explain colour burst circuit.
Q. 4 Attempt any four of the following questions. 16
a) What is need of multimedia? Discuss advantages of it.
b) Which are the elements of multimedia system?c) Write note on broadband multiservice networks.d) Explain audio compression.e) What is the need of compression? Explain any one technique of imagecompression.
Q. 5 Attempt any two of the following questions. 12
a) Enlist and explain multimedia application.
b) Write short note on multimedia networks.
c) Compare MPEG-1, MPEG-2, and MPEG-4.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering MULTIMEDIA COMMUNICATION TECHNIQUES

Day \& Date: Saturday, 23-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) \qquad is a standard to allow telephones on the public network to talk to computers connected to the Internet.
a) SIP
b) $\mathrm{H}: 323$
c) Q. 991
d) none of the above
2) is the protocol designed to handle real-time traffic on the Internet.
a) TCP
b) UDP
c) $R T P$
d) none of the above.
3) In a real-time video conference, data from the server is \qquad to the client sites.
a) Unicast
b) Multicast
c) Broadcast
d) None of the above
4) We can divide audio and video services into \qquad broad categories.
a) three
b) two
c) four
d) none of the above
5) ___ audio/video refers to on-demand requests for compressed audio/video files.
a) Streaming live
b) Streaming stored
c) Interactive
d) None of the above
6) A \qquad adds signals from different sources to create a single signal.
a) Timestamp
b) Sequence number
c) Mixer
d) None of the above
7) A \qquad changes the format of a high-bandwidth video signal to a lower quality narrow bandwidth signal.
a) Timestamp
b) Sequence number
c) Translator
d) None of the above
8) The number of lines scanned per frame in the raster on the picture tube screen is \qquad .
a) 525
b) 262
c) 20
d) 10
9) In the frame for which interlaced scanning is used, alternate lines are skipped during vertical scanning because \qquad .
a) The trace is slower than the retrace
b) The vertical scanning frequency is doubled from 30 to 60 Hz
c) The horizontal scanning is slower than vertical scanning
d) The frame has a 4:3 aspect ratio
10) How many H lines are there in each field?
a) $8 \frac{1}{2}$ lines
b) $10 \frac{1}{2}$ lines
c) $262 \frac{1}{2}$ lines
d) 325 lines
11) How many H lines are there in each V retrace?
a) one
b) two
c) three
d) four
12) Which one of the following is false?
a) the I video hues are orange or cyan
b) The transmitter matrix output includes Y, I, and Q video
c) A three-gun picture tube that can serve as a matrix
d) A fully saturated color is mostly white
13) The color with the most luminance is \qquad .
a) Red
b) Yellow
c) Green
d) Blue
14) The aspect ratio HDTV is \qquad .
a) $4: 3$
b) $18: 5$
c) $14: 8$
d) $16: 9$

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering MULTIMEDIA COMMUNICATION TECHNIQUES

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to right indicates full marks.
Q. 2 Attempt any four of the following questions.
a) Compare Compact and Conventional Discs.
b) Explain TV transmitter block diagrams.
c) Write Note on:
i) Luminance signal
ii) Chrominance signal
d) With neat block diagram explain Video IF amplifier.
e) Write short note on High Definition TV.
Q. 3 Attempt any two of the following questions.
a) Briefly explain Principle of disc recording and reproduction.
b) Write short note on NTSC, SECAM and PAL colour TV systems.
c) With neat block diagram explain colour burst circuit.
Q. 4 Attempt any four of the following questions.16
a) What is need of multimedia? Discuss advantages of it.
b) Which are the elements of multimedia system?
c) Write note on broadband multiservice networks.
d) Explain audio compression.
e) What is the need of compression? Explain any one technique of image compression.
Q. 5 Attempt any two of the following questions.
a) Enlist and explain multimedia application.
b) Write short note on multimedia networks.
c) Compare MPEG-1, MPEG-2, and MPEG-4.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering MULTIMEDIA COMMUNICATION TECHNIQUES

Day \& Date: Saturday, 23-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in
answer book.
2) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Which one of the following is false?
a) the I video hues are orange or cyan
b) The transmitter matrix output includes Y, I, and Q video
c) A three-gun picture tube that can serve as a matrix
d) A fully saturated color is mostly white
2) The color with the most luminance is \qquad .
a) Red
b) Yellow
c) Green
d) Blue
3) The aspect ratio HDTV is \qquad .
a) $4: 3$
b) $18: 5$
c) $14: 8$
d) $16: 9$
4) \qquad is a standard to allow telephones on the public network to talk to computers connected to the Internet.
a) SIP
b) $\mathrm{H}: 323$
c) Q. 991
d) none of the above
5) ___ is the protocol designed to handle real-time traffic on the Internet.
a) TCP
b) UDP
c) $R T P$
d) none of the above.
6) In a real-time video conference, data from the server is \qquad to the client sites.
a) Unicast
b) Multicast
c) Broadcast
d) None of the above
7) We can divide audio and video services into \qquad broad categories.
a) three
b) two
c) four
d) none of the above
8) ___ audio/video refers to on-demand requests for compressed $\overline{\text { audio/video files. }}$
a) Streaming live
b) Streaming stored
c) Interactive
d) None of the above
9) A \qquad adds signals from different sources to create a single signal.
a) Timestamp
b) Sequence number
c) Mixer
d) None of the above
10) A \qquad changes the format of a high-bandwidth video signal to a lower quality narrow bandwidth signal.
a) Timestamp
b) Sequence number
c) Translator
d) None of the above
11) The number of lines scanned per frame in the raster on the picture tube screen is \qquad .
a) 525
b) 262
c) 20
d) 10
12) In the frame for which interlaced scanning is used, alternate lines are skipped during vertical scanning because \qquad .
a) The trace is slower than the retrace
b) The vertical scanning frequency is doubled from 30 to 60 Hz
c) The horizontal scanning is slower than vertical scanning
d) The frame has a 4:3 aspect ratio
13) How many H lines are there in each field?
a) $8 \frac{1}{2}$ lines
b) $10 \frac{1}{2}$ lines
c) $262 \frac{1}{2}$ lines
d) 325 lines
14) How many H lines are there in each V retrace?
a) one
b) two
c) three
d) four

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering MULTIMEDIA COMMUNICATION TECHNIQUES

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to right indicates full marks.
Q. 2 Attempt any four of the following questions.
a) Compare Compact and Conventional Discs.
b) Explain TV transmitter block diagrams.
c) Write Note on:
i) Luminance signal
ii) Chrominance signal
d) With neat block diagram explain Video IF amplifier.
e) Write short note on High Definition TV.
Q. 3 Attempt any two of the following questions.
a) Briefly explain Principle of disc recording and reproduction.
b) Write short note on NTSC, SECAM and PAL colour TV systems.
c) With neat block diagram explain colour burst circuit.
Q. 4 Attempt any four of the following questions.16
a) What is need of multimedia? Discuss advantages of it.
b) Which are the elements of multimedia system?
c) Write note on broadband multiservice networks.
d) Explain audio compression.
e) What is the need of compression? Explain any one technique of image compression.
Q. 5 Attempt any two of the following questions.
a) Enlist and explain multimedia application.
b) Write short note on multimedia networks.
c) Compare MPEG-1, MPEG-2, and MPEG-4.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering MULTIMEDIA COMMUNICATION TECHNIQUES

Day \& Date: Saturday, 23-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.

2) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) In a real-time video conference, data from the server is \qquad to the client sites.
a) Unicast
b) Multicast
c) Broadcast
d) None of the above
2) We can divide audio and video services into \qquad broad categories.
a) three
b) two
c) four
d) none of the above
3) ___ audio/video refers to on-demand requests for compressed audio/video files.
a) Streaming live
b) Streaming stored
c) Interactive
d) None of the above
4) A \qquad adds signals from different sources to create a single signal.
a) Timestamp
b) Sequence number
c) Mixer
d) None of the above
5) A \qquad changes the format of a high-bandwidth video signal to a lower quality narrow bandwidth signal.
a) Timestamp
b) Sequence number
c) Translator
d) None of the above
6) The number of lines scanned per frame in the raster on the picture tube screen is \qquad .
a) 525
b) 262
c) 20
d) 10
7) In the frame for which interlaced scanning is used, alternate lines are skipped during vertical scanning because \qquad .
a) The trace is slower than the retrace
b) The vertical scanning frequency is doubled from 30 to 60 Hz
c) The horizontal scanning is slower than vertical scanning
d) The frame has a 4:3 aspect ratio
8) How many H lines are there in each field?
a) $8 \frac{1}{2}$ lines
b) $10 \frac{1}{2}$ lines
c) $262 \frac{1}{2}$ lines
d) 325 lines

SLR-FM-274

Set
9) How many H lines are there in each V retrace?
a) one
b) two
c) three
d) four
10) Which one of the following is false?
a) the I video hues are orange or cyan
b) The transmitter matrix output includes Y , I, and Q video
c) A three-gun picture tube that can serve as a matrix
d) A fully saturated color is mostly white
11) The color with the most luminance is \qquad .
a) Red
b) Yellow
c) Green
d) Blue
12) The aspect ratio HDTV is \qquad .
a) $4: 3$
b) $18: 5$
c) $14: 8$
d) $16: 9$
13) \qquad is a standard to allow telephones on the public network to talk to computers connected to the Internet.
a) SIP
b) $\mathrm{H}: 323$
c) Q. 991
d) none of the above
14) ___ is the protocol designed to handle real-time traffic on the Internet.
a) TCP
b) UDP
c) $R T P$
d) none of the above.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering MULTIMEDIA COMMUNICATION TECHNIQUES

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to right indicates full marks.
Q. 2 Attempt any four of the following questions.
a) Compare Compact and Conventional Discs.
b) Explain TV transmitter block diagrams.
c) Write Note on:
i) Luminance signal
ii) Chrominance signal
d) With neat block diagram explain Video IF amplifier.
e) Write short note on High Definition TV.
Q. 3 Attempt any two of the following questions.
a) Briefly explain Principle of disc recording and reproduction.
b) Write short note on NTSC, SECAM and PAL colour TV systems.
c) With neat block diagram explain colour burst circuit.
Q. 4 Attempt any four of the following questions.16
a) What is need of multimedia? Discuss advantages of it.
b) Which are the elements of multimedia system?
c) Write note on broadband multiservice networks.
d) Explain audio compression.
e) What is the need of compression? Explain any one technique of image compression.
Q. 5 Attempt any two of the following questions.
a) Enlist and explain multimedia application.
b) Write short note on multimedia networks.
c) Compare MPEG-1, MPEG-2, and MPEG-4.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering EMBEDDED SYSTEMS

Day \& Date: Monday,25-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.

2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Draw neat diagram whenever necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Where is the return address stored after execution of the Branch-and-Link (BL) instruction in ARM?
a) In the stack
b) In the register r14
c) In the program counter pc
d) None of these
2) NRE cost can be defined by \qquad .
a) The one time monetary cost of designing the system
b) Life time cost of system
c) Depends upon embedded systems
d) None of the above
3) ARM uses the thumb \qquad bit instruction set to improve code density.
a) 32
b) 8
c) 64
d) 16
4) The \qquad directive allows the programmer to specify the memory locations where programs, subroutines or the data will resides.
a) ALIGN
b) AREA
c) ENTRY
d) END
5) $\quad \ln$ LPC 2148 \qquad pin select register is used to configure port pins P0.0 to P0.1.15.
a) PINSEL1
b) PINSELO
c) IODIR2
d) IOSETO
6) Which of the following instructions are called Program Status Register transfer instructions?
a) LDR, STR
b) LDM, STM
c) MCR, MRC
d) MSR, MRS
7) A privileged mode allows \qquad .
a) Full read access to cpsr
b) Full read write access to cpsr
c) Full write access to cpsr
d) Full read write access to spsr
8) Switching the CPU to another process requires to save state of the old process and loading new process state is called \qquad .
a) Process blocking
b) Context switch
c) Time sharing
d) None of above
9) Semaphore are used to \qquad .
a) Signal the occurance of event
b) Show interfacing between input and output devices
c) Provide memory management
d) None of the above
10) Which is the core of the OS?
a) shell
b) Kernel
c) Commands
d) Scripts
11) Race around condition can be avoided by using \qquad .
a) Semaphore
b) Mutex
c) Socket
d) both a and b
12) Information about a task is maintained in a \qquad .
a) Stack
b) Translation look aside buffer
c) Task control block
d) Task
13) Which type of following OS the response time is critical?
a) Network operating System
b) Real Time operating System
c) Batch OS
d) Unix operating system
14) Which one of the following is an important objective of a real-time operating system?
a) Maximization of throughput
b) Guaranteeing fairness in task executions
c) Minimization of the response time of tasks
d) Production of the result of a task within a certain stipulated time period

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering EMBEDDED SYSTEMS

Day \& Date: Monday,25-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Draw neat diagram whenever necessary.

Section - I

Q. 2 Attempt any four.

a) What are design metrics? Explain any one in detail. How to optimize design metrics?
b) How many states of ARM according to instruction set? Differentiate between them and Explain four instructions of any one state.
c) Explain on chip DAC of LPC2148 using associated register.
d) Why CAN bus protocol is widely used in industrial automation? With the help of diagram explain CAN bus protocol.
e) Explain the role of AMBA bus in LPC2148.
Q. 3 Attempt any two.
a) Draw and explain ARM core data flow model of ARM core.
b) Explain the concept of memory management in ARM core.
c) Explain SPI and SCl communication protocols.

Section - II

Q. 4 Attempt any four.
a) List features of UCOSII RTOs.
b) Write an embedded C code to demonstrate operation of on-chip DAC of LPC2148.
c) What are the services provided by desktop or traditional OS?
d) Write the algorithm to interface to 4X4 matrix keypad to LPC2148 along with necessary registers.
e) Explain digital camera as embedded system. How to measure it's performance?
Q. 5 Attempt any two.
a) With suitable example explain the role of semaphore in Operating system.
b) Draw and explain interfacing of 16X2 LCD with LPC2148 for following specifications:

1) Use P0.5 as RS and En respectively (Control bus).
2) Use P1.16 to P1.23 as data bus (D0-D7).

Write an embedded C program to display "Welcome".
c) Explain memory management in RTOs.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering EMBEDDED SYSTEMS

Day \& Date: Monday,25-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Draw neat diagram whenever necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Switching the CPU to another process requires to save state of the old process and loading new process state is called \qquad .
a) Process blocking
b) Context switch
c) Time sharing
d) None of above
2) Semaphore are used to \qquad .
a) Signal the occurance of event
b) Show interfacing between input and output devices
c) Provide memory management
d) None of the above
3) Which is the core of the OS?
a) shell
b) Kernel
c) Commands
d) Scripts
4) Race around condition can be avoided by using \qquad .
a) Semaphore
b) Mutex
c) Socket
d) both a and b
5) Information about a task is maintained in a \qquad .
a) Stack
b) Translation look aside buffer
c) Task control block
d) Task
6) Which type of following OS the response time is critical?
a) Network operating System
b) Real Time operating System
c) Batch OS
d) Unix operating system
7) Which one of the following is an important objective of a real-time operating system?
a) Maximization of throughput
b) Guaranteeing fairness in task executions
c) Minimization of the response time of tasks
d) Production of the result of a task within a certain stipulated time period

SLR-FM-275

Set
8) Where is the return address stored after execution of the Branch-and-Link (BL) instruction in ARM?
a) In the stack
b) In the register r14
c) In the program counter pc
d) None of these
9) NRE cost can be defined by \qquad .
a) The one time monetary cost of designing the system
b) Life time cost of system
c) Depends upon embedded systems
d) None of the above
10) ARM uses the thumb \qquad bit instruction set to improve code density.
a) 32
b) 8
c) 64
d) 16
11) The \qquad directive allows the programmer to specify the memory locations where programs, subroutines or the data will resides.
a) ALIGN
b) AREA
c) ENTRY
d) END
12) In LPC 2148 \qquad pin select register is used to configure port pins P0.0 to P0.1.15.
a) PINSEL1
b) PINSELO
c) IODIR2
d) IOSETO
13) Which of the following instructions are called Program Status Register transfer instructions?
a) LDR, STR
b) LDM, STM
c) MCR, MRC
d) MSR, MRS
14) A privileged mode allows \qquad .
a) Full read access to cpsr
b) Full read write access to cpsr
c) Full write access to cpsr
d) Full read write access to spsr

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering EMBEDDED SYSTEMS

Day \& Date: Monday,25-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Draw neat diagram whenever necessary.

Section - I

Q. 2 Attempt any four.

a) What are design metrics? Explain any one in detail. How to optimize design metrics?
b) How many states of ARM according to instruction set? Differentiate between them and Explain four instructions of any one state.
c) Explain on chip DAC of LPC2148 using associated register.
d) Why CAN bus protocol is widely used in industrial automation? With the help of diagram explain CAN bus protocol.
e) Explain the role of AMBA bus in LPC2148.
Q. 3 Attempt any two.
a) Draw and explain ARM core data flow model of ARM core.
b) Explain the concept of memory management in ARM core.
c) Explain SPI and SCl communication protocols.

Section - II

Q. 4 Attempt any four.
a) List features of UCOSII RTOs.
b) Write an embedded C code to demonstrate operation of on-chip DAC of LPC2148.
c) What are the services provided by desktop or traditional OS?
d) Write the algorithm to interface to 4X4 matrix keypad to LPC2148 along with necessary registers.
e) Explain digital camera as embedded system. How to measure it's performance?
Q. 5 Attempt any two.
a) With suitable example explain the role of semaphore in Operating system.
b) Draw and explain interfacing of 16X2 LCD with LPC2148 for following specifications:

1) Use P0.5 as RS and En respectively (Control bus).
2) Use P1.16 to P1.23 as data bus (D0-D7).

Write an embedded C program to display "Welcome".
c) Explain memory management in RTOs.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering EMBEDDED SYSTEMS

Day \& Date: Monday,25-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.

2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Draw neat diagram whenever necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) $\quad \ln$ LPC 2148 \qquad pin select register is used to configure port pins P0.0 to P0.1.15.
a) PINSEL1
b) PINSELO
c) IODIR2
d) IOSETO
2) Which of the following instructions are called Program Status Register transfer instructions?
a) LDR, STR
b) LDM, STM
c) MCR, MRC
d) MSR, MRS
3) A privileged mode allows \qquad .
a) Full read access to cpsr
b) Full read write access to cpsr
c) Full write access to cpsr
d) Full read write access to spsr
4) Switching the CPU to another process requires to save state of the old process and loading new process state is called \qquad .
a) Process blocking
b) Context switch
c) Time sharing
d) None of above
5) Semaphore are used to \qquad .
a) Signal the occurance of event
b) Show interfacing between input and output devices
c) Provide memory management
d) None of the above
6) Which is the core of the OS?
a) shell
b) Kernel
c) Commands
d) Scripts
7) Race around condition can be avoided by using \qquad .
a) Semaphore
b) Mutex
c) Socket
d) both a and b
8) Information about a task is maintained in a \qquad .
a) Stack
b) Translation look aside buffer
c) Task control block
d) Task

SLR-FM-275

Set
9) Which type of following OS the response time is critical?
a) Network operating System
b) Real Time operating System
c) Batch OS
d) Unix operating system
10) Which one of the following is an important objective of a real-time operating system?
a) Maximization of throughput
b) Guaranteeing fairness in task executions
c) Minimization of the response time of tasks
d) Production of the result of a task within a certain stipulated time period
11) Where is the return address stored after execution of the Branch-and-Link (BL) instruction in ARM?
a) In the stack
b) In the register r14
c) In the program counter pc
d) None of these
12) NRE cost can be defined by \qquad .
a) The one time monetary cost of designing the system
b) Life time cost of system
c) Depends upon embedded systems
d) None of the above
13) ARM uses the thumb \qquad bit instruction set to improve code density.
a) 32
b) 8
c) 64
d) 16
14) The \qquad directive allows the programmer to specify the memory locations where programs, subroutines or the data will resides.
a) ALIGN
b) AREA
c) ENTRY
d) END

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering EMBEDDED SYSTEMS

Day \& Date: Monday,25-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Draw neat diagram whenever necessary.

Section - I

Q. 2 Attempt any four.

a) What are design metrics? Explain any one in detail. How to optimize design metrics?
b) How many states of ARM according to instruction set? Differentiate between them and Explain four instructions of any one state.
c) Explain on chip DAC of LPC2148 using associated register.
d) Why CAN bus protocol is widely used in industrial automation? With the help of diagram explain CAN bus protocol.
e) Explain the role of AMBA bus in LPC2148.
Q. 3 Attempt any two.
a) Draw and explain ARM core data flow model of ARM core.
b) Explain the concept of memory management in ARM core.
c) Explain SPI and SCl communication protocols.

Section - II

Q. 4 Attempt any four.
a) List features of UCOSII RTOs.
b) Write an embedded C code to demonstrate operation of on-chip DAC of LPC2148.
c) What are the services provided by desktop or traditional OS?
d) Write the algorithm to interface to 4X4 matrix keypad to LPC2148 along with necessary registers.
e) Explain digital camera as embedded system. How to measure it's performance?
Q. 5 Attempt any two.
a) With suitable example explain the role of semaphore in Operating system.
b) Draw and explain interfacing of 16X2 LCD with LPC2148 for following specifications:

1) Use P0.5 as RS and En respectively (Control bus).
2) Use P1.16 to P1.23 as data bus (D0-D7).

Write an embedded C program to display "Welcome".
c) Explain memory management in RTOs.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering EMBEDDED SYSTEMS

Day \& Date: Monday,25-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.

2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Draw neat diagram whenever necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Which is the core of the OS?
a) shell
b) Kernel
c) Commands
d) Scripts
2) Race around condition can be avoided by using \qquad .
a) Semaphore
b) Mutex
c) Socket
d) both a and b
3) Information about a task is maintained in a \qquad .
a) Stack
b) Translation look aside buffer
c) Task control block
d) Task
4) Which type of following OS the response time is critical?
a) Network operating System
b) Real Time operating System
c) Batch OS
d) Unix operating system
5) Which one of the following is an important objective of a real-time operating system?
a) Maximization of throughput
b) Guaranteeing fairness in task executions
c) Minimization of the response time of tasks
d) Production of the result of a task within a certain stipulated time period
6) Where is the return address stored after execution of the Branch-and-Link (BL) instruction in ARM?
a) In the stack
b) In the register r14
c) In the program counter pc
d) None of these
7) NRE cost can be defined by \qquad .
a) The one time monetary cost of designing the system
b) Life time cost of system
c) Depends upon embedded systems
d) None of the above
8) ARM uses the thumb \qquad bit instruction set to improve code density.
a) 32
b) 8
c) 64
d) 16
9) The \qquad directive allows the programmer to specify the memory locations where programs, subroutines or the data will resides.
a) ALIGN
b) AREA
c) ENTRY
d) END
10) In LPC 2148 \qquad pin select register is used to configure port pins P0.0 to P0.1.15.
a) PINSEL1
b) PINSELO
c) IODIR2
d) IOSETO
11) Which of the following instructions are called Program Status Register transfer instructions?
a) LDR, STR
b) LDM, STM
c) MCR, MRC
d) MSR, MRS
12) A privileged mode allows \qquad .
a) Full read access to cpsr
b) Full read write access to cpsr
c) Full write access to cpsr
d) Full read write access to spsr
13) Switching the CPU to another process requires to save state of the old process and loading new process state is called \qquad .
a) Process blocking
b) Context switch
c) Time sharing
d) None of above
14) Semaphore are used to \qquad -
a) Signal the occurance of event
b) Show interfacing between input and output devices
c) Provide memory management
d) None of the above

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering EMBEDDED SYSTEMS

Day \& Date: Monday,25-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Draw neat diagram whenever necessary.

Section - I

Q. 2 Attempt any four.
a) What are design metrics? Explain any one in detail. How to optimize design metrics?
b) How many states of ARM according to instruction set? Differentiate between them and Explain four instructions of any one state.
c) Explain on chip DAC of LPC2148 using associated register.
d) Why CAN bus protocol is widely used in industrial automation? With the help of diagram explain CAN bus protocol.
e) Explain the role of AMBA bus in LPC2148.
Q. 3 Attempt any two.
a) Draw and explain ARM core data flow model of ARM core.
b) Explain the concept of memory management in ARM core.
c) Explain SPI and SCl communication protocols.

Section - II

Q. 4 Attempt any four.
a) List features of UCOSII RTOs.
b) Write an embedded C code to demonstrate operation of on-chip DAC of LPC2148.
c) What are the services provided by desktop or traditional OS?
d) Write the algorithm to interface to 4X4 matrix keypad to LPC2148 along with necessary registers.
e) Explain digital camera as embedded system. How to measure it's performance?
Q. 5 Attempt any two.
a) With suitable example explain the role of semaphore in Operating system.
b) Draw and explain interfacing of 16X2 LCD with LPC2148 for following specifications:

1) Use P0.5 as RS and En respectively (Control bus).
2) Use P1.16 to P1.23 as data bus (D0-D7).

Write an embedded C program to display "Welcome".
c) Explain memory management in RTOs.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering WIRELESS SENSOR NETWORK

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14
1)
routes user queries or commands to appropriate nodes in sensor.
a) bridge
b) gateway
c) Node
d) None of these
2) is a basic unit with on board sensors, processor, memory, wireless modem and power supply.
a) sensor
b) sensor node
c) routing
d) none of the above
3) based protocol do not divide channel into sub-channels or pre-allocate the channel for each node use.
a) Contention
b) Schedule
c) RFID
d) None of the above
4) LEACH is example of \qquad .
a) Contention
b) Schedule
c) RFID
d) None of the above
5) Main role of time synchronization in distributed networks is to \qquad .
a) Ensure common time scale for all network nodes
b) Provide right temporal co-ordination among all nodes
c) both a) \& b)
d) None of above
6) In wireless adhoc network \qquad .
a) access point is not required
b) access point is required
c) nodes are not required
d) none of the above
7) Clustering in WSN contribute to \qquad .
a) System scalability
b) Life time
c) Energy efficiency
d) All of above
8) In WSNs, \qquad mobility is viewed.
a) Node
b) Sink
c) Event
d) All of the above
9) RFID stands for \qquad .
a) Radio Frequency Identification
b) Radio first identification
c) both a)\&b)
d) None of above
10) \qquad is the main concern in designing time synchronization protocols.
a) Energy efficiency
b) Power consumption
c) Both (a) and (b)
d) None of the above
11) Performance of time synchronization protocol is closely related with \qquad .
a) network topology
b) power
c) frames
d) none of the above
12) _MAC protocol is widely used in modern cellular communication systems.
a) TDMA
b) FDMA
c) CDMA
d) All of the above
13) \qquad is the interference caused when radio waves of one device distorts the waves of another.
a) EMI
b) EMC
c) Both (a) and (b)
d) None of the above
14) ____ is the application of RFID.
a) Identification and data capture
b) Health-care
c) Massive incidents
d) All of the above

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering WIRELESS SENSOR NETWORK

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.
a) What are the applications of WSN and Mobile adhoc networks?
b) Explain the various hardware components of Single Node architecture.
c) Explain Figures of Merit.
d) Explain the optimization goals of network architecture.
e) Write a short note on clustering.
Q. 3 Attempt any two.
a) Explain in brief about energy Consumption of Sensor nodes.
b) What are the major issues and challenges that need to be considered for designing adhoc wireless system?
c) Explain the various Enabling Technologies for Wireless Sensor Networks. Mention the various applications of WSN.

Section - II

Q. 4 Attempt any four.
a) Explain the concept of low duty cycle in MAC protocol
b) Explain any one schedule based protocol.
c) Write a note on Antenna directivity and gain.
d) Explain the use of RFID in health care.
e) What are the different aspects of EMC?
Q. 5 Attempt any two.
a) Explain in brief any two contention based protocols.
b) Explain EMC Requirements for Electronic Systems.
c) Explain the application of RFID in identification and data capture.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering WIRELESS SENSOR NETWORK

Day \& Date: Tuesday, 26-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) In WSNs, \qquad mobility is viewed.
a) Node
b) Sink
c) Event
d) All of the above
2) RFID stands for \qquad .
a) Radio Frequency Identification
b) Radio first identification
c) both a)\&b)
d) None of above
3)

a) Energy efficiency
b) Power consumption
c) Both
(a) and (b)
d) None of the above
4) Performance of time synchronization protocol is closely related with \qquad .
a) network topology
b) power
c) frames
d) none of the above
5) _ MAC protocol is widely used in modern cellular communication systems.
a) TDMA
b) FDMA
c) CDMA
d) All of the above
6) ___ is the interference caused when radio waves of one device distorts the waves of another.
a) EMI
b) EMC
c) Both (a) and (b)
d) None of the above
7)
\qquad is the application of RFID.
a) Identification and data capture
b) Health-care
c) Massive incidents
d) All of the above
8)
a) bridge
b) gateway
c) Node
d) None of these
9) \qquad is a basic unit with on board sensors, processor, memory, wireless modem and power supply.
a) sensor
b) sensor node
c) routing
d) none of the above
10) ___ based protocol do not divide channel into sub-channels or pre-allocate the channel for each node use.
a) Contention
b) Schedule
c) RFID
d) None of the above
11) LEACH is example of \qquad .
a) Contention
b) Schedule
c) RFID
d) None of the above
12) Main role of time synchronization in distributed networks is to \qquad .
a) Ensure common time scale for all network nodes
b) Provide right temporal co-ordination among all nodes
c) both a) \& b)
d) None of above
13) In wireless adhoc network \qquad .
a) access point is not required
b) access point is required
c) nodes are not required
d) none of the above
14) Clustering in WSN contribute to \qquad .
a) System scalability
b) Life time
c) Energy efficiency
d) All of above

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering WIRELESS SENSOR NETWORK

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.
a) What are the applications of WSN and Mobile adhoc networks?
b) Explain the various hardware components of Single Node architecture.
c) Explain Figures of Merit.
d) Explain the optimization goals of network architecture.
e) Write a short note on clustering.
Q. 3 Attempt any two.
a) Explain in brief about energy Consumption of Sensor nodes.
b) What are the major issues and challenges that need to be considered for designing adhoc wireless system?
c) Explain the various Enabling Technologies for Wireless Sensor Networks. Mention the various applications of WSN.

Section - II

Q. 4 Attempt any four.
a) Explain the concept of low duty cycle in MAC protocol
b) Explain any one schedule based protocol.
c) Write a note on Antenna directivity and gain.
d) Explain the use of RFID in health care.
e) What are the different aspects of EMC?
Q. 5 Attempt any two.
a) Explain in brief any two contention based protocols.
b) Explain EMC Requirements for Electronic Systems.
c) Explain the application of RFID in identification and data capture.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering WIRELESS SENSOR NETWORK

Day \& Date: Tuesday, 26-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Main role of time synchronization in distributed networks is to \qquad .
a) Ensure common time scale for all network nodes
b) Provide right temporal co-ordination among all nodes
c) both a) \& b)
d) None of above
2) In wireless adhoc network \qquad .
a) access point is not required
b) access point is required
c) nodes are not required
d) none of the above
3) Clustering in WSN contribute to \qquad .
a) System scalability
b) Life time
c) Energy efficiency
d) All of above
4) In WSNs, \qquad mobility is viewed.
a) Node
b) Sink
c) Event
d) All of the above
5) RFID stands for \qquad .
a) Radio Frequency Identification
b) Radio first identification
c) both a)\&b)
d) None of above
6)

a) Energy efficiency
b) Power consumption
c) Both (a) and (b)
d) None of the above
7) Performance of time synchronization protocol is closely related with \qquad .
a) network topology
b) power
c) frames
d) none of the above
8) _ MAC protocol is widely used in modern cellular communication systems.
a) TDMA
b) FDMA
c) CDMA
d) All of the above
9) \qquad is the interference caused when radio waves of one device distorts the waves of another.
a) EMI
b) EMC
c) Both (a) and (b)
d) None of the above

SLR-FM-276
 Set

10) ___ is the application of RFID.
a) Identification and data capture
b) Health-care
c) Massive incidents
d) All of the above
11) \qquad routes user queries or commands to appropriate nodes in sensor.
a) bridge
b) gateway
c) Node
d) None of these
12) \qquad is a basic unit with on board sensors, processor, memory, wireless modem and power supply.
a) sensor
b) sensor node
c) routing
d) none of the above
13) \qquad based protocol do not divide channel into sub-channels or pre-allocate the channel for each node use.
a) Contention
b) Schedule
c) RFID
d) None of the above
14) LEACH is example of \qquad .
a) Contention
b) Schedule
c) RFID
d) None of the above

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering WIRELESS SENSOR NETWORK

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.
a) What are the applications of WSN and Mobile adhoc networks?
b) Explain the various hardware components of Single Node architecture.
c) Explain Figures of Merit.
d) Explain the optimization goals of network architecture.
e) Write a short note on clustering.
Q. 3 Attempt any two.
a) Explain in brief about energy Consumption of Sensor nodes.
b) What are the major issues and challenges that need to be considered for designing adhoc wireless system?
c) Explain the various Enabling Technologies for Wireless Sensor Networks. Mention the various applications of WSN.

Section - II

Q. 4 Attempt any four.
a) Explain the concept of low duty cycle in MAC protocol
b) Explain any one schedule based protocol.
c) Write a note on Antenna directivity and gain.
d) Explain the use of RFID in health care.
e) What are the different aspects of EMC?
Q. 5 Attempt any two.
a) Explain in brief any two contention based protocols.
b) Explain EMC Requirements for Electronic Systems.
c) Explain the application of RFID in identification and data capture.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering WIRELESS SENSOR NETWORK

Day \& Date: Tuesday, 26-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) is the main concern in designing time synchronization protocols.
a) Energy efficiency
b) Power consumption
c) Both (a) and (b)
d) None of the above
2) Performance of time synchronization protocol is closely related with \qquad .
a) network topology
b) power
c) frames
d) none of the above
3) \qquad MAC protocol is widely used in modern cellular communication systems.
a) TDMA
b) FDMA
c) CDMA
d) All of the above
4) \qquad is the interference caused when radio waves of one device distorts the waves of another.
a) EMI
b) EMC
c) Both (a) and (b)
d) None of the above
5) \qquad is the application of RFID.
a) Identification and data capture
b) Health-care
c) Massive incidents
d) All of the above
6) \qquad routes user queries or commands to appropriate nodes in sensor.
a) bridge
b) gateway
c) Node
d) None of these
7) \qquad is a basic unit with on board sensors, processor, memory, wireless modem and power supply.
a) sensor
b) sensor node
c) routing
d) none of the above
8) \qquad based protocol do not divide channel into sub-channels or pre-allocate the channel for each node use.
a) Contention
b) Schedule
c) RFID
d) None of the above
9) LEACH is example of \qquad .
a) Contention
b) Schedule
c) RFID
d) None of the above
10) Main role of time synchronization in distributed networks is to \qquad .
a) Ensure common time scale for all network nodes
b) Provide right temporal co-ordination among all nodes
c) both a) \& b)
d) None of above
11) In wireless adhoc network \qquad .
a) access point is not required
b) access point is required
c) nodes are not required
d) none of the above
12) Clustering in WSN contribute to \qquad
a) System scalability
b) Life time
c) Energy efficiency
d) All of above
13) In WSNs, \qquad mobility is viewed.
a) Node
b) Sink
c) Event
d) All of the above
14) RFID stands for \qquad .
a) Radio Frequency Identification
b) Radio first identification
c) both a)\&b)
d) None of above

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering WIRELESS SENSOR NETWORK

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.
a) What are the applications of WSN and Mobile adhoc networks?
b) Explain the various hardware components of Single Node architecture.
c) Explain Figures of Merit.
d) Explain the optimization goals of network architecture.
e) Write a short note on clustering.
Q. 3 Attempt any two.
a) Explain in brief about energy Consumption of Sensor nodes.
b) What are the major issues and challenges that need to be considered for designing adhoc wireless system?
c) Explain the various Enabling Technologies for Wireless Sensor Networks. Mention the various applications of WSN.

Section - II

Q. 4 Attempt any four.
a) Explain the concept of low duty cycle in MAC protocol
b) Explain any one schedule based protocol.
c) Write a note on Antenna directivity and gain.
d) Explain the use of RFID in health care.
e) What are the different aspects of EMC?
Q. 5 Attempt any two.
a) Explain in brief any two contention based protocols.
b) Explain EMC Requirements for Electronic Systems.
c) Explain the application of RFID in identification and data capture.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PATTEERN RECOGNITION

Day \& Date: Tuesday,26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) In \qquad learning number of classes are known.
a) Unsupervised
b) Supervised
c) Both of these
d) None of these
2) The density estimation in which the volume V_{n} is shrinked according to function $V_{n}=\frac{1}{\sqrt{n}}$ is called
a) Kn-nearest neighbor
b) Bayesian estimation
c) Parzen window
d) All of the above
3) Determining sequence of hidden states for given HMM and visible states is called
a) Evaluation problem
b) Decoding problem
c) Learning problem
d) All of these
4) Production rules represent a wide variety of knowledge representations that are based on \qquad
a) Condition only
b) Action only
c) condition-action pairs
d) None of these
5) Triangle Inequality property of distance metric is given as
a) $D(a, b)+D(b, c) \geq D(a, c)$
b) $\quad D(a, b) \geq 0$
c) $D(a, b)=D(b, a)$
d) None of these
6) In Statistical pattern recognition, the block 'Construction of formal description' is based on
a) The experience of the designer
b) Intuition of the designer
c) Both a and b
d) Neither a and b
7) A random variable that takes on an infinite number of values is known as a
a) Independent random variable
b) Discrete random variable
c) Continuous random variable
d) None of the above
8) Our productions of any sequence is described by the transition probabilities \qquad
a) $P\left(\omega_{j}(t+1) \mid \omega_{i}(t)\right)=b_{i j}$
b) $P\left(\omega_{j}(t+1) \mid \omega_{i}(t)\right)=b_{j k}$
c) $P\left(\omega_{j}(t+1) \mid \omega_{i}(t)\right)=a_{i j}$
d) $P\left(v_{k}(t) \mid \omega_{j}(t)\right)=b_{j k}$
9) Parzen-window classifier depends upon the choice of
a) No. of sample points
b) Window function
c) Both a and b
d) None of the above
10) Wards method is also named as the \qquad Method.
a) Maximum of squared variance
b) Minimum of squared variance
c) Maximum Variance
d) Minimum Variance
11) Simulated annealing consists of downhill iteration steps combined with controlled uphill steps that make it possible to escape from \qquad
a) local minima
b) global minima
c) local maxima
d) global maxima
12) Classifier that places a pattern in one of only two categories is called
a) Chotomizer
b) Trichomizer
c) Economizer
d) Dichotomizer
13) Syntactic Recognition Algorithm consists of following steps \qquad
a) Learning, Recognition, Classification
b) Learning, Construct a description grammar, Recognition, Classification
c) Construct a description grammar, Recognition, Classification
d) Learning, Construct a description grammar, Classification
14) The loss function $\lambda\left(\alpha_{i} \mid w_{j}\right)$ describes the loss incurred for taking action α_{i} when the state of the nature is w_{j} has value equal to \qquad .
a) 0 when $i=j$
b) 2 when $i=j$
c) 1 when $i=j$
d) 0 when $i \neq j$

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering PATTEERN RECOGNITION (Elective - II)

Day \& Date: Tuesday,26-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any three

a) Suppose that the Random variables X \& Y have the joint density function defined by $f(x, y)=c(2 x+y) \quad 2<x<6 \& 0<y<5$

$$
=0 \quad \text { otherwise }
$$

Find : 1) constant c, 2) $P(X>3, Y>2)$
b) Explain Maximum Likelihood Estimation. Note on the Gaussian Case where μ is unknown and covariance matrix (Σ) is known.
c) Write a short note on supervised learning.
d) Explain accuracy and computational complexity of classifier.
e) Draw the histogram of Lightness feature for the fish categorization and explain in brief.

Q. 3 Attempt any two.

a) Explain the equation of conditional risk and overall risk. Comment on the condition at which overall risk is called as Bayes Risk.
b) The joint probability function of two random variable X and Y is given by

$$
f(x, y)=c\left(x^{2}+2 y\right), \quad x=0,1,2, y=1,2,3,4
$$

$$
=0 \quad \text {, otherwise }
$$

Find:

1) the value of c
2) marginal probability functions of $X \& Y$
3) $f(y / 1)$,
4) $f(X / 2)$
c) Explain Hidden Markov models (HMM) and give HMM forward algorithm.

Section - II

Q. 4 Attempt any three.

a) Write a note on Probabilistic Neural Network.
b) Write a note on Agglomerative Clustering.
c) What is K - nearest neighbor rule?
d) Explain Forgy's clustering.
e) Explain feed - forward network

Q. 5 Attempt any two.

a) Explain fuzzy Optimization technique in recognition.
b) Write a note on Neural Networks.
c) Starting from fundamentals derive an expression for density estimation

$$
P_{n}(x)=\frac{K_{n} / n}{V_{n}}
$$

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PATTEERN RECOGNITION

Day \& Date: Tuesday,26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer
book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) Our productions of any sequence is described by the transition probabilities \qquad
a) $P\left(\omega_{j}(t+1) \mid \omega_{i}(t)\right)=b_{i j}$
b) $P\left(\omega_{j}(t+1) \mid \omega_{i}(t)\right)=b_{j k}$
c) $P\left(\omega_{j}(t+1) \mid \omega_{i}(t)\right)=a_{i j}$
d) $P\left(v_{k}(t) \mid \omega_{j}(t)\right)=b_{j k}$
2) Parzen-window classifier depends upon the choice of
a) No. of sample points
b) Window function
c) Both a and b
d) None of the above
3) Wards method is also named as the \qquad Method.
a) Maximum of squared variance
b) Minimum of squared variance
c) Maximum Variance
d) Minimum Variance
4) Simulated annealing consists of downhill iteration steps combined with controlled uphill steps that make it possible to escape from \qquad
a) local minima
b) global minima
c) local maxima
d) global maxima
5) Classifier that places a pattern in one of only two categories is called
a) Chotomizer
b) Trichomizer
c) Economizer
d) Dichotomizer
6) Syntactic Recognition Algorithm consists of following steps \qquad
a) Learning, Recognition, Classification
b) Learning, Construct a description grammar, Recognition, Classification
c) Construct a description grammar, Recognition, Classification
d) Learning, Construct a description grammar, Classification
7) The loss function $\lambda\left(\alpha_{i} \mid w_{j}\right)$ describes the loss incurred for taking action α_{i} when the state of the nature is w_{j} has value equal to \qquad -
a) 0 when $i=j$
b) 2 when $i=j$
c) 1 when $i=j$
d) 0 when $i \neq j$
8) In \qquad learning number of classes are known.
a) Unsupervised
b) Supervised
c) Both of these
d) None of these
9) The density estimation in which the volume V_{n} is shrinked according to function $V_{n}=\frac{1}{\sqrt{n}}$ is called
a) Kn-nearest neighbor
b) Bayesian estimation
c) Parzen window
d) All of the above
10) Determining sequence of hidden states for given HMM and visible states is called
a) Evaluation problem
b) Decoding problem
c) Learning problem
d) All of these
11) Production rules represent a wide variety of knowledge representations that are based on
a) Condition only
b) Action only
c) condition-action pairs
d) None of these
12) Triangle Inequality property of distance metric is given as
a) $D(a, b)+D(b, c) \geq D(a, c)$
b) $\quad D(a, b) \geq 0$
c) $\mathrm{D}(\mathrm{a}, \mathrm{b})=\mathrm{D}(\mathrm{b}, \mathrm{a})$
d) None of these
13) In Statistical pattern recognition, the block 'Construction of formal description' is based on
a) The experience of the designer
b) Intuition of the designer
c) Both a and b
d) Neither a and b
14) A random variable that takes on an infinite number of values is known as a
a) Independent random variable
b) Discrete random variable
c) Continuous random variable
d) None of the above

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering PATTEERN RECOGNITION (Elective - II)

Day \& Date: Tuesday,26-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any three

a) Suppose that the Random variables X \& Y have the joint density function defined by $f(x, y)=c(2 x+y) \quad 2<x<6 \& 0<y<5$

$$
=0 \quad \text { otherwise }
$$

Find : 1) constant c, 2) $P(X>3, Y>2)$
b) Explain Maximum Likelihood Estimation. Note on the Gaussian Case where μ is unknown and covariance matrix (Σ) is known.
c) Write a short note on supervised learning.
d) Explain accuracy and computational complexity of classifier.
e) Draw the histogram of Lightness feature for the fish categorization and explain in brief.

Q. 3 Attempt any two.

a) Explain the equation of conditional risk and overall risk. Comment on the condition at which overall risk is called as Bayes Risk.
b) The joint probability function of two random variable X and Y is given by

$$
f(x, y)=c\left(x^{2}+2 y\right), \quad x=0,1,2, y=1,2,3,4
$$

$$
=0 \quad \text {, otherwise }
$$

Find:

1) the value of c
2) marginal probability functions of $X \& Y$
3) $f(y / 1)$,
4) $f(X / 2)$
c) Explain Hidden Markov models (HMM) and give HMM forward algorithm.

Section - II

Q. 4 Attempt any three.

a) Write a note on Probabilistic Neural Network.
b) Write a note on Agglomerative Clustering.
c) What is K - nearest neighbor rule?
d) Explain Forgy's clustering.
e) Explain feed - forward network

Q. 5 Attempt any two.

a) Explain fuzzy Optimization technique in recognition.
b) Write a note on Neural Networks.
c) Starting from fundamentals derive an expression for density estimation

$$
P_{n}(x)=\frac{K_{n} / n}{V_{n}}
$$

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PATTEERN RECOGNITION

Day \& Date: Tuesday,26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer
book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) Triangle Inequality property of distance metric is given as
a) $D(a, b)+D(b, c) \geq D(a, c)$
b) $\quad \mathrm{D}(\mathrm{a}, \mathrm{b}) \geq 0$
c) $\mathrm{D}(\mathrm{a}, \mathrm{b})=\mathrm{D}(\mathrm{b}, \mathrm{a})$
d) None of these
2) In Statistical pattern recognition, the block 'Construction of formal description' is based on
a) The experience of the designer
b) Intuition of the designer
c) Both a and b
d) Neither a and b
3) A random variable that takes on an infinite number of values is known as a
a) Independent random variable
b) Discrete random variable
c) Continuous random variable
d) None of the above
4) Our productions of any sequence is described by the transition probabilities \qquad
a) $P\left(\omega_{j}(t+1) \mid \omega_{i}(t)\right)=b_{i j}$
b) $P\left(\omega_{j}(t+1) \mid \omega_{i}(t)\right)=b_{j k}$
c) $P\left(\omega_{j}(t+1) \mid \omega_{i}(t)\right)=a_{i j}$
d) $P\left(v_{k}(t) \mid \omega_{j}(t)\right)=b_{j k}$
5) Parzen-window classifier depends upon the choice of
a) No. of sample points
b) Window function
c) Both a and b
d) None of the above
6) Wards method is also named as the \qquad Method.
a) Maximum of squared variance
b) Minimum of squared variance
c) Maximum Variance
d) Minimum Variance
7) Simulated annealing consists of downhill iteration steps combined with controlled uphill steps that make it possible to escape from \qquad
a) local minima
b) global minima
c) local maxima
d) global maxima
8) Classifier that places a pattern in one of only two categories is called
a) Chotomizer
b) Trichomizer
c) Economizer
d) Dichotomizer
9) Syntactic Recognition Algorithm consists of following steps \qquad
a) Learning, Recognition, Classification
b) Learning, Construct a description grammar, Recognition, Classification
c) Construct a description grammar, Recognition, Classification
d) Learning, Construct a description grammar, Classification
10) The loss function $\lambda\left(\alpha_{i} \mid w_{j}\right)$ describes the loss incurred for taking action α_{i} when the state of the nature is w_{j} has value equal to \qquad .
a) 0 when $i=j$
b) 2 when $i=j$
c) 1 when $i=j$
d) 0 when $i \neq j$
11) \ln \qquad learning number of classes are known.
a) Unsupervised
b) Supervised
c) Both of these
d) None of these
12) The density estimation in which the volume V_{n} is shrinked according to function $V_{n}=\frac{1}{\sqrt{n}}$ is called
a) Kn-nearest neighbor
b) Bayesian estimation
c) Parzen window
d) All of the above
13) Determining sequence of hidden states for given HMM and visible states is called
a) Evaluation problem
b) Decoding problem
c) Learning problem
d) All of these
14) Production rules represent a wide variety of knowledge representations that are based on \qquad
a) Condition only
b) Action only
c) condition-action pairs
d) None of these

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering PATTEERN RECOGNITION (Elective - II)

Day \& Date: Tuesday,26-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any three

a) Suppose that the Random variables $\mathrm{X} \& \mathrm{Y}$ have the joint density function defined by $f(x, y)=c(2 x+y) \quad 2<x<6 \& 0<y<5$

$$
=0 \quad \text { otherwise }
$$

Find : 1) constant c, 2) $P(X>3, Y>2)$
b) Explain Maximum Likelihood Estimation. Note on the Gaussian Case where μ is unknown and covariance matrix (Σ) is known.
c) Write a short note on supervised learning.
d) Explain accuracy and computational complexity of classifier.
e) Draw the histogram of Lightness feature for the fish categorization and explain in brief.

Q. 3 Attempt any two.

a) Explain the equation of conditional risk and overall risk. Comment on the condition at which overall risk is called as Bayes Risk.
b) The joint probability function of two random variable X and Y is given by

$$
f(x, y)=c\left(x^{2}+2 y\right), \quad x=0,1,2, y=1,2,3,4
$$

$$
=0 \quad \text {, otherwise }
$$

Find:

1) the value of c
2) marginal probability functions of $X \& Y$
3) $f(y / 1)$,
4) $f(X / 2)$
c) Explain Hidden Markov models (HMM) and give HMM forward algorithm.

Section - II

Q. 4 Attempt any three.

a) Write a note on Probabilistic Neural Network.
b) Write a note on Agglomerative Clustering.
c) What is K - nearest neighbor rule?
d) Explain Forgy's clustering.
e) Explain feed - forward network

Q. 5 Attempt any two.

a) Explain fuzzy Optimization technique in recognition.
b) Write a note on Neural Networks.
c) Starting from fundamentals derive an expression for density estimation

$$
P_{n}(x)=\frac{K_{n} / n}{V_{n}}
$$

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PATTEERN RECOGNITION

Day \& Date: Tuesday,26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer
book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) Wards method is also named as the \qquad Method.
a) Maximum of squared variance
b) Minimum of squared variance
c) Maximum Variance
d) Minimum Variance
2) Simulated annealing consists of downhill iteration steps combined with controlled uphill steps that make it possible to escape from \qquad
a) local minima
b) global minima
c) local maxima
d) global maxima
3) Classifier that places a pattern in one of only two categories is called
a) Chotomizer
b) Trichomizer
c) Economizer
d) Dichotomizer
4) Syntactic Recognition Algorithm consists of following steps \qquad
a) Learning, Recognition, Classification
b) Learning, Construct a description grammar, Recognition, Classification
c) Construct a description grammar, Recognition, Classification
d) Learning, Construct a description grammar, Classification
5) The loss function $\lambda\left(\alpha_{i} \mid w_{j}\right)$ describes the loss incurred for taking action α_{i} when the state of the nature is w_{j} has value equal to \qquad .
a) 0 when $i=j$
b) 2 when $i=j$
c) 1 when $i=j$
d) 0 when $i \neq j$
6) \ln \qquad learning number of classes are known.
a) Unsupervised
b) Supervised
c) Both of these
d) None of these
7) The density estimation in which the volume V_{n} is shrinked according to function $V_{n}=\frac{1}{\sqrt{n}}$ is called
a) Kn-nearest neighbor
b) Bayesian estimation
c) Parzen window
d) All of the above
8) Determining sequence of hidden states for given HMM and visible states is called
a) Evaluation problem
b) Decoding problem
c) Learning problem
d) All of these
9) Production rules represent a wide variety of knowledge representations that are based on
a) Condition only
b) Action only
c) condition-action pairs
d) None of these
10) Triangle Inequality property of distance metric is given as
a) $D(a, b)+D(b, c) \geq D(a, c)$
b) $\quad \mathrm{D}(\mathrm{a}, \mathrm{b}) \geq 0$
c) $\mathrm{D}(\mathrm{a}, \mathrm{b})=\mathrm{D}(\mathrm{b}, \mathrm{a})$
d) None of these
11) In Statistical pattern recognition, the block 'Construction of formal description' is based on
a) The experience of the designer
b) Intuition of the designer
c) Both a and b
d) Neither a and b
12) A random variable that takes on an infinite number of values is known as a
a) Independent random variable
b) Discrete random variable
c) Continuous random variable
d) None of the above
13) Our productions of any sequence is described by the transition probabilities \qquad
a) $P\left(\omega_{j}(t+1) \mid \omega_{i}(t)\right)=b_{i j}$
b) $P\left(\omega_{j}(t+1) \mid \omega_{i}(t)\right)=b_{j k}$
c) $P\left(\omega_{j}(t+1) \mid \omega_{i}(t)\right)=a_{i j}$
d) $P\left(v_{k}(t) \mid \omega_{j}(t)\right)=b_{j k}$
14) Parzen-window classifier depends upon the choice of
a) No. of sample points
b) Window function
c) Both a and b
d) None of the above

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering PATTEERN RECOGNITION (Elective - II)

Day \& Date: Tuesday,26-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any three

a) Suppose that the Random variables $\mathrm{X} \& \mathrm{Y}$ have the joint density function defined by $f(x, y)=c(2 x+y) \quad 2<x<6 \& 0<y<5$

$$
=0 \quad \text { otherwise }
$$

Find : 1) constant c, 2) $P(X>3, Y>2)$
b) Explain Maximum Likelihood Estimation. Note on the Gaussian Case where μ is unknown and covariance matrix (Σ) is known.
c) Write a short note on supervised learning.
d) Explain accuracy and computational complexity of classifier.
e) Draw the histogram of Lightness feature for the fish categorization and explain in brief.

Q. 3 Attempt any two.

a) Explain the equation of conditional risk and overall risk. Comment on the condition at which overall risk is called as Bayes Risk.
b) The joint probability function of two random variable X and Y is given by

$$
f(x, y)=c\left(x^{2}+2 y\right), \quad x=0,1,2, y=1,2,3,4
$$

$$
=0 \quad \text {, otherwise }
$$

Find:

1) the value of c
2) marginal probability functions of $X \& Y$
3) $f(y / 1)$,
4) $f(X / 2)$
c) Explain Hidden Markov models (HMM) and give HMM forward algorithm.

Section - II

Q. 4 Attempt any three.

a) Write a note on Probabilistic Neural Network.
b) Write a note on Agglomerative Clustering.
c) What is K - nearest neighbor rule?
d) Explain Forgy's clustering.
e) Explain feed - forward network

Q. 5 Attempt any two.

a) Explain fuzzy Optimization technique in recognition.
b) Write a note on Neural Networks.
c) Starting from fundamentals derive an expression for density estimation

$$
P_{n}(x)=\frac{K_{n} / n}{V_{n}}
$$

B.E. (Part -II) (CGPA) Examination Nov/Dec-2019

 Electronics \& Telecommunication Engineering

 Electronics \& Telecommunication Engineering DSP PROCESSORS \& APPLICATION

Day \& Date: Tuesday, 26-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer Book Page No.3. Each question carries one mark.
2) Assume suitable data if necessary.
3) Answer MCQ/Objective type questions on page No. 3 only. Don't forget to Mention, Q.P. Set (P/Q/R/S) on Top of page.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) The Addressing that permits the content in internal register of the CPU \& I/O to be accessed as memory location is \qquad .
a) Memory Mapped
b) Indirect addressing
c) Circular Mode
d) Bit Reversed Addressing
2) The addressing mode that is convenient for FFT computation is \qquad .
a) Indirect addressing
b) Circular Mode
c) Memory Mapped
d) Bit Reversed Addressing
3) The number of instruction cycles required for executing a program in a microprocessor with no pipelining is \qquad -.
a) 4
b) 2
c) 3
d) 1
4) A P-DSP has four pipeline stages and uses four phase clock. The number of clock cycles required for executing a program with 25 instruction is \qquad .
a) 29
b) 28
c) 25
d) 26
5) VLIW architecture differs from conventional P-DSP in which of the following aspects \qquad .
a) Instruction cache
b) Number of Functional Units
c) Using Pipelining
d) A single word fetched from memory has a number of instructions
6) Number of memory accesses /clock/period that can be achieved using on chip DRAM of a P-DSP is \qquad .
a) 1
b) 2
c) 4
d) 3
7) The features in which PDSP is superior to advanced microprocessors is \qquad .
a) Real time I/O capability
b) Low cost
c) Low Power
d) Computational Speed
8) The Memory mapped direct addressing mode is used to access data in page.
a) 0
b) 1
c) 511
d) 512
9) The register which holds the address of the current data memory page is \qquad
a) ARP
b) DP
c) ARB
d) None
10) The size of the C6X CPU is \qquad .
a) 16-bit
b) 32-bit
c) 40-bit
d) 64-bit
11) The floating point devices in C6X processors are \qquad .
a) C 67 X
b) C62 X
c) C 64 X
d) \quad C64 $X \& C 62 X$
12) The C6X processor based on \qquad architecture.
a) Modified Harvard
b) Advanced Harvard
c) Veloci TI
d) Davinci
13) \qquad C54X assembler directive reserves and initializes n bits of memory and when a label is used with this directive, the label is assigned the address of the first word of the block reserved.
a) .bes
b) .space
c) .word
d) .data
14) The external SRAM capacity in C5402 kit is \qquad words and requires _ wait states.
a) $64 \mathrm{~K}, 1$
b) $64 \mathrm{~K}, 7$
c) $256 \mathrm{~K}, 1$
d) $256 \mathrm{~K}, 7$

B.E. (Part -II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering DSP PROCESSORS \& APPLICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume the suitable data if necessary.

SECTION - I

Q. 2 Attempt any four: 16
a) Explain in detail signals and coefficients in DSP Systems.
b) Draw and explain briefly VLIW architecture.
c) Which are the special addressing modes of p-DSPs with suitable example?
d) Explain multiplier and multiplier accumulator of DSP.
e) Explain in detail D/A conversion errors in DSP Systems.
Q. 3 Attempt any two:
a) Draw \& explain Architecture of TMS320C5X Processor.
b) Draw \& Explain Block Diagram of DSP Starter Kit.
c) Describe briefly Pipeline structure and operation TMS320C5X Processor.

SECTION - II

Q. 4 Attempt any four:
a) Explain in detail Data Addressing Modes of TMS320C54XX DSP.
b) Explain the steps required for running a C54X assembly language in code composer studio.
c) Write short note on C54X.
d) Compare the feature of TMS320C6X and DSP563XX Processor.
e) Describe briefly Interrupts of TMS320C54XX Processor.
Q. 5 Attempt any two.
a) Write the Program for convolutional codes using C54X program.
b) Explain Pipeline operation in C54X.
c) Draw \& explain Architecture of Motorola DSP563XX.

Seat

No.
B.E. (Part -II) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering DSP PROCESSORS \& APPLICATION
Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer
Book Page No.3. Each question carries one mark.
2) Assume suitable data if necessary.
3) Answer MCQ/Objective type questions on page No. 3 only. Don't forget to Mention, Q.P. Set (P/Q/R/S) on Top of page.

MCQ/Objective Type Questions

Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) The Memory mapped direct addressing mode is used to access data in page.
a) 0
b) 1
c) 511
d) 512
2) The register which holds the address of the current data memory page is
\qquad
a) ARP
b) DP
c) ARB
d) None
3) The size of the C6X CPU is \qquad .
a) 16-bit
b) 32-bit
c) 40-bit
d) 64-bit
4) The floating point devices in C6X processors are \qquad .
a) C 67 X
b) C62X
c) C 64 X
d) C 64 X \& C62X
5) The C6X processor based on \qquad architecture.
a) Modified Harvard
b) Advanced Harvard
c) Veloci TI
d) Davinci
6) C54X assembler directive reserves and initializes n bits of memory and when a label is used with this directive, the label is assigned the address of the first word of the block reserved.
a) .bes
b) .space
c) .word
d) .data
7) The external SRAM capacity in C5402 kit is \qquad words and requires _ wait states.
a) $64 \mathrm{~K}, 1$
b) $64 \mathrm{~K}, 7$
c) $256 \mathrm{~K}, 1$
d) $256 \mathrm{~K}, 7$

SLR-FM-278

Set \mathbf{Q}
8) The Addressing that permits the content in internal register of the CPU \& I/O to be accessed as memory location is \qquad .
a) Memory Mapped
b) Indirect addressing
c) Circular Mode
d) Bit Reversed Addressing
9) The addressing mode that is convenient for FFT computation is \qquad .
a) Indirect addressing
b) Circular Mode
c) Memory Mapped
d) Bit Reversed Addressing
10) The number of instruction cycles required for executing a program in a microprocessor with no pipelining is \qquad .
a) 4
b) 2
c) 3
d) 1
11) A P-DSP has four pipeline stages and uses four phase clock. The number of clock cycles required for executing a program with 25 instruction is \qquad .
a) 29
b) 28
c) 25
d) 26
12) VLIW architecture differs from conventional P-DSP in which of the following aspects \qquad -
a) Instruction cache
b) Number of Functional Units
c) Using Pipelining
d) A single word fetched from memory has a number of instructions
13) Number of memory accesses /clock/period that can be achieved using on chip DRAM of a P-DSP is \qquad .
a) 1
b) 2
c) 4
d) 3
14) The features in which PDSP is superior to advanced microprocessors is \qquad .
a) Real time I/O capability
b) Low cost
c) Low Power
d) Computational Speed

SLR-FM-278

Seat
 No.

B.E. (Part -II) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering DSP PROCESSORS \& APPLICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume the suitable data if necessary.

SECTION - I

Q. 2 Attempt any four:
 16

a) Explain in detail signals and coefficients in DSP Systems.
b) Draw and explain briefly VLIW architecture.
c) Which are the special addressing modes of p-DSPs with suitable example?
d) Explain multiplier and multiplier accumulator of DSP.
e) Explain in detail D/A conversion errors in DSP Systems.

Q. 3 Attempt any two:

a) Draw \& explain Architecture of TMS320C5X Processor.
b) Draw \& Explain Block Diagram of DSP Starter Kit.
c) Describe briefly Pipeline structure and operation TMS320C5X Processor.

SECTION - II

Q. 4 Attempt any four:
a) Explain in detail Data Addressing Modes of TMS320C54XX DSP.
b) Explain the steps required for running a C54X assembly language in code composer studio.
c) Write short note on C54X.
d) Compare the feature of TMS320C6X and DSP563XX Processor.
e) Describe briefly Interrupts of TMS320C54XX Processor.

Q. 5 Attempt any two.

a) Write the Program for convolutional codes using C54X program.
b) Explain Pipeline operation in C54X.
c) Draw \& explain Architecture of Motorola DSP563XX.

B.E. (Part -II) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering

 DSP PROCESSORS \& APPLICATIONDay \& Date: Tuesday, 26-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer Book Page No.3. Each question carries one mark.
2) Assume suitable data if necessary.
3) Answer MCQ/Objective type questions on page No. 3 only. Don't forget to Mention, Q.P. Set (P/Q/R/S) on Top of page.

MCQ/Objective Type Questions

Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) VLIW architecture differs from conventional P-DSP in which of the following aspects \qquad .
a) Instruction cache
b) Number of Functional Units
c) Using Pipelining
d) A single word fetched from memory has a number of instructions
2) Number of memory accesses /clock/period that can be achieved using on chip DRAM of a P-DSP is \qquad .
a) 1
b) 2
c) 4
d) 3
3) The features in which PDSP is superior to advanced microprocessors is \qquad .
a) Real time I/O capability
b) Low cost
c) Low Power
d) Computational Speed
4) The Memory mapped direct addressing mode is used to access data in page.
a) 0
b) 1
c) 511
d) 512
5) The register which holds the address of the current data memory page is
a) ARP
b) DP
c) ARB
d) None
6) The size of the C6X CPU is \qquad .
a) 16-bit
b) 32-bit
c) 40-bit
d) 64-bit
7) The floating point devices in C6X processors are \qquad .
a) C 67 X
b) C62X
c) C 64 X
d) C 64 X \& C62X
8) The C6X processor based on \qquad architecture.
a) Modified Harvard
b) Advanced Harvard
c) Veloci TI
d) Davinci
9) \qquad C54X assembler directive reserves and initializes n bits of memory and when a label is used with this directive, the label is assigned the address of the first word of the block reserved.
a) .bes
b) .space
c) .word
d) .data
10) The external SRAM capacity in C5402 kit is \qquad words and requires __ wait states.
a) $64 \mathrm{~K}, 1$
b) $\quad 64 \mathrm{~K}, 7$
c) $256 \mathrm{~K}, 1$
d) $256 \mathrm{~K}, 7$
11) The Addressing that permits the content in internal register of the CPU \& I/O to be accessed as memory location is \qquad .
a) Memory Mapped
b) Indirect addressing
c) Circular Mode
d) Bit Reversed Addressing
12) The addressing mode that is convenient for FFT computation is \qquad .
a) Indirect addressing
b) Circular Mode
c) Memory Mapped
d) Bit Reversed Addressing
13) The number of instruction cycles required for executing a program in a microprocessor with no pipelining is \qquad .
a) 4
b) 2
c) 3
d) 1
14) A P-DSP has four pipeline stages and uses four phase clock. The number of clock cycles required for executing a program with 25 instruction is \qquad .
a) 29
b) 28
c) 25
d) 26

B.E. (Part -II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering DSP PROCESSORS \& APPLICATION

Day \& Date: Tuesday, 26-11-2019 Max. Marks: 56Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.2) Assume the suitable data if necessary.
SECTION - I
Q. 2 Attempt any four: 16a) Explain in detail signals and coefficients in DSP Systems.b) Draw and explain briefly VLIW architecture.c) Which are the special addressing modes of p -DSPs with suitable example?
d) Explain multiplier and multiplier accumulator of DSP.e) Explain in detail D/A conversion errors in DSP Systems.
Q. 3 Attempt any two: 12a) Draw \& explain Architecture of TMS320C5X Processor.b) Draw \& Explain Block Diagram of DSP Starter Kit.c) Describe briefly Pipeline structure and operation TMS320C5X Processor.
SECTION - II
Q. 4 Attempt any four: 16
a) Explain in detail Data Addressing Modes of TMS320C54XX DSP.
b) Explain the steps required for running a C54X assembly language in code composer studio.
c) Write short note on C54X.
d) Compare the feature of TMS320C6X and DSP563XX Processor.
e) Describe briefly Interrupts of TMS320C54XX Processor.
Q. 5 Attempt any two. 12
a) Write the Program for convolutional codes using C54X program.
b) Explain Pipeline operation in C54X.

c) Draw \& explain Architecture of Motorola DSP563XX.

B.E. (Part -II) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering DSP PROCESSORS \& APPLICATION

Day \& Date: Tuesday, 26-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer Book Page No.3. Each question carries one mark.
2) Assume suitable data if necessary.
3) Answer MCQ/Objective type questions on page No. 3 only. Don't forget to Mention, Q.P. Set (P/Q/R/S) on Top of page.

MCQ/Objective Type Questions

Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the

 sentence.10) The size of the C6X CPU is \qquad .
a) 16-bit
b) 32-bit
c) 40-bit
d) 64-bit
11) The floating point devices in C6X processors are \qquad .
a) C 67 X
b) C62X
c) C 64 X
d) C 64 X \& C62X
12) The C6X processor based on \qquad architecture.
a) Modified Harvard
b) Advanced Harvard
c) Veloci TI
d) Davinci
13) \qquad C54X assembler directive reserves and initializes n bits of memory and when a label is used with this directive, the label is assigned the address of the first word of the block reserved.
a) .bes
b) .space
c) .word
d) .data
14) The external SRAM capacity in C5402 kit is \qquad words and requires __ wait states.
a) $64 \mathrm{~K}, 1$
b) $64 \mathrm{~K}, 7$
c) $256 \mathrm{~K}, 1$
d) $256 \mathrm{~K}, 7$
15) The Addressing that permits the content in internal register of the CPU \& I/O to be accessed as memory location is \qquad .
a) Memory Mapped
b) Indirect addressing
c) Circular Mode
d) Bit Reversed Addressing
16) The addressing mode that is convenient for FFT computation is \qquad .
a) Indirect addressing
b) Circular Mode
c) Memory Mapped
d) Bit Reversed Addressing
17) The number of instruction cycles required for executing a program in a microprocessor with no pipelining is .
a) 4
b) 2
c) 3
d) 1
18) A P-DSP has four pipeline stages and uses four phase clock. The number of clock cycles required for executing a program with 25 instruction is \qquad -.
a) 29
b) 28
c) 25
d) 26
19) VLIW architecture differs from conventional P-DSP in which of the following aspects \qquad .
a) Instruction cache
b) Number of Functional Units
c) Using Pipelining
d) A single word fetched from memory has a number of instructions
20) Number of memory accesses/clock/period that can be achieved using on chip DRAM of a P-DSP is \qquad .
a) 1
b) 2
c) 4
d) 3
21) The features in which PDSP is superior to advanced microprocessors is \qquad _.
a) Real time I/O capability
b) Low cost
c) Low Power
d) Computational Speed
22) The Memory mapped direct addressing mode is used to access data in page.
a) 0
b) 1
C) 511
d) 512
23) The register which holds the address of the current data memory page is \qquad
a) ARP
b) DP
c) $A R B$
d) None

SLR-FM-278

Seat
 No.

B.E. (Part -II) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering DSP PROCESSORS \& APPLICATION

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume the suitable data if necessary.

SECTION - I

Q. 2 Attempt any four:
 16

a) Explain in detail signals and coefficients in DSP Systems.
b) Draw and explain briefly VLIW architecture.
c) Which are the special addressing modes of p-DSPs with suitable example?
d) Explain multiplier and multiplier accumulator of DSP.
e) Explain in detail D/A conversion errors in DSP Systems.
Q. 3 Attempt any two:
a) Draw \& explain Architecture of TMS320C5X Processor.
b) Draw \& Explain Block Diagram of DSP Starter Kit.
c) Describe briefly Pipeline structure and operation TMS320C5X Processor.

SECTION - II

Q. 4 Attempt any four:
a) Explain in detail Data Addressing Modes of TMS320C54XX DSP.
b) Explain the steps required for running a C54X assembly language in code composer studio.
c) Write short note on C54X.
d) Compare the feature of TMS320C6X and DSP563XX Processor.
e) Describe briefly Interrupts of TMS320C54XX Processor.
Q. 5 Attempt any two.
a) Write the Program for convolutional codes using C54X program.
b) Explain Pipeline operation in C54X.
c) Draw \& explain Architecture of Motorola DSP563XX.
Seat

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering INTERNET OF THINGS

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) As per loT conceptual framework, Gather + Enrich + Stream + Manage + Acquire + Organise \& Analyse =
a) Things framework
b) Network of Things
c) Internet of Things
d) Internet
2) As per loT architectural view suggested by CISCO level-3 deals with, \qquad .
a) Data abstraction
b) Data accumulation
c) Edge computing
d) Connectivity
3) Why is IPv6 preferred over IPv4 for loT implementations?
a) Larger addressing range
b) More security
c) Both a and b
d) Neither a or b
4) The paging operation of a Bluetooth device is used for \qquad .
a) Forming a connection between two Bluetooth devices
b) Trying to discover other devices near it
c) Entering a low-power sleep mode
d) All of these
5) Which of these can be considered as the sensory organs for loT?
a) Buildings
b) Transportation
c) Banks
d) Sensors
6) The address space in ARM is \qquad .
a) $2^{\wedge} 24$
b) $2^{\wedge} 64$
c) $2^{\wedge} 16$
d) $2^{\wedge} 32$
7) A programmable timer device used to ensure that processor is running is \qquad .
a) Real Time Clock
b) Phase Lock Loop
c) Watchdog Timer
d) Simulation Time Clock
8) LPC1768's maximum operating frequency is \qquad .
a) 100 MHz
b) 110 MHz
c) 12 MHz
d) 60 MHz
9) Which of these statements is NOT TRUE?
a) MQTT is a publish-subscribe protocol
b) MQTT is a client-server protocol
c) MQTT is a lightweight messaging protocol
d) MQTT is used in conjunction with TCP/IP
10) MQTT is designed for \qquad .
a) Remote connections
b) Limited bandwidth
c) Small-code footprint
d) All of these
11) Which layer is CoAP?
a) Control layer
b) Transport layer
c) Service layer
d) Application layer
12) Wifi enabled device can be \qquad .
a) PC
b) Game Console
c) Mobile phone
d) All of the above
13) CoAP is a specialized \qquad protocol.
a) Web Transfer
b) Power
c) Application
d) Resource
14) What is A2DP?
a) Bluetooth profile for streaming audio
b) Bluetooth profile for security
c) Bluetooth profile for streaming video
d) None of These

No.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering INTERNET OF THINGS

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I
Q. 2 Attempt any four.
a) List the components available in Intel based intelligent gateway for a smart home.
b) Show the comparison between OSI layer and ITU-T reference model layers.
c) Explain UART and I2C bus interfaces. When and where these interfaces are used?
d) Write an ARM ASM code to find length of null terminated string.
e) Discuss the operation modes and privilege levels supported in Cortex-M3 processor with neat diagram.
Q. 3 Attempt any two.
a) Discuss how 15 branch conditions are defined with the combinations of the four flags (N, Z, C, and V).
b) Give example of loT's used in a smart home with sensors, actuators and smart home automation software.
c) Draw and explain ARM Cortex-M3 processor architecture in detail with a neat diagram.

Section - II

Q. 4 Attempt any four.
a) List down principal components and topologies in a Zigbee network.
b) Discuss with neat diagram the IEEE 802.11 protocol stack.
c) Write short note on Message Oriented Middleware (MOM) protocols.
d) Discuss what is meant by RESTful protocol with an example.
e) What is MQTT protocol? List down the requirements provided by MQTT protocol.

Q. 5 Attempt any two.

a) Discuss the architecture of CoAP system.
b) With neat diagram illustrate the differences in management of cloud models.
c) Write a short note on:

1) RFID tags
2) RFID Interrogators
3) RFID Controllers
4) RFID frequency bands

Seat

No.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering INTERNET OF THINGS

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) LPC1768's maximum operating frequency is \qquad .
a) 100 MHz
b) 110 MHz
c) 12 MHz
d) 60 MHz
2) Which of these statements is NOT TRUE?
a) MQTT is a publish-subscribe protocol
b) MQTT is a client-server protocol
c) MQTT is a lightweight messaging protocol
d) MQTT is used in conjunction with TCP/IP
3) MQTT is designed for \qquad .
a) Remote connections
b) Limited bandwidth
c) Small-code footprint
d) All of these
4) Which layer is CoAP?
a) Control layer
b) Transport layer
c) Service layer
d) Application layer
5) Wifi enabled device can be \qquad .
a) PC
b) Game Console
c) Mobile phone
d) All of the above
6) CoAP is a specialized \qquad protocol.
a) Web Transfer
b) Power
c) Application
d) Resource
7) What is A2DP?
a) Bluetooth profile for streaming audio
b) Bluetooth profile for security
c) Bluetooth profile for streaming video
d) None of These
8) As per loT conceptual framework, Gather + Enrich + Stream + Manage + Acquire + Organise \& Analyse = \qquad
a) Things framework
b) Network of Things
c) Internet of Things
d) Internet
9) As per loT architectural view suggested by CISCO level-3 deals with, \qquad .
a) Data abstraction
b) Data accumulation
c) Edge computing
d) Connectivity
10) Why is IPv6 preferred over IPv4 for loT implementations?
a) Larger addressing range
b) More security
c) Both a and b
d) Neither a or b
11) The paging operation of a Bluetooth device is used for \qquad .
a) Forming a connection between two Bluetooth devices
b) Trying to discover other devices near it
c) Entering a low-power sleep mode
d) All of these
12) Which of these can be considered as the sensory organs for loT?
a) Buildings
b) Transportation
c) Banks
d) Sensors
13) The address space in ARM is \qquad .
a) $2^{\wedge} 24$
b) $\quad 2^{\wedge} 64$
c) $2^{\wedge} 16$
d) $2^{\wedge} 32$
14) A programmable timer device used to ensure that processor is running is \qquad .
a) Real Time Clock
b) Phase Lock Loop
c) Watchdog Timer
d) Simulation Time Clock

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering INTERNET OF THINGS

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I
Q. 2 Attempt any four.
a) List the components available in Intel based intelligent gateway for a smart home.
b) Show the comparison between OSI layer and ITU-T reference model layers.
c) Explain UART and I2C bus interfaces. When and where these interfaces are used?
d) Write an ARM ASM code to find length of null terminated string.
e) Discuss the operation modes and privilege levels supported in Cortex-M3 processor with neat diagram.

Q. 3 Attempt any two.

a) Discuss how 15 branch conditions are defined with the combinations of the four flags (N, Z, C, and V).
b) Give example of loT's used in a smart home with sensors, actuators and smart home automation software.
c) Draw and explain ARM Cortex-M3 processor architecture in detail with a neat diagram.

Section - II

Q. 4 Attempt any four.
a) List down principal components and topologies in a Zigbee network.
b) Discuss with neat diagram the IEEE 802.11 protocol stack.
c) Write short note on Message Oriented Middleware (MOM) protocols.
d) Discuss what is meant by RESTful protocol with an example.
e) What is MQTT protocol? List down the requirements provided by MQTT protocol.

Q. 5 Attempt any two.

a) Discuss the architecture of CoAP system.
b) With neat diagram illustrate the differences in management of cloud models.
c) Write a short note on:

1) RFID tags
2) RFID Interrogators
3) RFID Controllers
4) RFID frequency bands
SeatNo.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering INTERNET OF THINGS

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Which of these can be considered as the sensory organs for loT?
a) Buildings
b) Transportation
c) Banks
d) Sensors
2) The address space in ARM is \qquad .
a) $2^{\wedge} 24$
b) $\quad 2^{\wedge} 64$
c) $2^{\wedge 16}$
d) $2^{\wedge} 32$
3) A programmable timer device used to ensure that processor is running is \qquad .
a) Real Time Clock
b) Phase Lock Loop
c) Watchdog Timer
d) Simulation Time Clock
4) LPC1768's maximum operating frequency is \qquad .
a) 100 MHz
b) 110 MHz
c) 12 MHz
d) 60 MHz
5) Which of these statements is NOT TRUE?
a) MQTT is a publish-subscribe protocol
b) MQTT is a client-server protocol
c) MQTT is a lightweight messaging protocol
d) MQTT is used in conjunction with TCP/IP
6) MQTT is designed for \qquad .
a) Remote connections
b) Limited bandwidth
c) Small-code footprint
d) All of these
7) Which layer is CoAP?
a) Control layer
b) Transport layer
c) Service layer
d) Application layer
8) Wifi enabled device can be \qquad .
a) PC
b) Game Console
c) Mobile phone
d) All of the above
9) CoAP is a specialized \qquad protocol.
a) Web Transfer
b) Power
c) Application
d) Resource
10) What is A2DP?
a) Bluetooth profile for streaming audio
b) Bluetooth profile for security
c) Bluetooth profile for streaming video
d) None of These
11) As per loT conceptual framework, Gather + Enrich + Stream + Manage + Acquire + Organise \& Analyse =
a) Things framework
b) Network of Things
c) Internet of Things
d) Internet
12) As per loT architectural view suggested by CISCO level-3 deals with, \qquad .
a) Data abstraction
b) Data accumulation
c) Edge computing
d) Connectivity
13) Why is IPv6 preferred over IPv4 for loT implementations?
a) Larger addressing range
b) More security
c) Both a and b
d) Neither a or b
14) The paging operation of a Bluetooth device is used for \qquad .
a) Forming a connection between two Bluetooth devices
b) Trying to discover other devices near it
c) Entering a low-power sleep mode
d) All of these

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering INTERNET OF THINGS

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I
Q. 2 Attempt any four.
a) List the components available in Intel based intelligent gateway for a smart home.
b) Show the comparison between OSI layer and ITU-T reference model layers.
c) Explain UART and I2C bus interfaces. When and where these interfaces are used?
d) Write an ARM ASM code to find length of null terminated string.
e) Discuss the operation modes and privilege levels supported in Cortex-M3 processor with neat diagram.
Q. 3 Attempt any two.
a) Discuss how 15 branch conditions are defined with the combinations of the four flags (N, Z, C, and V).
b) Give example of loT's used in a smart home with sensors, actuators and smart home automation software.
c) Draw and explain ARM Cortex-M3 processor architecture in detail with a neat diagram.

Section - II

Q. 4 Attempt any four.
a) List down principal components and topologies in a Zigbee network.
b) Discuss with neat diagram the IEEE 802.11 protocol stack.
c) Write short note on Message Oriented Middleware (MOM) protocols.
d) Discuss what is meant by RESTful protocol with an example.
e) What is MQTT protocol? List down the requirements provided by MQTT protocol.

Q. 5 Attempt any two.

a) Discuss the architecture of CoAP system.
b) With neat diagram illustrate the differences in management of cloud models.
c) Write a short note on:

1) RFID tags
2) RFID Interrogators
3) RFID Controllers
4) RFID frequency bands
SeatNo.

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering INTERNET OF THINGS

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) MQTT is designed for \qquad .
a) Remote connections
b) Limited bandwidth
c) Small-code footprint
d) All of these
2) Which layer is CoAP?
a) Control layer
b) Transport layer
c) Service layer
d) Application layer
3) Wifi enabled device can be \qquad .
a) PC
b) Game Console
c) Mobile phone
d) All of the above
4) CoAP is a specialized \qquad protocol.
a) Web Transfer
b) Power
c) Application
d) Resource
5) What is A2DP?
a) Bluetooth profile for streaming audio
b) Bluetooth profile for security
c) Bluetooth profile for streaming video
d) None of These
6) As per loT conceptual framework, Gather + Enrich + Stream + Manage + Acquire + Organise \& Analyse =
a) Things framework
b) Network of Things
c) Internet of Things
d) Internet
7) As per loT architectural view suggested by CISCO level-3 deals with, \qquad .
a) Data abstraction
b) Data accumulation
c) Edge computing
d) Connectivity
8) Why is IPv6 preferred over IPv4 for loT implementations?
a) Larger addressing range
b) More security
c) Both a and b
d) Neither a or b
9) The paging operation of a Bluetooth device is used for \qquad .
a) Forming a connection between two Bluetooth devices
b) Trying to discover other devices near it
c) Entering a low-power sleep mode
d) All of these
10) Which of these can be considered as the sensory organs for loT?
a) Buildings
b) Transportation
c) Banks
d) Sensors
11) The address space in ARM is \qquad .
a) $2^{\wedge} 24$
b) $2^{\wedge} 64$
c) $2^{\wedge 16}$
d) $2^{\wedge} 32$
12) A programmable timer device used to ensure that processor is running is \qquad .
a) Real Time Clock
b) Phase Lock Loop
c) Watchdog Timer
d) Simulation Time Clock
13) LPC1768's maximum operating frequency is \qquad .
a) 100 MHz
b) $11 \overline{0 \mathrm{MHz}}$
c) 12 MHz
d) 60 MHz
14) Which of these statements is NOT TRUE?
a) MQTT is a publish-subscribe protocol
b) MQTT is a client-server protocol
c) MQTT is a lightweight messaging protocol
d) MQTT is used in conjunction with TCP/IP

B.E. (Part - II) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering INTERNET OF THINGS

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I
Q. 2 Attempt any four.
a) List the components available in Intel based intelligent gateway for a smart home.
b) Show the comparison between OSI layer and ITU-T reference model layers.
c) Explain UART and I2C bus interfaces. When and where these interfaces are used?
d) Write an ARM ASM code to find length of null terminated string.
e) Discuss the operation modes and privilege levels supported in Cortex-M3 processor with neat diagram.
Q. 3 Attempt any two.
a) Discuss how 15 branch conditions are defined with the combinations of the four flags (N, Z, C, and V).
b) Give example of loT's used in a smart home with sensors, actuators and smart home automation software.
c) Draw and explain ARM Cortex-M3 processor architecture in detail with a neat diagram.

Section - II

Q. 4 Attempt any four.
a) List down principal components and topologies in a Zigbee network.
b) Discuss with neat diagram the IEEE 802.11 protocol stack.
c) Write short note on Message Oriented Middleware (MOM) protocols.
d) Discuss what is meant by RESTful protocol with an example.
e) What is MQTT protocol? List down the requirements provided by MQTT protocol.

Q. 5 Attempt any two.

a) Discuss the architecture of CoAP system.
b) With neat diagram illustrate the differences in management of cloud models.
c) Write a short note on:

1) RFID tags
2) RFID Interrogators
3) RFID Controllers
4) RFID frequency bands

SLR-FM-675

Seat

No.

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Use of non-programmable calculator is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The particular Integral of $(D+1)^{3} y=e^{-x}$ is \qquad .
a) $\frac{x^{3}}{3!} e^{-x}$
b) $\frac{x^{2}}{2} e^{-x}$
c) $x e^{x}$
d) None of these
2) The complete solution of $\left(D^{4}+6 D^{2}+9\right) y=0$ is \qquad .
a) $y=\left(c_{1}+c_{2} x\right) e^{x}+\left(c_{3}+c_{4} x\right) e^{-x}$
b) $y=\left(c_{1}+c_{2}\right) e^{x}+\left(c_{3}+c_{4} x\right) e^{-x}$
c) $y=\left(c_{1}+c_{2} x\right) \cos \sqrt{3} x+\left(c_{3}+c_{4} x\right) \sin \sqrt{3} x$
d) $y=\left(c_{1}+c_{2} x\right) \cos 3 x+\left(c_{3}+c_{4} x\right) \sin 3 x$
3) The solution of $p x+q y=z$ is \qquad .
a) $\phi(x+y, y+z)=0$
b) $\phi\left(\frac{x}{y}, \frac{y}{z}\right)=0$
c) $\phi\left(\frac{x^{2}}{y}, \frac{y^{2}}{z}\right)=0$
d) $\phi(x y, y z)=0$
4) The value of the integral $\int_{0}^{\infty} e^{-3 t} \sin t d t$ is \qquad .
a) 5
b) $\frac{1}{5}$
c) 10
d) $\frac{1}{10}$
5) The Laplace transform of $(\sin t+\cos t)^{2}$ is \qquad .
a) $\frac{1}{s}-\frac{2}{s^{2}+4}$
b) $\frac{1}{s}+\frac{2}{s^{2}+4}$
C) $\frac{1}{s}-\frac{2}{s^{2}-4}$
d) $\frac{1}{s}+\frac{2}{s^{2}-4}$
6) $\frac{1}{(s+3)^{2}}$ is the Laplace transform of \qquad .
a) $t e^{-3 t}$
b) $t^{2} e^{-3 t}$
c) $e^{-3 t}$
d) $t e^{3 t}$
7) $L^{-1}\left\{\frac{1}{s^{2}-6 s+25}\right\}=$ \qquad .
a) $\frac{e^{-3 t}}{4} \sin 4 t$
b) $\frac{e^{-3 t} \cos 4 t}{4}$
c) $e^{-3 t} \sin 4 t$
d) $\frac{e^{3 t} \sin 4 t}{4}$
8) The directional derivative of $\phi=x y+y z+z x$ at $(1,1,1)$ is maximum in the direction of \qquad .
a) $i+j+k$
b) $i-j+k$
c) $2 i+2 j+2 k$
d) $2 i-2 j+2 k$
9) If $\bar{r}=x i+y j+z k$ and \bar{a} is a constant vector then $\nabla(\bar{a} \cdot \bar{r})=$
a) \bar{a}
b) \bar{r}
c) $\bar{a} \cdot \bar{r}$
d) 0
10) If $z\left\{a^{k}\right\}=\frac{z}{z-a}$ then $z\left\{k \cdot a^{k}\right\}=$ \qquad .
a) $\frac{a}{(z-a)^{2}}$
b) $\frac{a z}{(z-a)^{2}}$
c) $\frac{z}{(z-a)^{2}}$
d) $\frac{-1}{(z-a)^{2}}$
11) The inverse z-transform of $\frac{z}{z-1},|z|>1$ is \qquad .
a) -1
b) 1
c) 0
d) K
12) If $f(x)=x$ is represented by Fourier series in $(-\pi, \pi)$ then \qquad is the constant term.
a) $\frac{\pi}{2}$
b) π
c) 0
d) 2π
13) For Fourier series expansion, function must be \qquad .
a) Harmonic
b) Reimann
c) Cauchy
d) Periodic
14) The Fourier sine transform of $f(x)=\left\{\begin{array}{lc}1, & 0 \leq x<1 \\ 0, & x>1\end{array}\right.$ is \qquad .
a) $\sqrt{\frac{2}{\pi}}$
b) $\sqrt{\frac{2}{\pi}}(1-\cos s)$
C) $\sqrt{\frac{2}{\pi}}\left(\frac{1-\sin s}{s}\right)$
d) $\sqrt{\frac{2}{\pi}}\left(\frac{1-\cos s}{s}\right)$

SLR-FM-675

Seat

No.

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 5 \& Q. 6 are compulsory.
2) Solve any two questions from each section.
2) Figures to the right indicate full marks.
3) Use of calculator is allowed.

Section - I
Q. 2 Solve any three of the following questions.
a) Solve $\left(D^{2}+4\right) y=\sin ^{2} x$
b) Solve $\left(D^{2}+3 D+2\right) y=x^{2}+3 x+1$
c) Solve $\left(D^{2}+2 D+5\right) y=e^{-x} \sin 2 x$

Solve $\left(D^{3}+1\right) y=65 \cos (2 x+1)$
Q. 3 Solve the following questions.
a) $z\left(p^{2}-q^{2}\right)=x-y$
b) $p^{3}+q^{3}=27 z$
c) $p x^{2}+q y^{2}=(x+y) z$
Q. 4 Solve the following questions.
a) Find $L\left\{e^{-t} \cos ^{2} 3 t\right\}$
b) Find $L\left\{\frac{\cos 6 t-\cos 4 t}{t}\right\}$
c) Find the laplace transform of the periodic function defined by

$$
f(t)=\frac{k t}{T}, 0<t<T
$$

where $f(t+T)=f(t)$

Q. 5 Solve the following questions.

a) Find $L^{-1}\left\{\frac{2 s^{2}+5 s-4}{s^{3}+s^{2}-2 s}\right\}$
b) Using the convolution theorem, find the inverse Laplace transform of

$$
\frac{1}{(s-1)\left(s^{2}+1\right)}
$$

c) Solve $y^{\prime \prime}+2 y^{\prime}+y=3 t e^{-t}$, given that $y=4, y^{\prime}=2$ when $t=0$ using Laplace transform.

Section - II

Q. 6 a) Find the unit tangent vector at any point on the curve given by $x=t^{2}+2, y=4 t-5$ and $z=2 t^{2}-6 t$ where t is any variable. Also determine unit tangent vector at $t=2$.
b) Find the value of constant a, b and c for which vector03
$\bar{v}=(x+y+a z) i+(b x+3 y-z) j+(3 x+c y+z) k$ is irrotational
c) Find the angle between the normals to the surface $x^{2} y+z=3$ and $x \log z-y^{2}+4=0$ at $(-1,2,1)$
Q. 7 a) Find the Fourier expansion of $f(x)=2 x-x^{2}$ in $(0,3)$

Find the Fourier series of $f(x)=x^{2}-2,-2 \leq x \leq 2$05
b) Find the Fourier series of $f(x)=x^{3}$ in $(-\pi, \pi)$ 04
Q. 8 a) Express $f(x)=\left\{\begin{array}{cc}\sin x, & |x|<\pi \\ 0, & |x|>\pi\end{array}\right.$ as a Fourier integral and show that

$$
\int_{0}^{\infty} \frac{\sin w x \cdot \sin \pi w}{1-w^{2}} d w=\left\{\begin{array}{cc}
\frac{\pi}{2} \cdot \sin x, & |x|<\pi \\
0, & |x|>\pi
\end{array}\right.
$$

b) Find Fourier sine transform of $f(x)=\left\{\begin{array}{cc}\sin x, & 0<x<1 \\ 0, & x>1\end{array}\right.$
C) Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}\sqrt{2 \pi}, & |x|<a \\ 0, & |x|>a\end{array}\right.$
Q. 9 Solve any three of the following questions.
a) Find the inverse z-transform of $\frac{1}{z^{2}-3 z+2},|z|>2$
b) Find the inverse z-transform of $\frac{z^{2}}{\left(z-\frac{1}{4}\right)\left(z-\frac{1}{5}\right)},|z|<\frac{1}{5}$
c) Find $z\left\{3^{k} \sin \left(\frac{k \pi}{2}\right)\right\}, k \geq 0$
d) Find $z\left\{4^{k}+\frac{1}{4^{k}}\right\}, k \geq 0$

SLR-FM-675

Seat

No.

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM

Instructions: 1) Q. No. 1 is compulsory should be solved in first 30 minutes in answer book.
 2) Figures to the right indicate full marks.
 3) Use of non-programmable calculator is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the sentence.
 14

1) The directional derivative of $\phi=x y+y z+z x$ at $(1,1,1)$ is maximum in the direction of \qquad _.
a) $i+j+k$
b) $i-j+k$
C) $2 i+2 j+2 k$
d) $2 i-2 j+2 k$
2) If $\bar{r}=x i+y j+z k$ and \bar{a} is a constant vector then $\nabla(\bar{a} \cdot \bar{r})=$ \qquad .
a) \bar{a}
b) \bar{r}
c) $\bar{a} \cdot \bar{r}$
d) 0
3) If $z\left\{a^{k}\right\}=\frac{z}{z-a}$ then $z\left\{k \cdot a^{k}\right\}=$ \qquad .
a) $\frac{a}{(z-a)^{2}}$
b) $\frac{a z}{(z-a)^{2}}$
C) $\frac{z}{(z-a)^{2}}$
d) $\frac{-1}{(z-a)^{2}}$
4) The inverse z-transform of $\frac{z}{z-1},|z|>1$ is \qquad -
a) -1
b) 1
c) 0
d) K
5) If $f(x)=x$ is represented by Fourier series in $(-\pi, \pi)$ then \qquad is the constant term.
a) $\frac{\pi}{2}$
b) π
c) 0
d) 2π
6) For Fourier series expansion, function must be \qquad .
a) Harmonic
b) Reimann
c) Cauchy
d) Periodic
7) The Fourier sine transform of $f(x)=\left\{\begin{array}{lc}1, & 0 \leq x<1 \\ 0, & x>1\end{array}\right.$ is \qquad .
a) $\sqrt{\frac{2}{\pi}}$
b) $\sqrt{\frac{2}{\pi}}(1-\cos s)$
C) $\sqrt{\frac{2}{\pi}}\left(\frac{1-\sin s}{s}\right)$
d) $\sqrt{\frac{2}{\pi}}\left(\frac{1-\cos s}{s}\right)$
8) The particular Integral of $(D+1)^{3} y=e^{-x}$ is \qquad .
a) $\frac{x^{3}}{3!} e^{-x}$
b) $\frac{x^{2}}{2} e^{-x}$
c) $x e^{x}$
d) None of these
9) The complete solution of $\left(D^{4}+6 D^{2}+9\right) y=0$ is \qquad .
a) $y=\left(c_{1}+c_{2} x\right) e^{x}+\left(c_{3}+c_{4} x\right) e^{-x}$
b) $y=\left(c_{1}+c_{2}\right) e^{x}+\left(c_{3}+c_{4} x\right) e^{-x}$
c) $y=\left(c_{1}+c_{2} x\right) \cos \sqrt{3} x+\left(c_{3}+c_{4} x\right) \sin \sqrt{3} x$
d) $y=\left(c_{1}+c_{2} x\right) \cos 3 x+\left(c_{3}+c_{4} x\right) \sin 3 x$
10) The solution of $p x+q y=z$ is \qquad b)
a) $\phi(x+y, y+z)=0$
b) $\phi\left(\frac{x}{y}, \frac{y}{z}\right)=0$
c) $\phi\left(\frac{x^{2}}{y}, \frac{y^{2}}{z}\right)=0$
d) $\phi(x y, y z)=0$
11) The value of the integral $\int_{0}^{\infty} e^{-3 t} \sin t d t$ is \qquad .
a) 5
b) $\frac{1}{5}$
c) 10
d) $\frac{1}{10}$
12) The Laplace transform of $(\sin t+\cos t)^{2}$ is \qquad .
a) $\frac{1}{s}-\frac{2}{s^{2}+4}$
b) $\frac{1}{s}+\frac{2}{s^{2}+4}$
C) $\frac{1}{s}-\frac{2}{s^{2}-4}$
d) $\frac{1}{s}+\frac{2}{s^{2}-4}$
13) $\frac{1}{(s+3)^{2}}$ is the Laplace transform of \qquad .
a) $t e^{-3 t}$
b) $t^{2} e^{-3 t}$
c) $e^{-3 t}$
d) $t e^{3 t}$
14) $L^{-1}\left\{\frac{1}{s^{2}-6 s+25}\right\}=$ \qquad
a) $\frac{e^{-3 t}}{4} \sin 4 t$
b) $\frac{e^{-3 t} \cos 4 t}{4}$
c) $e^{-3 t} \sin 4 t$
d) $\frac{e^{3 t} \sin 4 t}{4}$

SLR-FM-675

Seat

No.

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 5 \& Q. 6 are compulsory.
2) Solve any two questions from each section.
2) Figures to the right indicate full marks.
3) Use of calculator is allowed.

Section - I

Q. 2 Solve any three of the following questions.
a) Solve $\left(D^{2}+4\right) y=\sin ^{2} x$
b) Solve $\left(D^{2}+3 D+2\right) y=x^{2}+3 x+1$
c) Solve $\left(D^{2}+2 D+5\right) y=e^{-x} \sin 2 x$

Solve $\left(D^{3}+1\right) y=65 \cos (2 x+1)$
Q. 3 Solve the following questions.
a) $z\left(p^{2}-q^{2}\right)=x-y$
b) $p^{3}+q^{3}=27 z$
c) $p x^{2}+q y^{2}=(x+y) z$
Q. 4 Solve the following questions.
a) Find $L\left\{e^{-t} \cos ^{2} 3 t\right\}$
b) Find $L\left\{\frac{\cos 6 t-\cos 4 t}{t}\right\}$
c) Find the laplace transform of the periodic function defined by

$$
f(t)=\frac{k t}{T}, 0<t<T
$$

where $f(t+T)=f(t)$

Q. 5 Solve the following questions.

a) Find $L^{-1}\left\{\frac{2 s^{2}+5 s-4}{s^{3}+s^{2}-2 s}\right\}$
b) Using the convolution theorem, find the inverse Laplace transform of

$$
\frac{1}{(s-1)\left(s^{2}+1\right)}
$$

c) Solve $y^{\prime \prime}+2 y^{\prime}+y=3 t e^{-t}$, given that $y=4, y^{\prime}=2$ when $t=0$ using Laplace transform.

Section - II

Q. 6 a) Find the unit tangent vector at any point on the curve given by 04 $x=t^{2}+2, y=4 t-5$ and $z=2 t^{2}-6 t$ where t is any variable. Also determine unit tangent vector at $t=2$.
b) Find the value of constant a, b and c for which vector 03
$\bar{v}=(x+y+a z) i+(b x+3 y-z) j+(3 x+c y+z) k$ is irrotational
c) Find the angle between the normals to the surface $x^{2} y+z=3$ and $x \log z-y^{2}+4=0$ at $(-1,2,1)$
Q. 7 a) Find the Fourier expansion of $f(x)=2 x-x^{2}$ in $(0,3)$

Find the Fourier series of $f(x)=x^{2}-2,-2 \leq x \leq 2$05
b) Find the Fourier series of $f(x)=x^{3}$ in $(-\pi, \pi) 04$
Q. 8 a) Express $f(x)=\left\{\begin{array}{cc}\sin x, & |x|<\pi \\ 0, & |x|>\pi\end{array}\right.$ as a Fourier integral and show that

$$
\int_{0}^{\infty} \frac{\sin w x \cdot \sin \pi w}{1-w^{2}} d w=\left\{\begin{array}{cc}
\frac{\pi}{2} \cdot \sin x, & |x|<\pi \\
0, & |x|>\pi
\end{array}\right.
$$

b) Find Fourier sine transform of $f(x)=\left\{\begin{array}{cc}\sin x, & 0<x<1 \\ 0, & x>1\end{array}\right.$
C) Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}\sqrt{2 \pi}, & |x|<a \\ 0, & |x|>a\end{array}\right.$
Q. 9 Solve any three of the following questions.
a) Find the inverse z-transform of $\frac{1}{z^{2}-3 z+2},|z|>2$
b) Find the inverse z-transform of $\frac{z^{2}}{\left(z-\frac{1}{4}\right)\left(z-\frac{1}{5}\right)},|z|<\frac{1}{5}$
c) Find $z\left\{3^{k} \sin \left(\frac{k \pi}{2}\right)\right\}, k \geq 0$
d) Find $z\left\{4^{k}+\frac{1}{4^{k}}\right\}, k \geq 0$

SLR-FM-675

Seat

No.

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Use of non-programmable calculator is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The Laplace transform of $(\sin t+\cos t)^{2}$ is \qquad .
a) $\frac{1}{s}-\frac{2}{s^{2}+4}$
b) $\frac{1}{s}+\frac{2}{s^{2}+4}$
C) $\frac{1}{s}-\frac{2}{s^{2}-4}$
d) $\frac{1}{s}+\frac{2}{s^{2}-4}$
2) $\frac{1}{(s+3)^{2}}$ is the Laplace transform of \qquad
a) $t e^{-3 t}$
b) $t^{2} e^{-3 t}$
c) $e^{-3 t}$
d) $t e^{3 t}$
3)

$$
L^{-1}\left\{\frac{1}{s^{2}-6 s+25}\right\}=
$$

\qquad .
a) $\frac{e^{-3 t}}{4} \sin 4 t$
b) $\frac{e^{-3 t} \cos 4 t}{4}$
C) $e^{-3 t} \sin 4 t$
d) $\frac{e^{3 t} \sin 4 t}{4}$
4) The directional derivative of $\phi=x y+y z+z x$ at $(1,1,1)$ is maximum in the direction of \qquad .
a) $i+j+k$
b) $i-j+k$
c) $2 i+2 j+2 k$
d) $2 i-2 j+2 k$
5) If $\bar{r}=x i+y j+z k$ and \bar{a} is a constant vector then $\nabla(\bar{a} \cdot \bar{r})=$ \qquad .
a) \bar{a}
b) \bar{r}
c) $\bar{a} \cdot \bar{r}$
d) 0
6) If $z\left\{a^{k}\right\}=\frac{z}{z-a}$ then $z\left\{k \cdot a^{k}\right\}=$ \qquad .
a) $\frac{a}{(z-a)^{2}}$
b) $\frac{a z}{(z-a)^{2}}$
C) $\frac{z}{(z-a)^{2}}$
d) $\frac{-1}{(z-a)^{2}}$
7) The inverse z-transform of $\frac{z}{z-1},|z|>1$ is \qquad .
a) -1
b) 1
c) 0
d) K
8) If $f(x)=x$ is represented by Fourier series in $(-\pi, \pi)$ then \qquad is the constant term.
a) $\frac{\pi}{2}$
b) π
C) 0
d) 2π
9) For Fourier series expansion, function must be \qquad .
a) Harmonic
b) Reimann
c) Cauchy
d) Periodic
10) The Fourier sine transform of $f(x)=\left\{\begin{array}{lc}1, & 0 \leq x<1 \\ 0, & x>1\end{array}\right.$ is \qquad .
a) $\sqrt{\frac{2}{\pi}}$
b) $\sqrt{\frac{2}{\pi}}(1-\cos s)$
C) $\sqrt{\frac{2}{\pi}}\left(\frac{1-\sin s}{s}\right)$
d) $\sqrt{\frac{2}{\pi}}\left(\frac{1-\cos s}{s}\right)$
11) The particular Integral of $(D+1)^{3} y=e^{-x}$ is \qquad
.
a) $\frac{x^{3}}{3!} e^{-x}$
b) $\frac{x^{2}}{2} e^{-x}$
c) $x e^{x}$
d) None of these
12) The complete solution of $\left(D^{4}+6 D^{2}+9\right) y=0$ is \qquad .
a) $y=\left(c_{1}+c_{2} x\right) e^{x}+\left(c_{3}+c_{4} x\right) e^{-x}$
b) $y=\left(c_{1}+c_{2}\right) e^{x}+\left(c_{3}+c_{4} x\right) e^{-x}$
c) $y=\left(c_{1}+c_{2} x\right) \cos \sqrt{3} x+\left(c_{3}+c_{4} x\right) \sin \sqrt{3} x$
d) $y=\left(c_{1}+c_{2} x\right) \cos 3 x+\left(c_{3}+c_{4} x\right) \sin 3 x$
13) The solution of $p x+q y=z$ is \qquad b)
a) $\phi(x+y, y+z)=0$
b) $\phi\left(\frac{x}{y}, \frac{y}{z}\right)=0$
c) $\phi\left(\frac{x^{2}}{y}, \frac{y^{2}}{z}\right)=0$
d) $\phi(x y, y z)=0$
14) The value of the integral $\int_{0}^{\infty} e^{-3 t} \sin t d t$ is \qquad .
a) 5
b) $\frac{1}{5}$
C) 10
d) $\frac{1}{10}$

SLR-FM-675

Seat

No.

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 5 \& Q. 6 are compulsory.
2) Solve any two questions from each section.
2) Figures to the right indicate full marks.
3) Use of calculator is allowed.

Section - I

Q. 2 Solve any three of the following questions.
a) Solve $\left(D^{2}+4\right) y=\sin ^{2} x$
b) Solve $\left(D^{2}+3 D+2\right) y=x^{2}+3 x+1$
c) Solve $\left(D^{2}+2 D+5\right) y=e^{-x} \sin 2 x$

Solve $\left(D^{3}+1\right) y=65 \cos (2 x+1)$
Q. 3 Solve the following questions.
a) $z\left(p^{2}-q^{2}\right)=x-y$
b) $p^{3}+q^{3}=27 z$
c) $p x^{2}+q y^{2}=(x+y) z$
Q. 4 Solve the following questions.
a) Find $L\left\{e^{-t} \cos ^{2} 3 t\right\}$
b) Find $L\left\{\frac{\cos 6 t-\cos 4 t}{t}\right\}$
c) Find the laplace transform of the periodic function defined by

$$
f(t)=\frac{k t}{T}, 0<t<T
$$

where $f(t+T)=f(t)$

Q. 5 Solve the following questions.

a) Find $L^{-1}\left\{\frac{2 s^{2}+5 s-4}{s^{3}+s^{2}-2 s}\right\}$
b) Using the convolution theorem, find the inverse Laplace transform of

$$
\frac{1}{(s-1)\left(s^{2}+1\right)}
$$

c) Solve $y^{\prime \prime}+2 y^{\prime}+y=3 t e^{-t}$, given that $y=4, y^{\prime}=2$ when $t=0$ using Laplace transform.

Section - II

Q. 6 a) Find the unit tangent vector at any point on the curve given by 04 $x=t^{2}+2, y=4 t-5$ and $z=2 t^{2}-6 t$ where t is any variable. Also determine unit tangent vector at $t=2$.
b) Find the value of constant a, b and c for which vector 03
$\bar{v}=(x+y+a z) i+(b x+3 y-z) j+(3 x+c y+z) k$ is irrotational
c) Find the angle between the normals to the surface $x^{2} y+z=3$ and $x \log z-y^{2}+4=0$ at $(-1,2,1)$
Q. 7 a) Find the Fourier expansion of $f(x)=2 x-x^{2}$ in $(0,3)$

Find the Fourier series of $f(x)=x^{2}-2,-2 \leq x \leq 2$05
b) Find the Fourier series of $f(x)=x^{3}$ in $(-\pi, \pi)$ 04
Q. 8 a) Express $f(x)=\left\{\begin{array}{cc}\sin x, & |x|<\pi \\ 0, & |x|>\pi\end{array}\right.$ as a Fourier integral and show that

$$
\int_{0}^{\infty} \frac{\sin w x \cdot \sin \pi w}{1-w^{2}} d w=\left\{\begin{array}{cc}
\frac{\pi}{2} \cdot \sin x, & |x|<\pi \\
0, & |x|>\pi
\end{array}\right.
$$

b) Find Fourier sine transform of $f(x)=\left\{\begin{array}{cc}\sin x, & 0<x<1 \\ 0, & x>1\end{array}\right.$
c) Find the Fourier transform of $f(x)=\left\{\begin{array}{cl}\sqrt{2 \pi}, & |x|<a \\ 0, & |x|>a\end{array}\right.$
Q. 9 Solve any three of the following questions.
a) Find the inverse z-transform of $\frac{1}{z^{2}-3 z+2},|z|>2$
b) Find the inverse z-transform of $\frac{z^{2}}{\left(z-\frac{1}{4}\right)\left(z-\frac{1}{5}\right)},|z|<\frac{1}{5}$
c) Find $z\left\{3^{k} \sin \left(\frac{k \pi}{2}\right)\right\}, k \geq 0$
d) Find $z\left\{4^{k}+\frac{1}{4^{k}}\right\}, k \geq 0$

SLR-FM-675

Seat

No.

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Use of non-programmable calculator is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) If $z\left\{a^{k}\right\}=\frac{z}{z-a}$ then $z\left\{k \cdot a^{k}\right\}=$ \qquad .
a) $\frac{a}{(z-a)^{2}}$
b) $\frac{a z}{(z-a)^{2}}$
C) $\frac{z}{(z-a)^{2}}$
d) $\frac{-1}{(z-a)^{2}}$
2) The inverse z-transform of $\frac{z}{z-1},|z|>1$ is \qquad .
a) -1
b) 1
c) 0
d) K
3) If $f(x)=x$ is represented by Fourier series in $(-\pi, \pi)$ then \qquad is the constant term.
a) $\frac{\pi}{2}$
b) π
c) 0
d) 2π
4) For Fourier series expansion, function must be \qquad .
a) Harmonic
b) Reimann
c) Cauchy
d) Periodic
5) The Fourier sine transform of $f(x)=\left\{\begin{array}{lc}1, & 0 \leq x<1 \\ 0, & x>1\end{array}\right.$ is \qquad .
a) $\sqrt{\frac{2}{\pi}}$
b) $\sqrt{\frac{2}{\pi}}(1-\cos s)$
C) $\sqrt{\frac{2}{\pi}}\left(\frac{1-\sin s}{s}\right)$
d) $\sqrt{\frac{2}{\pi}}\left(\frac{1-\cos s}{s}\right)$
6) The particular Integral of $(D+1)^{3} y=e^{-x}$ is \qquad .
a) $\frac{x^{3}}{3!} e^{-x}$
b) $\frac{x^{2}}{2} e^{-x}$
c) $x e^{x}$
d) None of these
7) The complete solution of $\left(D^{4}+6 D^{2}+9\right) y=0$ is \qquad .
a) $y=\left(c_{1}+c_{2} x\right) e^{x}+\left(c_{3}+c_{4} x\right) e^{-x}$
b) $y=\left(c_{1}+c_{2}\right) e^{x}+\left(c_{3}+c_{4} x\right) e^{-x}$
c) $y=\left(c_{1}+c_{2} x\right) \cos \sqrt{3} x+\left(c_{3}+c_{4} x\right) \sin \sqrt{3} x$
d) $y=\left(c_{1}+c_{2} x\right) \cos 3 x+\left(c_{3}+c_{4} x\right) \sin 3 x$
8) The solution of $p x+q y=z$ is \qquad .
a) $\phi(x+y, y+z)=0$
b) $\phi\left(\frac{x}{y}, \frac{y}{z}\right)=0$
c) $\phi\left(\frac{x^{2}}{y}, \frac{y^{2}}{z}\right)=0$
d) $\phi(x y, y z)=0$
9) The value of the integral $\int_{0}^{\infty} e^{-3 t} \sin t d t$ is \qquad -
a) 5
b) $\frac{1}{5}$
C) 10
d) $\frac{1}{10}$
10) The Laplace transform of $(\sin t+\cos t)^{2}$ is \qquad .
a) $\frac{1}{s}-\frac{2}{s^{2}+4}$
b) $\frac{1}{s}+\frac{2}{s^{2}+4}$
C) $\frac{1}{s}-\frac{2}{s^{2}-4}$
d) $\frac{1}{s}+\frac{2}{s^{2}-4}$
11) $\frac{1}{(s+3)^{2}}$ is the Laplace transform of \qquad .
a) $t e^{-3 t}$
b) $t^{2} e^{-3 t}$
C) $e^{-3 t}$
d) $t e^{3 t}$
12) $L^{-1}\left\{\frac{1}{s^{2}-6 s+25}\right\}=$ \qquad .
a) $\frac{e^{-3 t}}{4} \sin 4 t$
b) $\frac{e^{-3 t} \cos 4 t}{4}$
C) $e^{-3 t} \sin 4 t$
d) $\frac{e^{3 t} \sin 4 t}{4}$
13) The directional derivative of $\phi=x y+y z+z x$ at $(1,1,1)$ is maximum in the direction of \qquad .
a) $i+j+k$
b) $i-j+k$
C) $2 i+2 j+2 k$
d) $2 i-2 j+2 k$
14) If $\bar{r}=x i+y j+z k$ and \bar{a} is a constant vector then $\nabla(\bar{a} \cdot \bar{r})=$ \qquad .
a) \bar{a}
b) \bar{r}
c) $\bar{a} \cdot \bar{r}$
d) 0

SLR-FM-675

Seat

No.

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ENGINEERING MATHEMATICS - III

Day \& Date: Saturday, 07-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 5 \& Q. 6 are compulsory.
2) Solve any two questions from each section.
2) Figures to the right indicate full marks.
3) Use of calculator is allowed.

Section - I

Q. 2 Solve any three of the following questions.
a) Solve $\left(D^{2}+4\right) y=\sin ^{2} x$
b) Solve $\left(D^{2}+3 D+2\right) y=x^{2}+3 x+1$
c) Solve $\left(D^{2}+2 D+5\right) y=e^{-x} \sin 2 x$

OR
Solve $\left(D^{3}+1\right) y=65 \cos (2 x+1)$
Q. 3 Solve the following questions.
a) $z\left(p^{2}-q^{2}\right)=x-y$
b) $p^{3}+q^{3}=27 z$
c) $p x^{2}+q y^{2}=(x+y) z$
Q. 4 Solve the following questions.
a) Find $L\left\{e^{-t} \cos ^{2} 3 t\right\}$
b) Find $L\left\{\frac{\cos 6 t-\cos 4 t}{t}\right\}$
c) Find the laplace transform of the periodic function defined by

$$
f(t)=\frac{k t}{T}, 0<t<T
$$

where $f(t+T)=f(t)$

Q. 5 Solve the following questions.

a) Find $L^{-1}\left\{\frac{2 s^{2}+5 s-4}{s^{3}+s^{2}-2 s}\right\}$
b) Using the convolution theorem, find the inverse Laplace transform of

$$
\frac{1}{(s-1)\left(s^{2}+1\right)}
$$

c) Solve $y^{\prime \prime}+2 y^{\prime}+y=3 t e^{-t}$, given that $y=4, y^{\prime}=2$ when $t=0$ using Laplace transform.

Section - II

Q. 6 a) Find the unit tangent vector at any point on the curve given by 04 $x=t^{2}+2, y=4 t-5$ and $z=2 t^{2}-6 t$ where t is any variable. Also determine unit tangent vector at $t=2$.
b) Find the value of constant a, b and c for which vector 03
$\bar{v}=(x+y+a z) i+(b x+3 y-z) j+(3 x+c y+z) k$ is irrotational
c) Find the angle between the normals to the surface $x^{2} y+z=3$ and $x \log z-y^{2}+4=0$ at $(-1,2,1)$
Q. 7 a) Find the Fourier expansion of $f(x)=2 x-x^{2}$ in $(0,3)$

Find the Fourier series of $f(x)=x^{2}-2,-2 \leq x \leq 2$05
b) Find the Fourier series of $f(x)=x^{3}$ in $(-\pi, \pi)$ 04
Q. 8 a) Express $f(x)=\left\{\begin{array}{cc}\sin x, & |x|<\pi \\ 0, & |x|>\pi\end{array}\right.$ as a Fourier integral and show that

$$
\int_{0}^{\infty} \frac{\sin w x \cdot \sin \pi w}{1-w^{2}} d w=\left\{\begin{array}{cc}
\frac{\pi}{2} \cdot \sin x, & |x|<\pi \\
0, & |x|>\pi
\end{array}\right.
$$

b) Find Fourier sine transform of $f(x)=\left\{\begin{array}{cc}\sin x, & 0<x<1 \\ 0, & x>1\end{array}\right.$
c) Find the Fourier transform of $f(x)=\left\{\begin{array}{cl}\sqrt{2 \pi}, & |x|<a \\ 0, & |x|>a\end{array}\right.$
Q. 9 Solve any three of the following questions.
a) Find the inverse z-transform of $\frac{1}{z^{2}-3 z+2},|z|>2$
b) Find the inverse z-transform of $\frac{z^{2}}{\left(z-\frac{1}{4}\right)\left(z-\frac{1}{5}\right)},|z|<\frac{1}{5}$
c) Find $z\left\{3^{k} \sin \left(\frac{k \pi}{2}\right)\right\}, k \geq 0$
d) Find $z\left\{4^{k}+\frac{1}{4^{k}}\right\}, k \geq 0$

| Seat |
| :--- | :--- |
| No. |

Set

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if necessary.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) An input voltage of 20 Vrms is given to voltage doubler circuit. What is the output voltage?
a) 56.56 V
b) 40 V
c) 28.28 V
d) None of these
2) Ideal value of Load regulation is \qquad and ideal value of ripple factor is \qquad .
a) Zero, Zero
b) Infinite, Infinite
c) Infinite, Zero
d) Zero, Infinite
3) PIV of diode used in voltage multiplier circuit is \qquad .
a) 2 Vm
b) $\quad \mathrm{Vm} / 2$
c) Vm
d) $2 \mathrm{Vm} / \pi$
4) Back emf in LC filter can be avoided by using \qquad .
a) Inductor filter
b) Using capacitor filter
c) Using bleeder resistor
d) Using bleeder capacitor
5) If one of the diode in center tapped full wave rectifier circuit get damaged it act like \qquad -
a) Clipper circuit
b) Half wave rectifier
c) Both a \& b
d) Cant say
6) Reverse saturation current gets \qquad for every \qquad rise in temperature.
a) $\mathrm{Half}, 10^{\circ} \mathrm{C}$
b) Triple $30^{\circ} \mathrm{C}$
c) Double $10^{\circ} \mathrm{C}$
d) Constant, $20^{\circ} \mathrm{C}$
7) The critical value of inductance in choke input filter is \qquad .
a) $3 \omega / R_{L}$
b) $R_{L} / 3 \omega$
c) $3 \omega R_{L}$
d) R_{L}
8) Which are the majority charge carriers in N-channel JFET by enhancing the flow of current between two P-regions or gates?
a) Holes
b) Electrons
c) Both a \& b
d) None of the above
9) Which region is lightly doped with an impurity by forming PN junctions in JFET?
a) Source
b) Drain
c) Gate
d) Channel
10) Icbo in transistor can be reduced by reducing \qquad .
a) I_{B}
b) I_{E}
c) Vcc
d) Temperature
11) In a tansistor, $\mathrm{I}_{\mathrm{c}}=100 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{E}}=100.2 \mathrm{~mA}$. The value of β is \qquad .
a) 100
b) 200
c) about 1
d) 50
12) The voltage gain of a transistor connected in common collector arrangement are \qquad .
a) equal to 1
b) more than 10
c) less than 1
d) more than 100
13) The Early Effect is also called as \qquad .
a) Base-width modulation effect
b) Base-width amplification effect
c) Punch through effect
d) None of the mentioned
14) BC 147 transistor indicates that it is made of \qquad .
a) germanium
b) silicon
c) carbon
d) none of the above

Seat
Set

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Assume the suitable data whenever necessary.
3) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any Four.

a) What is the difference between normal PN junction diode and zener diode? Explain with the help of V-I characteristics.
b) Explain with neat circuit diagram working of voltage tripler. Does this circuit provides power multiplication also?
c) Explain the working of the circuit shown in fig. 1 and draw output waveform.

d) Derive expression for efficiency and ripple factor for center tapped full wave rectifier.
e) Calculate value of reverse saturation current for Silicon diode at room temperature when applied voltage is 5 V and forward current through diode is 1 A .
Q. 3 Solve any Two.
a) Design unregulated power supply with two diode and CLC filter to provide 21 V and 10 mA current, ripple content in the output must be less than 1%.
b) What is clamper? Explain working of positive clamper with neat circuit diagram and waveform. What are the applications of Clamper circuit?
c) Explain junction capacitances of diode and derive expression for diffusion capacitance.

Section - II

Q. 4 Attempt any Four.
a) Calculate Q point coordinates for collector to base biasing circuit for Si transistor with

$$
\mathrm{R}_{\mathrm{C}}=1 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{B}}=100 \mathrm{~K} \Omega \mathrm{Vcc}=12 \mathrm{~V}, \beta \mathrm{dc}=100 .
$$

b) Justify output voltage signal is 180° out of phase with input signal with suitable diagram for transistor Common Emitter amplifier.
c) Explain stabilization of Q point for voltage divider biasing circuit.
d) Explain effect of Gate to source voltage on channel conductivity for JFET.
e) Explain high frequency response of BJT amplifier.
Q. 5 Attempt any Two.
a) Design a single stage CE amplifier with voltage divider bias to give voltage gain of 40 , Vo peak $=4 \mathrm{~V}$ and stability factor $\mathrm{S}=10$. Assume hfe $=45$, hie $=1.4 \mathrm{~K} \Omega$.
b) Consider transistor $C E$ amplifier with $R_{L}=2.7 \mathrm{~K} \Omega$, hie $=4.5 \mathrm{~K} \Omega$, hre $=2 \times 10^{-4}$, hfe $=-330$, hoe $=30 \mu \mho$. Calculate Ai, Av, Ri, Ro.
c) Explain Common Source JFET amplifier with its basic parameters.

Seat

No.
Set

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if necessary.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Which are the majority charge carriers in N-channel JFET by enhancing the flow of current between two P-regions or gates?
a) Holes
b) Electrons
c) Both a \& b
d) None of the above
2) Which region is lightly doped with an impurity by forming PN junctions in JFET?
a) Source
b) Drain
c) Gate
d) Channel
3) Icbo in transistor can be reduced by reducing \qquad .
a) I_{B}
b) I_{E}
c) Vcc
d) Temperature
4) In a tansistor, $\mathrm{I}_{\mathrm{c}}=100 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{E}}=100.2 \mathrm{~mA}$. The value of β is \qquad .
a) 100
b) 200
c) about 1
d) 50
5) The voltage gain of a transistor connected in common collector arrangement are \qquad .
a) equal to 1
b) more than 10
c) less than 1
d) more than 100
6) The Early Effect is also called as \qquad .
a) Base-width modulation effect
b) Base-width amplification effect
c) Punch through effect
d) None of the mentioned
7) BC 147 transistor indicates that it is made of \qquad .
a) germanium
b) silicon
c) carbon
d) none of the above
8) An input voltage of 20 Vrms is given to voltage doubler circuit. What is the output voltage?
a) 56.56 V
b) 40 V
c) 28.28 V
d) None of these
9) Ideal value of Load regulation is \qquad and ideal value of ripple factor is \qquad .
a) Zero, Zero
b) Infinite, Infinite
c) Infinite, Zero
d) Zero, Infinite
10) PIV of diode used in voltage multiplier circuit is \qquad .
a) 2 Vm
b) $\quad \mathrm{Vm} / 2$
c) Vm
d) $2 \mathrm{Vm} / \pi$
11) Back emf in LC filter can be avoided by using \qquad .
a) Inductor filter
b) Using capacitor filter
c) Using bleeder resistor
d) Using bleeder capacitor
12) If one of the diode in center tapped full wave rectifier circuit get damaged it act like \qquad .
a) Clipper circuit
b) Half wave rectifier
c) Both a \& b
d) Cant say
13) Reverse saturation current gets \qquad for every \qquad rise in temperature.
a) Half, $10^{\circ} \mathrm{C}$
b) Triple, $30^{\circ} \mathrm{C}$
c) Double $10^{\circ} \mathrm{C}$
d) Constant, $20^{\circ} \mathrm{C}$
14) The critical value of inductance in choke input filter is \qquad .
a) $3 \omega / R_{L}$
b) $R_{L} / 3 \omega$
c) $3 \omega R_{L}$
d) R_{L}

Seat
No.

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Assume the suitable data whenever necessary.
3) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any Four.

a) What is the difference between normal PN junction diode and zener diode? Explain with the help of V-I characteristics.
b) Explain with neat circuit diagram working of voltage tripler. Does this circuit provides power multiplication also?
c) Explain the working of the circuit shown in fig. 1 and draw output waveform.

d) Derive expression for efficiency and ripple factor for center tapped full wave rectifier.
e) Calculate value of reverse saturation current for Silicon diode at room temperature when applied voltage is 5 V and forward current through diode is 1 A .
Q. 3 Solve any Two.
a) Design unregulated power supply with two diode and CLC filter to provide 21 V and 10 mA current, ripple content in the output must be less than 1%.
b) What is clamper? Explain working of positive clamper with neat circuit diagram and waveform. What are the applications of Clamper circuit?
c) Explain junction capacitances of diode and derive expression for diffusion capacitance.

Section - II

Q. 4 Attempt any Four.
a) Calculate Q point coordinates for collector to base biasing circuit for Si transistor with

$$
\mathrm{R}_{\mathrm{C}}=1 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{B}}=100 \mathrm{~K} \Omega \mathrm{Vcc}=12 \mathrm{~V}, \beta \mathrm{dc}=100 .
$$

b) Justify output voltage signal is 180° out of phase with input signal with suitable diagram for transistor Common Emitter amplifier.
c) Explain stabilization of Q point for voltage divider biasing circuit.
d) Explain effect of Gate to source voltage on channel conductivity for JFET.
e) Explain high frequency response of BJT amplifier.

Q. 5 Attempt any Two.

a) Design a single stage CE amplifier with voltage divider bias to give voltage gain of 40 , Vo peak $=4 \mathrm{~V}$ and stability factor $\mathrm{S}=10$. Assume hfe=45, hie $=1.4 \mathrm{~K} \Omega$.
b) Consider transistor $C E$ amplifier with $R_{L}=2.7 \mathrm{~K} \Omega$, hie $=4.5 \mathrm{~K} \Omega$, hre $=2 \times 10^{-4}$, hfe $=-330$, hoe $=30 \mu \mho$. Calculate $\mathrm{Ai}, \mathrm{Av}, \mathrm{Ri}$, Ro.
c) Explain Common Source JFET amplifier with its basic parameters.

Seat

No.
Set

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if necessary.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) If one of the diode in center tapped full wave rectifier circuit get damaged it act like \qquad .
a) Clipper circuit
b) Half wave rectifier
c) Both a \& b
d) Cant say
2) Reverse saturation current gets \qquad for every \qquad rise in temperature.
a) Half, $10^{\circ} \mathrm{C}$
b) Triple $30^{\circ} \mathrm{C}$
c) Double $10^{\circ} \mathrm{C}$
d) Constant, $20^{\circ} \mathrm{C}$
3) The critical value of inductance in choke input filter is \qquad .
a) $3 \omega / R_{L}$
b) $R_{L} / 3 \omega$
c) $3 \omega R_{L}$
d) R_{L}
4) Which are the majority charge carriers in N -channel JFET by enhancing the flow of current between two P-regions or gates?
a) Holes
b) Electrons
c) Both a \& b
d) None of the above
5) Which region is lightly doped with an impurity by forming PN junctions in JFET?
a) Source
b) Drain
c) Gate
d) Channel
6) Icbo in transistor can be reduced by reducing \qquad .
a) I_{B}
b) I_{E}
c) Vcc
d) Temperature
7) In a tansistor, $\mathrm{I}_{\mathrm{c}}=100 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{E}}=100.2 \mathrm{~mA}$. The value of β is \qquad .
a) 100
b) 200
c) about 1
d) 50
8) The voltage gain of a transistor connected in common collector arrangement are \qquad .
a) equal to 1
b) more than 10
c) less than 1
d) more than 100
9) The Early Effect is also called as \qquad .
a) Base-width modulation effect
b) Base-width amplification effect
c) Punch through effect
d) None of the mentioned
10) BC 147 transistor indicates that it is made of \qquad .
a) germanium
b) silicon
c) carbon
d) none of the above
11) An input voltage of 20 Vrms is given to voltage doubler circuit. What is the output voltage?
a) 56.56 V
b) 40 V
c) 28.28 V
d) None of these
12) Ideal value of Load regulation is \qquad and ideal value of ripple factor is \qquad .
a) Zero, Zero
b) Infinite, Infinite
c) Infinite, Zero
d) Zero, Infinite
13) PIV of diode used in voltage multiplier circuit is \qquad .
a) 2 Vm
b) $\mathrm{Vm} / 2$
c) Vm
d) $2 \mathrm{Vm} / \pi$
14) Back emf in LC filter can be avoided by using \qquad .
a) Inductor filter
b) Using capacitor filter
c) Using bleeder resistor
d) Using bleeder capacitor

Seat

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Assume the suitable data whenever necessary.
3) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any Four.

a) What is the difference between normal PN junction diode and zener diode? Explain with the help of V-I characteristics.
b) Explain with neat circuit diagram working of voltage tripler. Does this circuit provides power multiplication also?
c) Explain the working of the circuit shown in fig. 1 and draw output waveform.

d) Derive expression for efficiency and ripple factor for center tapped full wave rectifier.
e) Calculate value of reverse saturation current for Silicon diode at room temperature when applied voltage is 5 V and forward current through diode is 1 A .
Q. 3 Solve any Two.
a) Design unregulated power supply with two diode and CLC filter to provide 21 V and 10 mA current, ripple content in the output must be less than 1%.
b) What is clamper? Explain working of positive clamper with neat circuit diagram and waveform. What are the applications of Clamper circuit?
c) Explain junction capacitances of diode and derive expression for diffusion capacitance.

Section - II

Q. 4 Attempt any Four.
a) Calculate Q point coordinates for collector to base biasing circuit for Si transistor with

$$
\mathrm{R}_{\mathrm{C}}=1 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{B}}=100 \mathrm{~K} \Omega \mathrm{Vcc}=12 \mathrm{~V}, \beta \mathrm{dc}=100 .
$$

b) Justify output voltage signal is 180° out of phase with input signal with suitable diagram for transistor Common Emitter amplifier.
c) Explain stabilization of Q point for voltage divider biasing circuit.
d) Explain effect of Gate to source voltage on channel conductivity for JFET.
e) Explain high frequency response of BJT amplifier.
Q. 5 Attempt any Two.
a) Design a single stage CE amplifier with voltage divider bias to give voltage gain of 40 , Vo peak $=4 \mathrm{~V}$ and stability factor $\mathrm{S}=10$. Assume hfe=45, hie $=1.4 \mathrm{~K} \Omega$.
b) Consider transistor CE amplifier with $R_{L}=2.7 \mathrm{~K} \Omega$, hie $=4.5 \mathrm{~K} \Omega$, hre $=2 \times 10^{-4}$, hfe $=-330$, hoe $=30 \mu \mho$. Calculate $\mathrm{Ai}, \mathrm{Av}, \mathrm{Ri}$, Ro.
c) Explain Common Source JFET amplifier with its basic parameters.

| Seat |
| :--- | :--- |
| No. |

Set

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if necessary.
3) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Icbo in transistor can be reduced by reducing \qquad .
a) I_{B}
b) I_{E}
c) Vcc
d) Temperature
2) In a tansistor, $\mathrm{I}_{\mathrm{c}}=100 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{E}}=100.2 \mathrm{~mA}$. The value of β is \qquad .
a) 100
b) 200
c) about 1
d) 50
3) The voltage gain of a transistor connected in common collector arrangement are \qquad .
a) equal to 1
b) more than 10
c) less than 1
d) more than 100
4) The Early Effect is also called as \qquad .
a) Base-width modulation effect
b) Base-width amplification effect
c) Punch through effect
d) None of the mentioned
5) BC 147 transistor indicates that it is made of \qquad .
a) germanium
b) silicon
c) carbon
d) none of the above
6) An input voltage of 20 Vrms is given to voltage doubler circuit. What is the output voltage?
a) 56.56 V
b) 40 V
c) 28.28 V
d) None of these
7) Ideal value of Load regulation is \qquad and ideal value of ripple factor is \qquad .
a) Zero, Zero
b) Infinite, Infinite
c) Infinite, Zero
d) Zero, Infinite
8) PIV of diode used in voltage multiplier circuit is \qquad .
a) 2 Vm
b) $\quad \mathrm{Vm} / 2$
c) Vm
d) $2 \mathrm{Vm} / \pi$
9) Back emf in LC filter can be avoided by using \qquad .
a) Inductor filter
b) Using capacitor filter
c) Using bleeder resistor
d) Using bleeder capacitor
10) If one of the diode in center tapped full wave rectifier circuit get damaged it act like \qquad .
a) Clipper circuit
b) Half wave rectifier
c) Both a \& b
d) Cant say
11) Reverse saturation current gets \qquad for every \qquad rise in temperature.
a) Half, $10^{\circ} \mathrm{C}$
b) Triple, $30^{\circ} \mathrm{C}$
c) Double $10^{\circ} \mathrm{C}$
d) Constant, $20^{\circ} \mathrm{C}$
12) The critical value of inductance in choke input filter is \qquad .
a) $3 \omega / R_{L}$
b) $R_{L} / 3 \omega$
c) $3 \omega R_{L}$
d) R_{L}
13) Which are the majority charge carriers in N-channel JFET by enhancing the flow of current between two P-regions or gates?
a) Holes
b) Electrons
c) Both a \& b
d) None of the above
14) Which region is lightly doped with an impurity by forming PN junctions in JFET?
a) Source
b) Drain
c) Gate
d) Channel

Seat

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

Day \& Date: Tuesday, 10-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Assume the suitable data whenever necessary.
3) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any Four.

a) What is the difference between normal PN junction diode and zener diode? Explain with the help of V-I characteristics.
b) Explain with neat circuit diagram working of voltage tripler. Does this circuit provides power multiplication also?
c) Explain the working of the circuit shown in fig. 1 and draw output waveform.

d) Derive expression for efficiency and ripple factor for center tapped full wave rectifier.
e) Calculate value of reverse saturation current for Silicon diode at room temperature when applied voltage is 5 V and forward current through diode is 1 A .
Q. 3 Solve any Two.
a) Design unregulated power supply with two diode and CLC filter to provide 21 V and 10 mA current, ripple content in the output must be less than 1%.
b) What is clamper? Explain working of positive clamper with neat circuit diagram and waveform. What are the applications of Clamper circuit?
c) Explain junction capacitances of diode and derive expression for diffusion capacitance.

Section - II

Q. 4 Attempt any Four.
a) Calculate Q point coordinates for collector to base biasing circuit for Si transistor with

$$
\mathrm{R}_{\mathrm{C}}=1 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{B}}=100 \mathrm{~K} \Omega \mathrm{Vcc}=12 \mathrm{~V}, \beta \mathrm{dc}=100 .
$$

b) Justify output voltage signal is 180° out of phase with input signal with suitable diagram for transistor Common Emitter amplifier.
c) Explain stabilization of Q point for voltage divider biasing circuit.
d) Explain effect of Gate to source voltage on channel conductivity for JFET.
e) Explain high frequency response of BJT amplifier.
Q. 5 Attempt any Two.
a) Design a single stage CE amplifier with voltage divider bias to give voltage gain of 40 , Vo peak $=4 \mathrm{~V}$ and stability factor $\mathrm{S}=10$. Assume hfe $=45$, hie $=1.4 \mathrm{~K} \Omega$.
b) Consider transistor CE amplifier with $R_{L}=2.7 \mathrm{~K} \Omega$, hie $=4.5 \mathrm{~K} \Omega$, hre $=2 \times 10^{-4}$, hfe $=-330$, hoe $=30 \mu \mho$. Calculate $\mathrm{Ai}, \mathrm{Av}, \mathrm{Ri}$, Ro.
c) Explain Common Source JFET amplifier with its basic parameters.

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CIRCUITS \& NETWORKS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The superposition theorem is applicable on \qquad .
a) Both Linear and non linear circuits
b) Linear circuits only
c) Non Linear circuits only
d) None of the above
2) For maximum transfer of power the source resistance must be \qquad .
a) Equal to load resistance
b) less than load resistance
c) Greater than load resistance
d) None of the above
3) If the value of resonant frequency is 50 kHz in a series RLC circuit along with the bandwidth of about 1 kHz , then what would be the value of quality factor?
a) 5
b) 50
c) 100
d) 500
4) What would be the value of impedance of a parallel resonant circuit at anti resonance condition?
a) Resistive \& maximum
b) Resistive \& minimum
c) Reactive \& maximum
d) Reactive \& minimum
5) How is the short circuit reverse transfer admittance $\left(\mathrm{Y}_{12}\right)$ calculated?
a) $\mathrm{V} 2 / 11$ (keeping $12=0$)
b) 12/V1 (keeping $\mathrm{V} 2=0$)
c) $11 / \mathrm{V} 2$ (keeping $\mathrm{V} 1=0$)
d) \quad V1/12 (keeping $11=0$)
6) In a certain series resonant circuit, $\mathrm{V}_{\mathrm{C}}=125 \mathrm{~V} . \mathrm{V}_{\mathrm{L}}=125 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{R}}=40 \mathrm{~V}$.

The value of the source voltage is \qquad .
a) 50 V
b) 125 V
c) 40 V
d) 250 V
7) Which elements act as independent variables in Z-parameters?
a) Current
b) Voltage
c) Both a and b
d) None of the above
8) In RC series circuit $R=2 \Omega, C=2 \mu \mathrm{~F}$ and 10 V dc is applied. Then what is the value of current at steady state?
a) 0 A
b) 5 A
c) 20 A
d) 10 A
9) Time constant of RL series circuit is \qquad i
a) $2 \mathrm{~L} / \mathrm{R}$
b) L / R
c) RL
d) R / L
10) Transients are presents in the circuit when the circuit is having \qquad .
a) R
b) L
c) C
d) Either L or C
11) An ideal filter is one which \qquad .
a) Zero attenuation in pass band
b) Infinite attenuation in pass band
c) No attenuation in stop band
d) None of the above
12) A band elimination filter is one which \qquad .
a) Attenuates ail frequencies less than lower cut off frequency
b) Attenuates all frequencies greater than lower cut off frequency
c) Attenuates all frequencies between lower and higher cut off frequency
d) None of the above
13) Relation between neper and decibel is \qquad .
a) $N=\log ($ attn in $\mathrm{dB} / 20)$
b) $\quad N=\log (20 /$ attn in dB)
c) $N=$ antilog (attn in $\mathrm{dB} / 20$)
d) $\quad N=a n t i l o g(20 / a t t n$ in $d B)$
14) The driving point impedance is defined as \qquad .
a) Ratio of transform voltage to transform current at same port
b) Ratio of transform voltage at one port to transform current at other port
c) Both a and b
d) None of the above

SLR-FM-677

Seat
No.
Set

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CIRCUITS \& NETWORKS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I
Q. 2 Answer any four from the following questions.
a) Find the Norton equivalent circuit between the points A and B in figure 1?

b) Find in 1 figure 2 using superposition theorem?

c) A $50 \mu \mathrm{~F}$, when connected in series with a coil having 40Ω resistance, resonates al 1000 Hz . Find the inductance of the coil. Also obtain the maximum current if the applied voltage is 100 V .
d) Find Y -parameters for the network shown in figure 3.

e) Derive h-parameters for two port network in terms of voltage. Current and draw h-parameter equivalent circuit.
a) Find the value of R in figure 4 for which maximum power transfer takes place and hence find the maximum power delivered to R ?

b) Derive the expression for frequency at which the Voltage across inductor will be maximum in series resonance circuit.
c) Determine Z parameters for π type network shown in figure 5 .

Q. 4 Answer any four from the following questions

a) Determine the current $\mathrm{i}(\mathrm{t})$ for $t \geq 0$ if initial voltage on capacitor $\mathrm{Vc}(\mathrm{o})=4 \mathrm{~V}$ for the circuit shown in figure 6.

b) Design a T pad attenuator to give an attenuation of 60 dB and to work in a line of 500Ω impedance.
c) Plot the pole zero diagram for $\mathrm{H}(\mathrm{s})=2 \mathrm{~s} /[(\mathrm{s}+2)(\mathrm{s} 2+2 \mathrm{~s}+2)]$
d) Design a k-type high-pass filter (T and π) with, a cut-off frequency of 1 kHz with a terminated design impedance of 800Ω
e) A series $R L$ circuit with $R=30 \Omega$ and $L=15 H$ has a constant voltage $V=$ 60 V applied at $\mathrm{t}=0 \mathrm{O}$ shown in figure 7. Determine the current $\mathrm{i}(\mathrm{t})$ and the voltage $\mathrm{v}(\mathrm{t})$ across the resistance

Q. 5 Answer any two from the following questions 12
a) Explain the concept of complex frequency and significance of poles and zeros.
b) Derive the expression for step response (current) for series RL circuit. Also derive the expression for time constant.
c) Design a k-type band pass T and π type filter having a design impedance of 500Ω and cut-off frequencies 1 kHz and 10 kHz .

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CIRCUITS \& NETWORKS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes

Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) In RC series circuit $R=2 \Omega, C=2 \mu \mathrm{~F}$ and 10 V dc is applied. Then what is the value of current at steady state?
a) 0 A
b) 5 A
c) 20 A
d) 10 A
2) Time constant of RL series circuit is \qquad .
a) $2 L / R$
b) $\quad L / R$
c) $R L$
d) R / L
3) Transients are presents in the circuit when the circuit is having \qquad .
a) R
b) L
c) C
d) Either L or C
4) An ideal filter is one which \qquad .
a) Zero attenuation in pass band
b) Infinite attenuation in pass band
c) No attenuation in stop band
d) None of the above
5) A band elimination filter is one which \qquad .
a) Attenuates ail frequencies less than lower cut off frequency
b) Attenuates all frequencies greater than lower cut off frequency
c) Attenuates all frequencies between lower and higher cut off frequency
d) None of the above
6) Relation between neper and decibel is \qquad .
a) $N=\log (a t t n$ in $\mathrm{dB} / 20)$
b) $\quad N=\log (20 /$ attn in dB)
c) $\mathrm{N}=$ antilog (attn in $\mathrm{dB} / 20$)
d) $\quad \mathrm{N}=$ antilog (20/attn in dB)
7) The driving point impedance is defined as \qquad .
a) Ratio of transform voltage to transform current at same port
b) Ratio of transform voltage at one port to transform current at other port
c) Both a and b
d) None of the above

SLR-FM-677

Set
8) The superposition theorem is applicable on \qquad .
a) Both Linear and non linear circuits
b) Linear circuits only
c) Non Linear circuits only
d) None of the above
9) For maximum transfer of power the source resistance must be \qquad -
a) Equal to load resistance
b) less than load resistance
c) Greater than load resistance
d) None of the above
10) If the value of resonant frequency is 50 kHz in a series RLC circuit along with the bandwidth of about 1 kHz , then what would be the value of quality factor?
a) 5
b) 50
c) 100
d) 500
11) What would be the value of impedance of a parallel resonant circuit at anti resonance condition?
a) Resistive \& maximum
b) Resistive \& minimum
c) Reactive \& maximum
d) Reactive \& minimum
12) How is the short circuit reverse transfer admittance $\left(Y_{12}\right)$ calculated?
a) $\mathrm{V} 2 / 11$ (keeping $12=0$)
b) 12/V1 (keeping V2=0)
c) $11 / \mathrm{V} 2$ (keeping $\mathrm{V} 1=0$)
d) $\quad \mathrm{V} 1 / 12$ (keeping $11=0$)
13) In a certain series resonant circuit, $\mathrm{V}_{\mathrm{C}}=125 \mathrm{~V} . \mathrm{V}_{\mathrm{L}}=125 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{R}}=40 \mathrm{~V}$. The value of the source voltage is \qquad .
a) 50 V
b) 125 V
c) 40 V
d) 250 V
14) Which elements act as independent variables in Z-parameters?
a) Current
b) Voltage
c) Both a and b
d) None of the above

SLR-FM-677

Seat
No.

S.E. (Part - I) (OId) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering CIRCUITS \& NETWORKS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I
Q. 2 Answer any four from the following questions.
a) Find the Norton equivalent circuit between the points A and B in figure 1?

b) Find in 1 figure 2 using superposition theorem?

c) A $50 \mu \mathrm{~F}$, when connected in series with a coil having 40Ω resistance, resonates al 1000 Hz . Find the inductance of the coil. Also obtain the maximum current if the applied voltage is 100 V .
d) Find Y -parameters for the network shown in figure 3.

e) Derive h-parameters for two port network in terms of voltage. Current and draw h-parameter equivalent circuit.
Q. 3 Answer any two from the following questions
a) Find the value of R in figure 4 for which maximum power transfer takes place and hence find the maximum power delivered to R ?

b) Derive the expression for frequency at which the Voltage across inductor will be maximum in series resonance circuit.
c) Determine Z parameters for π type network shown in figure 5 .

Q. 4 Answer any four from the following questions

a) Determine the current $\mathrm{i}(\mathrm{t})$ for $t \geq 0$ if initial voltage on capacitor $\mathrm{Vc}(\mathrm{o})=4 \mathrm{~V}$ for the circuit shown in figure 6.

b) Design a T pad attenuator to give an attenuation of 60 dB and to work in a line of 500Ω impedance.
c) Plot the pole zero diagram for $\mathrm{H}(\mathrm{s})=2 \mathrm{~s} /[(\mathrm{s}+2)(\mathrm{s} 2+2 \mathrm{~s}+2)]$
d) Design a k-type high-pass filter (T and π) with, a cut-off frequency of 1 kHz with a terminated design impedance of 800Ω
e) A series RL circuit with $R=30 \Omega$ and $L=15 \mathrm{H}$ has a constant voltage $\mathrm{V}=$ 60 V applied at $\mathrm{t}=0 \mathrm{O}$ shown in figure 7. Determine the current $\mathrm{i}(\mathrm{t})$ and the voltage $\mathrm{v}(\mathrm{t})$ across the resistance

Q. 5 Answer any two from the following questions 12
a) Explain the concept of complex frequency and significance of poles and zeros.
b) Derive the expression for step response (current) for series RL circuit. Also derive the expression for time constant.
c) Design a k-type band pass T and π type filter having a design impedance of 500Ω and cut-off frequencies 1 kHz and 10 kHz .

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CIRCUITS \& NETWORKS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) How is the short circuit reverse transfer admittance $\left(Y_{12}\right)$ calculated?
a) $\mathrm{V} 2 / 11$ (keeping $12=0$)
b) 12/V1 (keeping V2=0)
c) $11 / \mathrm{V} 2($ keeping $\mathrm{V} 1=0)$
d) \quad V1/12 (keeping $11=0$)
2) In a certain series resonant circuit, $\mathrm{V}_{\mathrm{C}}=125 \mathrm{~V} . \mathrm{V}_{\mathrm{L}}=125 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{R}}=40 \mathrm{~V}$.

The value of the source voltage is \qquad .
a) 50 V
b) 125 V
c) 40 V
d) 250 V
3) Which elements act as independent variables in Z-parameters?
a) Current
b) Voltage
c) Both a and b
d) None of the above
4) In RC series circuit $R=2 \Omega, C=2 \mu F$ and 10 V dc is applied. Then what is the value of current at steady state?
a) 0 A
b) 5 A
c) 20 A
d) 10 A
5) Time constant of RL series circuit is \qquad .
a) $2 \mathrm{~L} / \mathrm{R}$
b) L / R
c) $R L$
d) R / L
6) Transients are presents in the circuit when the circuit is having \qquad .
a) R
b) L
c) C
d) Either L or C
7) An ideal filter is one which \qquad .
a) Zero attenuation in pass band
b) Infinite attenuation in pass band
c) No attenuation in stop band
d) None of the above
8) A band elimination filter is one which \qquad .
a) Attenuates ail frequencies less than lower cut off frequency
b) Attenuates all frequencies greater than lower cut off frequency
c) Attenuates all frequencies between lower and higher cut off frequency
d) None of the above
9) Relation between neper and decibel is \qquad .
a) $N=\log ($ attn in $d B / 20)$
b) $N=\log (20 /$ attn in dB)
c) $\mathrm{N}=$ antilog (attn in $\mathrm{dB} / 20$)
d) $\quad \mathrm{N}=\operatorname{antilog}(20 /$ attn in dB$)$
10) The driving point impedance is defined as \qquad .
a) Ratio of transform voltage to transform current at same port
b) Ratio of transform voltage at one port to transform current at other port
c) Both a and b
d) None of the above
11) The superposition theorem is applicable on \qquad .
a) Both Linear and non linear circuits
b) Linear circuits only
c) Non Linear circuits only
d) None of the above
12) For maximum transfer of power the source resistance must be \qquad .
a) Equal to load resistance
b) less than load resistance
c) Greater than load resistance
d) None of the above
13) If the value of resonant frequency is 50 kHz in a series RLC circuit along with the bandwidth of about 1 kHz , then what would be the value of quality factor?
a) 5
b) 50
c) 100
d) 500
14) What would be the value of impedance of a parallel resonant circuit at anti resonance condition?
a) Resistive \& maximum
b) Resistive \& minimum
c) Reactive \& maximum
d) Reactive \& minimum

SLR-FM-677

Seat
No.
Set
R

S.E. (Part - I) (OId) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering CIRCUITS \& NETWORKS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I
Q. 2 Answer any four from the following questions.
a) Find the Norton equivalent circuit between the points A and B in figure 1?

b) Find in 1 figure 2 using superposition theorem?

c) A $50 \mu \mathrm{~F}$, when connected in series with a coil having 40Ω resistance, resonates al 1000 Hz . Find the inductance of the coil. Also obtain the maximum current if the applied voltage is 100 V .
d) Find Y -parameters for the network shown in figure 3.

e) Derive h-parameters for two port network in terms of voltage. Current and draw h-parameter equivalent circuit.
Q. 3 Answer any two from the following questions
a) Find the value of R in figure 4 for which maximum power transfer takes place and hence find the maximum power delivered to R ?

b) Derive the expression for frequency at which the Voltage across inductor will be maximum in series resonance circuit.
c) Determine Z parameters for π type network shown in figure 5 .

Q. 4 Answer any four from the following questions

a) Determine the current $\mathrm{i}(\mathrm{t})$ for $t \geq 0$ if initial voltage on capacitor $\mathrm{Vc}(\mathrm{o})=4 \mathrm{~V}$ for the circuit shown in figure 6.

b) Design a T pad attenuator to give an attenuation of 60 dB and to work in a line of 500Ω impedance.
c) Plot the pole zero diagram for $\mathrm{H}(\mathrm{s})=2 \mathrm{~s} /[(\mathrm{s}+2)(\mathrm{s} 2+2 \mathrm{~s}+2)]$
d) Design a k-type high-pass filter (T and π) with, a cut-off frequency of 1 kHz with a terminated design impedance of 800Ω
e) A series RL circuit with $R=30 \Omega$ and $L=15 \mathrm{H}$ has a constant voltage $\mathrm{V}=$ 60 V applied at $\mathrm{t}=0 \mathrm{O}$ shown in figure 7. Determine the current $\mathrm{i}(\mathrm{t})$ and the voltage $\mathrm{v}(\mathrm{t})$ across the resistance

Set
Q. 5 Answer any two from the following questions 12
a) Explain the concept of complex frequency and significance of poles and zeros.
b) Derive the expression for step response (current) for series RL circuit. Also derive the expression for time constant.
c) Design a k-type band pass T and π type filter having a design impedance of 500Ω and cut-off frequencies 1 kHz and 10 kHz .

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering CIRCUITS \& NETWORKS

Day \& Date: Thursday, 12-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Transients are presents in the circuit when the circuit is having \qquad .
a) R
b) L
c) C
d) Either L or C
2) An ideal filter is one which \qquad .
a) Zero attenuation in pass band
b) Infinite attenuation in pass band
c) No attenuation in stop band
d) None of the above
3) A band elimination filter is one which \qquad .
a) Attenuates ail frequencies less than lower cut off frequency
b) Attenuates all frequencies greater than lower cut off frequency
c) Attenuates all frequencies between lower and higher cut off frequency
d) None of the above
4) Relation between neper and decibel is \qquad .
a) $N=\log ($ attn in $\mathrm{dB} / 20$)
b) $N=\log (20 /$ attn in dB)
c) $\mathrm{N}=$ antilog (attn in $\mathrm{dB} / 20$)
d) $\quad N=a n t i l o g(20 / a t t n$ in $d B)$
5) The driving point impedance is defined as \qquad .
a) Ratio of transform voltage to transform current at same port
b) Ratio of transform voltage at one port to transform current at other port
c) Both a and b
d) None of the above
6) The superposition theorem is applicable on \qquad .
a) Both Linear and non linear circuits
b) Linear circuits only
c) Non Linear circuits only
d) None of the above
7) For maximum transfer of power the source resistance must be \qquad .
a) Equal to load resistance
b) less than load resistance
c) Greater than load resistance
d) None of the above
8) If the value of resonant frequency is 50 kHz in a series RLC circuit along with the bandwidth of about 1 kHz , then what would be the value of quality factor?
a) 5
b) 50
c) 100
d) 500
9) What would be the value of impedance of a parallel resonant circuit at anti resonance condition?
a) Resistive \& maximum
b) Resistive \& minimum
c) Reactive \& maximum
d) Reactive \& minimum
10) How is the short circuit reverse transfer admittance $\left(Y_{12}\right)$ calculated?
a) $\mathrm{V} 2 / 11$ (keeping $12=0$)
b) $12 / \mathrm{V} 1$ (keeping $\mathrm{V} 2=0$)
c) $11 / \mathrm{V} 2$ (keeping $\mathrm{V} 1=0$)
d) \quad V1/12 (keeping $11=0$)
11) In a certain series resonant circuit, $\mathrm{V}_{\mathrm{C}}=125 \mathrm{~V} . \mathrm{V}_{\mathrm{L}}=125 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{R}}=40 \mathrm{~V}$. The value of the source voltage is \qquad .
a) 50 V
b) 125 V
c) 40 V
d) 250 V
12) Which elements act as independent variables in Z-parameters?
a) Current
b) Voltage
c) Both a and b
d) None of the above
13) In RC series circuit $R=2 \Omega, C=2 \mu \mathrm{~F}$ and 10 V dc is applied. Then what is the value of current at steady state?
a) 0 A
b) 5 A
c) 20 A
d) 10 A
14) Time constant of $R L$ series circuit is \qquad .
a) $2 \mathrm{~L} / \mathrm{R}$
b) $\quad L / R$
c) $R L$
d) R / L

SLR-FM-677

Seat
No.

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering CIRCUITS \& NETWORKS

Day \& Date: Thursday, 12-12-2019
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I
Q. 2 Answer any four from the following questions.
a) Find the Norton equivalent circuit between the points A and B in figure 1?

b) Find in 1 figure 2 using superposition theorem?

c) A $50 \mu \mathrm{~F}$, when connected in series with a coil having 40Ω resistance, resonates al 1000 Hz . Find the inductance of the coil. Also obtain the maximum current if the applied voltage is 100 V .
d) Find Y -parameters for the network shown in figure 3.

e) Derive h-parameters for two port network in terms of voltage. Current and draw h-parameter equivalent circuit.
Q. 3 Answer any two from the following questions
a) Find the value of R in figure 4 for which maximum power transfer takes place and hence find the maximum power delivered to R ?

b) Derive the expression for frequency at which the Voltage across inductor will be maximum in series resonance circuit.
c) Determine Z parameters for π type network shown in figure 5 .

Q. 4 Answer any four from the following questions

a) Determine the current $\mathrm{i}(\mathrm{t})$ for $t \geq 0$ if initial voltage on capacitor $\mathrm{Vc}(\mathrm{o})=4 \mathrm{~V}$ for the circuit shown in figure 6.

b) Design a T pad attenuator to give an attenuation of 60 dB and to work in a line of 500Ω impedance.
c) Plot the pole zero diagram for $\mathrm{H}(\mathrm{s})=2 \mathrm{~s} /[(\mathrm{s}+2)(\mathrm{s} 2+2 \mathrm{~s}+2)]$
d) Design a k-type high-pass filter (T and π) with, a cut-off frequency of 1 kHz with a terminated design impedance of 800Ω
e) A series $R L$ circuit with $R=30 \Omega$ and $L=15 H$ has a constant voltage $V=$ 60 V applied at $\mathrm{t}=0 \mathrm{O}$ shown in figure 7. Determine the current $\mathrm{i}(\mathrm{t})$ and the voltage $\mathrm{v}(\mathrm{t})$ across the resistance

SLR-FM-677

Q. 5 Answer any two from the following questions

a) Explain the concept of complex frequency and significance of poles and zeros.
b) Derive the expression for step response (current) for series RL circuit. Also derive the expression for time constant.
c) Design a k-type band pass T and π type filter having a design impedance of 500Ω and cut-off frequencies 1 kHz and 10 kHz .

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
 2) Figures to the right indicate full marks.
 3) Draw neat diagrams.
 4) Assume suitable data if necessary.
 MCQ/Objective Type Questions
 Duration: 30 Minutes
 Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) In a four variable K-map eight adjacent cells give \qquad .
a) Single variable term
b) Two variable term
c) Three variable term
d) Four variable term
2) In a 4 bit full adder how many half adders and OR gates are required?
a) 8 and 4
b) 7 and 4
c) 7 and 3
d) 8 and 3
3) Consider the following statements for a multiplexer \qquad -
i) selects one of the several inputs and steers it to the output
ii) routes the data from a single input to many outputs
iii) converts parallel data into serial data
iv) is a combinational circuit

Which of the above is correct for a Multiplexer?
a) i, ii, iii
b) i, iii, iv
c) i, ii, iv
d) ii, iii, iv
4) Consider the following statements.
i) ECL has least propagation delay
ii) TTL has largest fan out
iii) CMOS has highest noise margin
iv) TTL has lowest power dissipation

Which of the following are correct for above statements?
a) i \& iii
b) ii \& iv
c) iii \& iv
d) i \& ii
5) A JK flip flop can be converted to D flip flop by, \qquad .
a) Connecting both J and K terminals to D
b) Connecting J terminal to D and leaving K open
c) Connecting K terminal to D and leaving J open
d) Connecting J terminal to D and K terminal to D through an inverter
6) How many NAND gates are used to construct Active High S-R flip flop?
a) 5
b) 3
c) 4
d) 8

SLR-FM-678
 Set

7) In comparison with Serial adder the Parallel adder \qquad .
a) is slower
b) has same speed
c) is faster
d) has delayed output
8) Maximum MOD number for a 2-bit binary counter is \qquad .
a) 4
b) 3
c) 8
d) 16
9) To serially shift a 5-bit of data into a shift register, there must be \qquad .
a) 1 clock pulse
b) 4 clock pulses
c) 5 clock pulses
d) 1 clock pulse for each 1
10) To operate correctly, starting a ring counter requires \qquad .
a) presetting all the flip-flops
b) clearing all the flip-flops
c) presetting one flip-flop and clearing all the others
d) none of the above
11) How many minimum number of flip-flops are required to make a MOD-28 binary counter?
a) 32
b) 16
c) 5
d) 4
12) When two counters are cascaded, the overall MOD number is equal to the \qquad of their individual MOD numbers.
a) Product
b) Sum
c) \log
d) Reciprocal
13) Clock signals are used in sequential logic circuits \qquad .
a) To tell current time
b) To tell how propagation delay
c) To carry serial data signals
d) To synchronize events in various parts of the system
14) How many flip-flops are in the IC7495?
a) 1
b) 2
c) 3
d) 4

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Draw neat diagrams.
4) Assume suitable data if necessary.

Section - I

Q. 2 Answer any four.

a) Implement the following Boolean function F, using NOR logic $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,4,8,9,10,11,12,14)$
b) Explain and design a 2-bit magnitude comparator which should compare $x \& y$ and give output as $x>y, x=y$ and $x<y$.
c) Design an Odd Parity Generator for 3 bit binary input.
d) Design and explain 2 input NAND gate using CMOS.
e) Explain 1-bit latch using NAND logic.

Q. 3 Solve any two.

a) Simplify the following functions, and implement using NAND gate $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{AC}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{ABC}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
b) Explain General model for flip-flop conversion and convert D-flip flop to T flip-flop.
c) Define and explain following characteristics of a logic family

1) Fan-out
2) Propagation Delay
3) Power Dissipation
4) Figure of Merit (Speed Power Product)

Section - II
Q. 4 Attempt any four.
a) Explain in detail SIPO Shift register with example \& waveform.
b) Design 2 bit synchronous down counter using T Flip flop.
c) Write VHDL code for Comparator.
d) Explain Mealy machine with block diagram \& example.
e) Design a PROM PLD based 3 bit binary to gray converter.
Q. 5 Attempt any two.
a) Explain in detail ring counter \& twisted ring counter with waveform.
b) Write a short note on IC 7490. Design MOD 7 counter using IC 7490.
c) Explain sequence detector with example.

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
 2) Figures to the right indicate full marks.
 3) Draw neat diagrams.
 4) Assume suitable data if necessary.
 MCQ/Objective Type Questions
 Duration: 30 Minutes
 Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Maximum MOD number for a 2 -bit binary counter is \qquad .
a) 4
b) 3
c) 8
d) 16
2) To serially shift a 5-bit of data into a shift register, there must be \qquad .
a) 1 clock pulse
b) 4 clock pulses
c) 5 clock pulses
d) 1 clock pulse for each 1
3) To operate correctly, starting a ring counter requires \qquad .
a) presetting all the flip-flops
b) clearing all the flip-flops
c) presetting one flip-flop and clearing all the others
d) none of the above
4) How many minimum number of flip-flops are required to make a MOD-28 binary counter?
a) 32
b) 16
c) 5
d) 4
5) When two counters are cascaded, the overall MOD number is equal to the \qquad of their individual MOD numbers.
a) Product
b) Sum
c) \log
d) Reciprocal
6) Clock signals are used in sequential logic circuits \qquad .
a) To tell current time
b) To tell how propagation delay
c) To carry serial data signals
d) To synchronize events in various parts of the system
7) How many flip-flops are in the IC7495?
a) 1
b) 2
c) 3
d) 4
8) In a four variable K-map eight adjacent cells give \qquad .
a) Single variable term
b) Two variable term
c) Three variable term
d) Four variable term
9) In a 4 bit full adder how many half adders and OR gates are required?
a) 8 and 4
b) 7 and 4
c) 7 and 3
d) 8 and 3
10) Consider the following statements for a multiplexer \qquad .
i) selects one of the several inputs and steers it to the output
ii) routes the data from a single input to many outputs
iii) converts parallel data into serial data
iv) is a combinational circuit

Which of the above is correct for a Multiplexer?
a) i, ii, iii
b) i, iii, iv
c) i, ii, iv
d) ii, iii, iv
11) Consider the following statements.
i) ECL has least propagation delay
ii) TTL has largest fan out
iii) CMOS has highest noise margin
iv) TTL has lowest power dissipation

Which of the following are correct for above statements?
a) i \& iii
b) ii \& iv
c) iii \& iv
d) $\mathrm{i} \& \mathrm{ii}$
12) A JK flip flop can be converted to D flip flop by, \qquad .
a) Connecting both J and K terminals to D
b) Connecting J terminal to D and leaving K open
c) Connecting K terminal to D and leaving J open
d) Connecting J terminal to D and K terminal to D through an inverter
13) How many NAND gates are used to construct Active High S-R flip flop?
a) 5
b) 3
c) 4
d) 8
14) In comparison with Serial adder the Parallel adder \qquad .
a) is slower
b) has same speed
c) is faster
d) has delayed output

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Draw neat diagrams.
4) Assume suitable data if necessary.

Section - I

Q. 2 Answer any four.

a) Implement the following Boolean function F, using NOR logic $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,4,8,9,10,11,12,14)$
b) Explain and design a 2-bit magnitude comparator which should compare $x \& y$ and give output as $x>y, x=y$ and $x<y$.
c) Design an Odd Parity Generator for 3 bit binary input.
d) Design and explain 2 input NAND gate using CMOS.
e) Explain 1-bit latch using NAND logic.

Q. 3 Solve any two.

a) Simplify the following functions, and implement using NAND gate $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{AC}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{ABC}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
b) Explain General model for flip-flop conversion and convert D-flip flop to T flip-flop.
c) Define and explain following characteristics of a logic family

1) Fan-out
2) Propagation Delay
3) Power Dissipation
4) Figure of Merit (Speed Power Product)

Section - II
Q. 4 Attempt any four.
a) Explain in detail SIPO Shift register with example \& waveform.
b) Design 2 bit synchronous down counter using T Flip flop.
c) Write VHDL code for Comparator.
d) Explain Mealy machine with block diagram \& example.
e) Design a PROM PLD based 3 bit binary to gray converter.
Q. 5 Attempt any two.
a) Explain in detail ring counter \& twisted ring counter with waveform.
b) Write a short note on IC 7490. Design MOD 7 counter using IC 7490.
c) Explain sequence detector with example.

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
 2) Figures to the right indicate full marks.
 3) Draw neat diagrams.
 4) Assume suitable data if necessary.
 MCQ/Objective Type Questions
 Duration: 30 Minutes
 Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) A JK flip flop can be converted to D flip flop by, \qquad .
a) Connecting both J and K terminals to D
b) Connecting J terminal to D and leaving K open
c) Connecting K terminal to D and leaving J open
d) Connecting J terminal to D and K terminal to D through an inverter
2) How many NAND gates are used to construct Active High S-R flip flop?
a) 5
b) 3
c) 4
d) 8
3) In comparison with Serial adder the Parallel adder \qquad .
a) is slower
b) has same speed
c) is faster
d) has delayed output
4) Maximum MOD number for a 2 -bit binary counter is \qquad .
a) 4
b) 3
c) 8
d) 16
5) To serially shift a 5 -bit of data into a shift register, there must be \qquad .
a) 1 clock pulse
b) 4 clock pulses
c) 5 clock pulses
d) 1 clock pulse for each 1
6) To operate correctly, starting a ring counter requires \qquad .
a) presetting all the flip-flops
b) clearing all the flip-flops
c) presetting one flip-flop and clearing all the others
d) none of the above
7) How many minimum number of flip-flops are required to make a MOD-28 binary counter?
a) 32
b) 16
c) 5
d) 4
8) When two counters are cascaded, the overall MOD number is equal to the \qquad of their individual MOD numbers.
a) Product
b) Sum
c) \log
d) Reciprocal
9) Clock signals are used in sequential logic circuits
a) To tell current time
b) To tell how propagation delay
c) To carry serial data signals
d) To synchronize events in various parts of the system
10) How many flip-flops are in the IC7495?
a) 1
b) 2
c) 3
d) 4
11) In a four variable K-map eight adjacent cells give \qquad .
a) Single variable term
b) Two variable term
c) Three variable term
d) Four variable term
12) In a 4 bit full adder how many half adders and OR gates are required?
a) 8 and 4
b) 7 and 4
c) 7 and 3
d) 8 and 3
13) Consider the following statements for a multiplexer \qquad .
i) selects one of the several inputs and steers it to the output
ii) routes the data from a single input to many outputs
iii) converts parallel data into serial data
iv) is a combinational circuit

Which of the above is correct for a Multiplexer?
a) i, ii, iii
b) i, iii, iv
c) i, ii, iv
d) ii, iii, iv
14) Consider the following statements.
i) ECL has least propagation delay
ii) TTL has largest fan out
iii) CMOS has highest noise margin
iv) TTL has lowest power dissipation

Which of the following are correct for above statements?
a) i \& iii
b) ii \& iv
c) iii \& iv
d) $\mathrm{i} \& \mathrm{ii}$

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Draw neat diagrams.
4) Assume suitable data if necessary.

Section - I

Q. 2 Answer any four.

a) Implement the following Boolean function F, using NOR logic $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,4,8,9,10,11,12,14)$
b) Explain and design a 2-bit magnitude comparator which should compare $x \& y$ and give output as $x>y, x=y$ and $x<y$.
c) Design an Odd Parity Generator for 3 bit binary input.
d) Design and explain 2 input NAND gate using CMOS.
e) Explain 1-bit latch using NAND logic.

Q. 3 Solve any two.

a) Simplify the following functions, and implement using NAND gate $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{AC}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{ABC}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
b) Explain General model for flip-flop conversion and convert D-flip flop to T flip-flop.
c) Define and explain following characteristics of a logic family

1) Fan-out
2) Propagation Delay
3) Power Dissipation
4) Figure of Merit (Speed Power Product)

Section - II
Q. 4 Attempt any four.
a) Explain in detail SIPO Shift register with example \& waveform.
b) Design 2 bit synchronous down counter using T Flip flop.
c) Write VHDL code for Comparator.
d) Explain Mealy machine with block diagram \& example.
e) Design a PROM PLD based 3 bit binary to gray converter.
Q. 5 Attempt any two.
a) Explain in detail ring counter \& twisted ring counter with waveform.
b) Write a short note on IC 7490. Design MOD 7 counter using IC 7490.
c) Explain sequence detector with example.

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019

Max. Marks: 70
Time: 10:00 AM To 01:00 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer

 Book.2) Figures to the right indicate full marks.
3) Draw neat diagrams.
4) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) To operate correctly, starting a ring counter requires \qquad .
a) presetting all the flip-flops
b) clearing all the flip-flops
c) presetting one flip-flop and clearing all the others
d) none of the above
2) How many minimum number of flip-flops are required to make a MOD-28 binary counter?
a) 32
b) 16
c) 5
d) 4
3) When two counters are cascaded, the overall MOD number is equal to the \qquad of their individual MOD numbers.
a) Product
b) Sum
c) Log
d) Reciprocal
4) Clock signals are used in sequential logic circuits \qquad .
a) To tell current time
b) To tell how propagation delay
c) To carry serial data signals
d) To synchronize events in various parts of the system
5) How many flip-flops are in the IC7495?
a) 1
b) 2
c) 3
d) 4
6) In a four variable K-map eight adjacent cells give \qquad .
a) Single variable term
b) Two variable term
c) Three variable term
d) Four variable term
7) In a 4 bit full adder how many half adders and OR gates are required?
a) 8 and 4
b) 7 and 4
c) 7 and 3
d) 8 and 3
8) Consider the following statements for a multiplexer \qquad .
i) selects one of the several inputs and steers it to the output
ii) routes the data from a single input to many outputs
iii) converts parallel data into serial data
iv) is a combinational circuit

Which of the above is correct for a Multiplexer?
a) i, ii, iii
b) i, iii, iv
c) i, ii, iv
d) ii, iii, iv
9) Consider the following statements.
i) ECL has least propagation delay
ii) TTL has largest fan out
iii) CMOS has highest noise margin
iv) TTL has lowest power dissipation

Which of the following are correct for above statements?
a) i \& iii
b) ii \& iv
c) iii \& iv
d) i \& ii
10) A JK flip flop can be converted to D flip flop by, \qquad .
a) Connecting both J and K terminals to D
b) Connecting J terminal to D and leaving K open
c) Connecting K terminal to D and leaving J open
d) Connecting J terminal to D and K terminal to D through an inverter
11) How many NAND gates are used to construct Active High S-R flip flop?
a) 5
b) 3
c) 4
d) 8
12) In comparison with Serial adder the Parallel adder \qquad .
a) is slower
b) has same speed
c) is faster
d) has delayed output
13) Maximum MOD number for a 2-bit binary counter is \qquad .
a) 4
b) 3
c) 8
d) 16
14) To serially shift a 5 -bit of data into a shift register, there must be \qquad .
a) 1 clock pulse
b) 4 clock pulses
c) 5 clock pulses
d) 1 clock pulse for each 1

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL TECHNIQUES

Day \& Date: Saturday, 14-12-2019
Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Draw neat diagrams.
4) Assume suitable data if necessary.

Section - I

Q. 2 Answer any four.

a) Implement the following Boolean function F, using NOR logic $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,4,8,9,10,11,12,14)$
b) Explain and design a 2-bit magnitude comparator which should compare $x \& y$ and give output as $x>y, x=y$ and $x<y$.
c) Design an Odd Parity Generator for 3 bit binary input.
d) Design and explain 2 input NAND gate using CMOS.
e) Explain 1-bit latch using NAND logic.

Q. 3 Solve any two.

a) Simplify the following functions, and implement using NAND gate $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{AC}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{ABC}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
b) Explain General model for flip-flop conversion and convert D-flip flop to T flip-flop.
c) Define and explain following characteristics of a logic family

1) Fan-out
2) Propagation Delay
3) Power Dissipation
4) Figure of Merit (Speed Power Product)

Section - II
Q. 4 Attempt any four.
a) Explain in detail SIPO Shift register with example \& waveform.
b) Design 2 bit synchronous down counter using T Flip flop.
c) Write VHDL code for Comparator.
d) Explain Mealy machine with block diagram \& example.
e) Design a PROM PLD based 3 bit binary to gray converter.
Q. 5 Attempt any two.
a) Explain in detail ring counter \& twisted ring counter with waveform.
b) Write a short note on IC 7490. Design MOD 7 counter using IC 7490.
c) Explain sequence detector with example.

S.E. (Part - I) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATA STRUCTURES USING 'C'

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 70

Time: 10:00 AM To 01:00 PM

Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer Book Page No. 3

2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options.

1) A linked list type that navigates for an item in forward manner only, is called \qquad .
a) Simple Linked List
b) Linear Linked List
c) Doubly Linked List
d) Circular linked List
2) A sequence of data structures connected together through links are known to be \qquad .
a) Connected list
b) Linked list
c) Traversed link
d) Compound List
3) Which if the following is/are the levels of implementation of data structure \qquad .
a) Abstract level
b) Application level
c) Implementation level
d) All of the above
4) A binary search tree whose left sub tree and right sub tree differ in height by at most 1 unit is called \qquad .
a) AVL tree
b) Red-black tree
c) Lemma tree
d) None of the above
5)

a) Abstract level
b) Application level
c) Implementation level
d) All of the above
6) Stack is also called as \qquad .
a) Last in first out
b) First in last out
c) Last in last out
d) First in first out
7) ___ is not the component of data structure.
a) Operations
b) Storage Structures
c) Algorithms
d) None of above
8) \qquad is very useful in situation when data have to stored and then retrieved in reverse order.
a) Stack
b) Queue
c) List
d) Link list
9) Which data structure allows deleting data elements from and inserting at rear?
a) Stacks
b) Queues
c) Dequeues
d) Binary search tree
10) Which of the following is non-liner data structure?
a) Stacks
b) List
c) Strings
d) Trees
11) Which of the following data structure is linear type?
a) Graph
b) Trees
c) Binary tree
d) Stack
12) Identify the data structure which allows deletions at both ends of the list but insertion at only one end.
a) Input restricted dequeue
b) Output restricted dequeue
c) Priority queues
d) Stack
13) Which data structure is used in breadth first search of a graph to hold nodes?
a) Stack
b) Queue
c) Tree
d) Array
14) A directed graph is \qquad if there is a path from each vertex to every other vertex in the digraph.
a) Weakly connected
b) Strongly Connected
c) Tightly Connected
d) Linearly Connected

S.E. (Part - I) (OId) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering

 DATA STRUCTURES USING 'C'
Day \& Date: Tuesday,17-12-2019
 Max. Marks: 56

Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

SECTION I

Q. 2 Attempt any three. 12
a) Define queue \& explain its operations.
b) Draw and explain the structure of simple link list.
c) Write a program for Fibonacci series using recursion.
d) Differentiate between Stack and Queue.
e) Define Infix, Prefix \& Postfix with example.
Q. 3 Attempt any two. 16

a) Write a program for factorial using recursion \& explain the operations of
Stack.
b) List \& Explain different operation of Circular link List.
c) Explain DEQUE \& Priority Queue.

SECTION II

Q. 4 Attempt any three.
a) Define sibling, root, leaf node, Parent node.
b) Explain open addressing and closed addressing collision resolving techniques.
c) Define Hashing, Hash function, Collision.
d) Write the time complexity of Insertion sort, Bubble sort, Selection sort, Merge sort.
Q. 5 Attempt any two.
a) Explain Quick sort with example.
b) Write a program for linear search \& explain.
c) Explain DFS \& BFS traverse with example.

S.E. (Part - I) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATA STRUCTURES USING 'C'

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 70

Time: 10:00 AM To 01:00 PM

Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer Book Page No. 3

2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.
1)
is very useful in situation when data have to stored and then retrieved in reverse order.
a) Stack
b) Queue
c) List
d) Link list
2) Which data structure allows deleting data elements from and inserting at rear?
a) Stacks
b) Queues
c) Dequeues
d) Binary search tree
3) Which of the following is non-liner data structure?
a) Stacks
b) List
c) Strings
d) Trees
4) Which of the following data structure is linear type?
a) Graph
b) Trees
c) Binary tree
d) Stack
5) Identify the data structure which allows deletions at both ends of the list but insertion at only one end.
a) Input restricted dequeue
b) Output restricted dequeue
c) Priority queues
d) Stack
6) Which data structure is used in breadth first search of a graph to hold nodes?
a) Stack
b) Queue
c) Tree
d) Array
7) A directed graph is \qquad if there is a path from each vertex to every other vertex in the digraph.
a) Weakly connected
b) Strongly Connected
c) Tightly Connected
d) Linearly Connected
8) A linked list type that navigates for an item in forward manner only, is called \qquad .
a) Simple Linked List
b) Linear Linked List
c) Doubly Linked List
d) Circular linked List

SLR-FM-679

Set \mathbf{Q}
9) A sequence of data structures connected together through links are known to be \qquad .
a) Connected list
b) Linked list
c) Traversed link
d) Compound List
10) Which if the following is/are the levels of implementation of data structure \qquad .
a) Abstract level
b) Application level
c) Implementation level
d) All of the above
11) A binary search tree whose left sub tree and right sub tree differ in height by at most 1 unit is called \qquad .
a) AVL tree
b) Red-black tree
c) Lemma tree
d) None of the above
12) \qquad level is where the model becomes compatible executable code.
a) Abstract level
b) Application level
c) Implementation level
d) All of the above
13) Stack is also called as \qquad .
a) Last in first out
b) First in last out
c) Last in last out
d) First in first out
14) \qquad is not the component of data structure.
a) Operations
b) Storage Structures
c) Algorithms
d) None of above

S.E. (Part - I) (OId) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering

 DATA STRUCTURES USING 'C'
Day \& Date: Tuesday,17-12-2019

Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

SECTION I

Q. 2 Attempt any three. 12
a) Define queue \& explain its operations.
b) Draw and explain the structure of simple link list.
c) Write a program for Fibonacci series using recursion.
d) Differentiate between Stack and Queue.
e) Define Infix, Prefix \& Postfix with example.
Q. 3 Attempt any two. 16

a) Write a program for factorial using recursion \& explain the operations of
Stack.
b) List \& Explain different operation of Circular link List.
c) Explain DEQUE \& Priority Queue.

SECTION II

Q. 4 Attempt any three.
a) Define sibling, root, leaf node, Parent node.
b) Explain open addressing and closed addressing collision resolving techniques.
c) Define Hashing, Hash function, Collision.
d) Write the time complexity of Insertion sort, Bubble sort, Selection sort, Merge sort.
Q. 5 Attempt any two.
a) Explain Quick sort with example.
b) Write a program for linear search \& explain.
c) Explain DFS \& BFS traverse with example.

S.E. (Part - I) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATA STRUCTURES USING 'C'

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 70

Time: 10:00 AM To 01:00 PM

Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer Book Page No. 3

2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) level is where the model becomes compatible executable code.
a) Abstract level
b) Application level
c) Implementation level
d) All of the above
2) Stack is also called as \qquad .
a) Last in first out
b) First in last out
c) Last in last out
d) First in first out
3)

a) Operations
b) Storage Structures
c) Algorithms
d) None of above
4) \qquad is very useful in situation when data have to stored and then retrieved in reverse order.
a) Stack
b) Queue
c) List
d) Link list
5) Which data structure allows deleting data elements from and inserting at rear?
a) Stacks
b) Queues
c) Dequeues
d) Binary search tree
6) Which of the following is non-liner data structure?
a) Stacks
b) List
c) Strings
d) Trees
7) Which of the following data structure is linear type?
a) Graph
b) Trees
c) Binary tree
d) Stack
8) Identify the data structure which allows deletions at both ends of the list but insertion at only one end.
a) Input restricted dequeue
b) Output restricted dequeue
c) Priority queues
d) Stack
9) Which data structure is used in breadth first search of a graph to hold nodes?
a) Stack
b) Queue
c) Tree
d) Array
10) A directed graph is \qquad if there is a path from each vertex to every other vertex in the digraph.
a) Weakly connected
b) Strongly Connected
c) Tightly Connected
d) Linearly Connected
11) A linked list type that navigates for an item in forward manner only, is called \qquad .
a) Simple Linked List
b) Linear Linked List
c) Doubly Linked List
d) Circular linked List
12) A sequence of data structures connected together through links are known to be \qquad .
a) Connected list
b) Linked list
c) Traversed link
d) Compound List
13) Which if the following is/are the levels of implementation of data structure \qquad .
a) Abstract level
b) Application level
c) Implementation level
d) All of the above
14) A binary search tree whose left sub tree and right sub tree differ in height by at most 1 unit is called \qquad .
a) AVL tree
b) Red-black tree
c) Lemma tree
d) None of the above

S.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering DATA STRUCTURES USING 'C'

Day \& Date: Tuesday,17-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

SECTION I

Q. 2 Attempt any three. 12
a) Define queue \& explain its operations.
b) Draw and explain the structure of simple link list.
c) Write a program for Fibonacci series using recursion.
d) Differentiate between Stack and Queue.
e) Define Infix, Prefix \& Postfix with example.
Q. 3 Attempt any two. 16
a) Write a program for factorial using recursion \& explain the operations of Stack.
b) List \& Explain different operation of Circular link List.
c) Explain DEQUE \& Priority Queue.

SECTION II

Q. 4 Attempt any three.
a) Define sibling, root, leaf node, Parent node.
b) Explain open addressing and closed addressing collision resolving techniques.
c) Define Hashing, Hash function, Collision.
d) Write the time complexity of Insertion sort, Bubble sort, Selection sort, Merge sort.
Q. 5 Attempt any two.
a) Explain Quick sort with example.
b) Write a program for linear search \& explain.
c) Explain DFS \& BFS traverse with example.

S.E. (Part - I) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DATA STRUCTURES USING 'C'

Day \& Date: Tuesday, 17-12-2019
Max. Marks: 70
Time: 10:00 AM To 01:00 PM

Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer Book Page No. 3

2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) Which of the following is non-liner data structure?
a) Stacks
b) List
c) Strings
d) Trees
2) Which of the following data structure is linear type?
a) Graph
b) Trees
c) Binary tree
d) Stack
3) Identify the data structure which allows deletions at both ends of the list but insertion at only one end.
a) Input restricted dequeue
b) Output restricted dequeue
c) Priority queues
d) Stack
4) Which data structure is used in breadth first search of a graph to hold nodes?
a) Stack
b) Queue
c) Tree
d) Array
5) A directed graph is \qquad if there is a path from each vertex to every other vertex in the digraph.
a) Weakly connected
b) Strongly Connected
c) Tightly Connected
d) Linearly Connected
6) A linked list type that navigates for an item in forward manner only, is called \qquad .
a) Simple Linked List
b) Linear Linked List
c) Doubly Linked List
d) Circular linked List
7) A sequence of data structures connected together through links are known to be \qquad .
a) Connected list
b) Linked list
c) Traversed link
d) Compound List
8) Which if the following is/are the levels of implementation of data structure \qquad .
a) Abstract level
b) Application level
c) Implementation level
d) All of the above
9) A binary search tree whose left sub tree and right sub tree differ in height by at most 1 unit is called \qquad .
a) AVL tree
b) Red-black tree
c) Lemma tree
d) None of the above
\qquad level is where the model becomes compatible executable code.
a) Abstract level
b) Application level
c) Implementation level
d) All of the above
10) Stack is also called as \qquad .
a) Last in first out
b) First in last out
c) Last in last out
d) First in first out
11)

a) Operations
b) Storage Structures
c) Algorithms
d) None of above
13) \qquad is very useful in situation when data have to stored and then retrieved in reverse order.
a) Stack
b) Queue
c) List
d) Link list
14) Which data structure allows deleting data elements from and inserting at rear?
a) Stacks
b) Queues
c) Dequeues
d) Binary search tree

S.E. (Part - I) (OId) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering DATA STRUCTURES USING 'C'

Day \& Date: Tuesday,17-12-2019
Max. Marks: 56
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

SECTION I

Q. 2 Attempt any three. 12
a) Define queue \& explain its operations.
b) Draw and explain the structure of simple link list.
c) Write a program for Fibonacci series using recursion.
d) Differentiate between Stack and Queue.
e) Define Infix, Prefix \& Postfix with example.
Q. 3 Attempt any two. 16
a) Write a program for factorial using recursion \& explain the operations of Stack.
b) List \& Explain different operation of Circular link List.
c) Explain DEQUE \& Priority Queue.

SECTION II

Q. 4 Attempt any three.
a) Define sibling, root, leaf node, Parent node.
b) Explain open addressing and closed addressing collision resolving techniques.
c) Define Hashing, Hash function, Collision.
d) Write the time complexity of Insertion sort, Bubble sort, Selection sort, Merge sort.
Q. 5 Attempt any two.
a) Explain Quick sort with example.
b) Write a program for linear search \& explain.
c) Explain DFS \& BFS traverse with example.

SLR-FM-680

| Seat |
| :--- | :--- |
| No. |

S.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONIC CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Question 1 is compulsory; it should be solved in first 30 minutes in Answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

MCQ/Objective Type Questions
Duration: 30 Minutes
Q. 1 Choose the correct option

1) A direct coupled amplifier is also called as \qquad .
a) RC coupled amplifier
b) DC amplifier
c) AC amplifier
d) None of these
2) Darlington pair consists of two \qquad cascaded.
a) CB, CB
b) CE,CE
c) CC, CC
d) CE,CC
3) Wien bridge consists of \qquad as feedback network.
a) Three resistor \& capacitor network
b) Two resistor \& capacitor network
c) Lead Lag network made up of R\&C
d) Inductor and Capacitor network
4) Cascading of amplifier results in \qquad .
a) Increasing gain and Bandwidth
b) Decreasing gain and bandwidth
c) Increasing gain and decrease in bandwidth
d) No effect on gain and bandwidth
5) A transconductance amplifier has \qquad input resistance and \qquad output resistance.
a) Zero, Infinity
b) Zero, Zero
c) Infinity, Zero
d) Infinity, Infinity
6) Crystal oscillators are preferred because \qquad .
a) It works at very high frequency
b) It produces stable oscillation
c) It produces high output swing
d) None of these
7) The oscillation in LC circuit is produced due to \qquad .
a) Transfer of energy between L \& C
b) Transfer of energy between R \& C
c) Both a \& b
d) None of these
8) Pre regulator circuit is \qquad .
a) Constant voltage source
b) Constant current source
c) Stability factor improvement circuit
d) Both b \& c
9) The instantaneous voltage at the input of IC regulator must always \qquad .
a) Exceed the output voltage
b) Lower than the DC output voltage
c) Equal to the DC output voltage
d) None of these
10) For IC regulators input capacitor is required for \qquad .
a) Short circuit protection
b) Improve transient response
c) Over voltage protection
d) Reducing unwanted oscillations in input
11) Schmitt trigger is \qquad .
a) Amplifier
b) Rectifier
c) Oscillator
d) All of these
12) Power dissipated in case of astable multivibrator is due to \qquad .
a) Vcc
b) $\mathrm{Vcc}, \mathrm{Rc}$
c) Rc
d) None
13) A sine wave can be converted into square wave using \qquad .
a) Astable multivibrator
b) Monostable multivibrator
c) Rectifier
d) Schmitt trigger
14) IC 555 can act as divide by n network in \qquad mode.
a) Astable
b) Monostable
c) Bostable
d) All of these

SLR-FM-680

Seat

No.

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONIC CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

Max. Marks: 56

Section - I

Q. 2 Solve any four: 16
a) Derive expression for mid frequency voltage gain of two stage RC coupled amplifier.
b) What is transformer coupled amplifier class A power amplifier and derive its efficiency.
c) Explain working of crystal oscillator.
d) An amplifier has a midband gain of 1500 and a bandwidth of 4 MHz , the midband gain reduces to 150 when a negative feedback is applied. Determine value of feedback factor and the bandwidth. ($0.006,40 \mathrm{MHz}$).
e) Compare voltage series, current series, voltage shunt, current shunt feedback amplifier.
Q. 3 Solve any two:
a) State Barkhausen's criteria for oscillation and derive expression for frequency of oscillation for Wien bridge oscillator.
b) Design voltage series feedback amplifier to provide voltage gain of 100, use supply voltage of 12 V .
c) Explain frequency response of transformer coupled amplifier.

Section - II

Q. 4 Solve any four:
a) Design a negative regulator to provide 4 V to 16 V regulated output using variable regulator IC. Use ladj $=100 \mu \mathrm{~A}$.
b) Explain working of transistorized series voltage regulator.
c) Explain working of Schmitt trigger using IC 555.
d) Design a timer using IC 555 to turn OFF LED for 2 minute when trigger pulse is given to IC 555, Initially LED is in ON condition.
e) Derive frequency of oscillation for astable multivibrator using transistor.

Q. 5 Solve any two:

a) Design a timer which repeatedly turning ON \& OFF as follows.
i) ON time variation $=1.5 \mathrm{msec}$ to 3.5 msec
ii) OFF time variation $=1 \mathrm{msec}$ to 2 msec .
b) Design a transistorized series voltage regulator for $12 \mathrm{~V}, 1 \mathrm{~A}$ when input voltage given is 16 V .
c) Explain ratings of IC regulators in detail and Design a dual regulated power supply using $317 \& 337$ to provide +-12 V to +-25 V .

SLR-FM-680

S.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONIC CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Question 1 is compulsory; it should be solved in first 30 minutes in
Answer book
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

MCQ/Objective Type Questions

Duration: 30 Minutes
Q. 1 Choose the correct option

1) Pre regulator circuit is \qquad .
a) Constant voltage source
b) Constant current source
c) Stability factor improvement circuit
d) Both b \& c
2) The instantaneous voltage at the input of IC regulator must always \qquad .
a) Exceed the output voltage
b) Lower than the DC output voltage
c) Equal to the DC output voltage
d) None of these
3) For IC regulators input capacitor is required for \qquad .
a) Short circuit protection
b) Improve transient response
c) Over voltage protection
d) Reducing unwanted oscillations in input
4) Schmitt trigger is \qquad .
a) Amplifier
b) Rectifier
c) Oscillator
d) All of these
5) Power dissipated in case of astable multivibrator is due to \qquad .
a) Vcc
b) $\mathrm{Vcc}, \mathrm{Rc}$
c) Rc
d) None
6) A sine wave can be converted into square wave using \qquad .
a) Astable multivibrator
b) Monostable multivibrator
c) Rectifier
d) Schmitt trigger
7) IC 555 can act as divide by n network in \qquad mode.
a) Astable
b) Monostable
c) Bostable
d) All of these
8) A direct coupled amplifier is also called as \qquad .
a) RC coupled amplifier
b) DC amplifier
c) AC amplifier
d) None of these
9) Darlington pair consists of two \qquad cascaded.
a) CB, CB
b) CE,CE
c) CC,CC
d) CE,CC
10) Wien bridge consists of \qquad as feedback network.
a) Three resistor \& capacitor network
b) Two resistor \& capacitor network
c) Lead Lag network made up of R\&C
d) Inductor and Capacitor network
11) Cascading of amplifier results in \qquad .
a) Increasing gain and Bandwidth
b) Decreasing gain and bandwidth
c) Increasing gain and decrease in bandwidth
d) No effect on gain and bandwidth
12) A transconductance amplifier has \qquad input resistance and \qquad output resistance.
a) Zero, Infinity
b) Zero, Zero
c) Infinity, Zero
d) Infinity, Infinity
13) Crystal oscillators are preferred because \qquad .
a) It works at very high frequency
b) It produces stable oscillation
c) It produces high output swing
d) None of these
14) The oscillation in LC circuit is produced due to \qquad .
a) Transfer of energy between L \& C
b) Transfer of energy between R \& C
c) Both a \& b
d) None of these

SLR-FM-680

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONIC CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM

Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

Section - I

Q. 2 Solve any four: 16
a) Derive expression for mid frequency voltage gain of two stage RC coupled amplifier.
b) What is transformer coupled amplifier class A power amplifier and derive its efficiency.
c) Explain working of crystal oscillator.
d) An amplifier has a midband gain of 1500 and a bandwidth of 4 MHz , the midband gain reduces to 150 when a negative feedback is applied. Determine value of feedback factor and the bandwidth. ($0.006,40 \mathrm{MHz}$).
e) Compare voltage series, current series, voltage shunt, current shunt feedback amplifier.
Q. 3 Solve any two:
a) State Barkhausen's criteria for oscillation and derive expression for frequency of oscillation for Wien bridge oscillator.
b) Design voltage series feedback amplifier to provide voltage gain of 100, use supply voltage of 12 V .
c) Explain frequency response of transformer coupled amplifier.
Section - II
Q. 4 Solve any four:
a) Design a negative regulator to provide 4 V to 16 V regulated output using variable regulator IC. Use ladj $=100 \mu \mathrm{~A}$.
b) Explain working of transistorized series voltage regulator.
c) Explain working of Schmitt trigger using IC 555.
d) Design a timer using IC 555 to turn OFF LED for 2 minute when trigger pulse is given to IC 555 , Initially LED is in ON condition.
e) Derive frequency of oscillation for astable multivibrator using transistor.

Q. 5 Solve any two:

a) Design a timer which repeatedly turning ON \& OFF as follows.
i) ON time variation $=1.5 \mathrm{msec}$ to 3.5 msec
ii) OFF time variation $=1 \mathrm{msec}$ to 2 msec .
b) Design a transistorized series voltage regulator for 12V, 1A when input voltage given is 16 V .
c) Explain ratings of IC regulators in detail and Design a dual regulated power supply using $317 \& 337$ to provide +-12 V to +-25 V .

| Seat |
| :--- | :--- |
| No. |

S.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering ELECTRONIC CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Question 1 is compulsory; it should be solved in first 30 minutes in Answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct option

1) A transconductance amplifier has \qquad input resistance and \qquad output resistance.
a) Zero, Infinity
b) Zero, Zero
c) Infinity, Zero
d) Infinity, Infinity
2) Crystal oscillators are preferred because \qquad .
a) It works at very high frequency
b) It produces stable oscillation
c) It produces high output swing
d) None of these
3) The oscillation in LC circuit is produced due to \qquad .
a) Transfer of energy between L \& C
b) Transfer of energy between R \& C
c) Both a \& b
d) None of these
4) Pre regulator circuit is \qquad .
a) Constant voltage source
b) Constant current source
c) Stability factor improvement circuit
d) Both b \& c
5) The instantaneous voltage at the input of IC regulator must always \qquad .
a) Exceed the output voltage
b) Lower than the DC output voltage
c) Equal to the DC output voltage
d) None of these
6) For IC regulators input capacitor is required for \qquad .
a) Short circuit protection
b) Improve transient response
c) Over voltage protection
d) Reducing unwanted oscillations in input
7) Schmitt trigger is \qquad .
a) Amplifier
b) Rectifier
c) Oscillator
d) All of these

SLR-FM-680
 Set

8) Power dissipated in case of astable multivibrator is due to \qquad .
a) Vcc
b) $\mathrm{Vcc}, \mathrm{Rc}$
c) Rc
d) None
9) A sine wave can be converted into square wave using \qquad .
a) Astable multivibrator
b) Monostable multivibrator
c) Rectifier
d) Schmitt trigger
10) IC 555 can act as divide by n network in \qquad mode.
a) Astable
b) Monostable
c) Bostable
d) All of these
11) A direct coupled amplifier is also called as \qquad -
a) RC coupled amplifier
b) DC amplifier
c) AC amplifier
d) None of these
12) Darlington pair consists of two \qquad cascaded.
a) CB, CB
b) CE,CE
c) $C C, C C$
d) CE,CC
13) Wien bridge consists of \qquad as feedback network.
a) Three resistor \& capacitor network
b) Two resistor \& capacitor network
c) Lead Lag network made up of R\&C
d) Inductor and Capacitor network
14) Cascading of amplifier results in \qquad .
a) Increasing gain and Bandwidth
b) Decreasing gain and bandwidth
c) Increasing gain and decrease in bandwidth
d) No effect on gain and bandwidth

SLR-FM-680

Seat	
No.	

S.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONIC CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

Max. Marks: 56

Section - I

Q. 2 Solve any four:

a) Derive expression for mid frequency voltage gain of two stage RC coupled amplifier.
b) What is transformer coupled amplifier class A power amplifier and derive its efficiency.
c) Explain working of crystal oscillator.
d) An amplifier has a midband gain of 1500 and a bandwidth of 4 MHz , the midband gain reduces to 150 when a negative feedback is applied. Determine value of feedback factor and the bandwidth. ($0.006,40 \mathrm{MHz}$).
e) Compare voltage series, current series, voltage shunt, current shunt feedback amplifier.
Q. 3 Solve any two:
a) State Barkhausen's criteria for oscillation and derive expression for frequency of oscillation for Wien bridge oscillator.
b) Design voltage series feedback amplifier to provide voltage gain of 100, use supply voltage of 12 V .
c) Explain frequency response of transformer coupled amplifier.
Section - II
Q. 4 Solve any four:
a) Design a negative regulator to provide 4 V to 16 V regulated output using variable regulator IC. Use ladj $=100 \mu \mathrm{~A}$.
b) Explain working of transistorized series voltage regulator.
c) Explain working of Schmitt trigger using IC 555.
d) Design a timer using IC 555 to turn OFF LED for 2 minute when trigger pulse is given to IC 555 , Initially LED is in ON condition.
e) Derive frequency of oscillation for astable multivibrator using transistor.

Q. 5 Solve any two:

a) Design a timer which repeatedly turning ON \& OFF as follows.
i) ON time variation $=1.5 \mathrm{msec}$ to 3.5 msec
ii) OFF time variation $=1 \mathrm{msec}$ to 2 msec .
b) Design a transistorized series voltage regulator for $12 \mathrm{~V}, 1 \mathrm{~A}$ when input voltage given is 16 V .
c) Explain ratings of IC regulators in detail and Design a dual regulated power supply using $317 \& 337$ to provide +-12 V to +-25 V .

| Seat |
| :--- | :--- |
| No. |

S.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering ELECTRONIC CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Question 1 is compulsory; it should be solved in first 30 minutes in Answer book Page no. 3 each question carries 1 mark.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct option

1) For IC regulators input capacitor is required for \qquad .
a) Short circuit protection
b) Improve transient response
c) Over voltage protection
d) Reducing unwanted oscillations in input
2) Schmitt trigger is \qquad .
a) Amplifier
b) Rectifier
c) Oscillator
d) All of these
3) Power dissipated in case of astable multivibrator is due to \qquad .
a) Vcc
b) $\mathrm{Vcc}, \mathrm{Rc}$
c) Rc
d) None
4) A sine wave can be converted into square wave using \qquad .
a) Astable multivibrator
b) Monostable multivibrator
c) Rectifier
d) Schmitt trigger
5) IC 555 can act as divide by n network in \qquad mode.
a) Astable
b) Monostable
c) Bostable
d) All of these
6) A direct coupled amplifier is also called as \qquad .
a) RC coupled amplifier
b) DC amplifier
c) AC amplifier
d) None of these
7) Darlington pair consists of two \qquad cascaded.
a) CB, CB
b) CE,CE
c) CC, CC
d) CE,CC
8) Wien bridge consists of \qquad as feedback network.
a) Three resistor \& capacitor network
b) Two resistor \& capacitor network
c) Lead Lag network made up of R\&C
d) Inductor and Capacitor network

SLR-FM-680
 Set

9) Cascading of amplifier results in \qquad .
a) Increasing gain and Bandwidth
b) Decreasing gain and bandwidth
c) Increasing gain and decrease in bandwidth
d) No effect on gain and bandwidth
10) A transconductance amplifier has \qquad input resistance and \qquad output resistance.
a) Zero, Infinity
b) Zero, Zero
c) Infinity, Zero
d) Infinity, Infinity
11) Crystal oscillators are preferred because \qquad -.
a) It works at very high frequency
b) It produces stable oscillation
c) It produces high output swing
d) None of these
12) The oscillation in LC circuit is produced due to \qquad .
a) Transfer of energy between L \& C
b) Transfer of energy between R \& C
c) Both a \& b
d) None of these
13) Pre regulator circuit is \qquad .
a) Constant voltage source
b) Constant current source
c) Stability factor improvement circuit
d) Both b \& c
14) The instantaneous voltage at the input of IC regulator must always \qquad .
a) Exceed the output voltage
b) Lower than the DC output voltage
c) Equal to the DC output voltage
d) None of these

SLR-FM-680

| Seat |
| :--- | :--- |
| No. |

S.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRONIC CIRCUIT ANALYSIS AND DESIGN - II

Day \& Date: Friday, 22-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM

Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.
4) Use of electronic component datasheet is allowed.

Section - I

Q. 2 Solve any four:

a) Derive expression for mid frequency voltage gain of two stage RC coupled amplifier.
b) What is transformer coupled amplifier class A power amplifier and derive its efficiency.
c) Explain working of crystal oscillator.
d) An amplifier has a midband gain of 1500 and a bandwidth of 4 MHz , the midband gain reduces to 150 when a negative feedback is applied. Determine value of feedback factor and the bandwidth. ($0.006,40 \mathrm{MHz}$).
e) Compare voltage series, current series, voltage shunt, current shunt feedback amplifier.
Q. 3 Solve any two:
a) State Barkhausen's criteria for oscillation and derive expression for frequency of oscillation for Wien bridge oscillator.
b) Design voltage series feedback amplifier to provide voltage gain of 100, use supply voltage of 12 V .
c) Explain frequency response of transformer coupled amplifier.
Section - II
Q. 4 Solve any four:
a) Design a negative regulator to provide 4 V to 16 V regulated output using variable regulator IC. Use ladj $=100 \mu \mathrm{~A}$.
b) Explain working of transistorized series voltage regulator.
c) Explain working of Schmitt trigger using IC 555.
d) Design a timer using IC 555 to turn OFF LED for 2 minute when trigger pulse is given to IC 555 , Initially LED is in ON condition.
e) Derive frequency of oscillation for astable multivibrator using transistor.

Q. 5 Solve any two:

a) Design a timer which repeatedly turning ON \& OFF as follows.
i) ON time variation $=1.5 \mathrm{msec}$ to 3.5 msec
ii) OFF time variation $=1 \mathrm{msec}$ to 2 msec .
b) Design a transistorized series voltage regulator for $12 \mathrm{~V}, 1 \mathrm{~A}$ when input voltage given is 16 V .
c) Explain ratings of IC regulators in detail and Design a dual regulated power supply using $317 \& 337$ to provide +-12 V to +-25 V .

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019

Electronics and Telecommunication Engineering

ANALOG COMMUNICATION

Day \& Date: Saturday, 23-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Question 1 is compulsory, It should be solved in first 30 minutes in Answer book.

2) Figures to the right indicates full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Thermal noise voltage in resistor R is proportional to \qquad .
a) \sqrt{R}
b) R
c) R^{2}
d) independent of R
2) Standard intermediate frequency used for $A M$ receiver is \qquad .
a) 455 MHz
b) 455 KHz
c) 455 Hz
d) None of these
3) In the TV receivers, the device used for tuning the receiver to the incoming signal is \qquad .
a) Varactor diode
b) High pass Filter
c) Zener diode
d) Low pass filter
4) In TV transmission, picture signal is \qquad modulated.
a) Frequency
b) Phase
c) Amplitude
d) All of these
5) If a radio receiver amplifies all the signal frequencies equally well, it is said to have high \qquad .
a) Sensitivity
b) Selectivity
c) Distortion
d) Fidelity
6) What is the ratio of modulating power to total power at 100% modulation?
a) $1: 3$
b) $1: 2$
c) $2: 3$
d) $3: 2$
7) For a three stage cascade amplifier, calculate the overall noise figure when each stage has a gain of 12 dB and noise figure of 8 dB .
a) 12
b) 24
c) 15
d) 13.55
8) The amplitude of sidebands in FM signal are dependent upon mathematical process known as \qquad .
a) Gaussian function
b) Shannon's function
c) Bessel function
d) Fourier function
9) Which type of noise does not occur in transistor?
a) Shot noise
b) Flicker noise
c) Partition noise
d) Resistance noise
10) De-emphasis is used \qquad .
a) To attenuate high modulation frequencies
b) To attenuate low modulation frequencies
c) To attenuate mid-band modulation frequencies
d) To attenuate overall modulation frequencies
11) In FM system, if the depth of modulation is doubled, the output power \qquad .
a) increased by factor of $\sqrt{ } 2$
b) increased by factor of $\sqrt{ } 3$
c) increased by factor of 2
d) remains at unmodulated value
12) Frequency of dialing tone is \qquad .
a) 50 Hz
b) 33 Hz
c) 800 Hz
d) 133 Hz
13) A folded dipole consists of \qquad .
a) Single element
b) Two elements
c) Three elements
d) Four elements
14) Strowger switching system is \qquad type of telephone system.
a) electronic
b) Manual
c) automatic
d) Electromechanical

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019
 Electronics and Telecommunication Engineering ANALOG COMMUNICATION

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four of the following questions.
a) Define and describe Independent Side Band (ISB) transmission with block diagram.
b) Explain the effect of cascade connection on signal to noise ratio.
c) Describe Frequency Division Multiplexing in brief.
d) Write a note on Automatic Gain Control (AGC). Why it is required?
e) Derive the expression for frequency spectrum of AM wave with bandwidth.
Q. 3 Attempt any two of the following questions.
a) Calculate the percentage power saving when carrier and one of the sidebands are suppressed in an amplitude modulated wave to a depth of 40 and 60 percent.
b) What are the different types of DSBSC generation? Explain DSBSC using JFET modulator.
c) Briefly comment on the importance of S / N ratio in a communication system.

Section - II

Q. 4 Attempt any four of the following questions.
a) With application explain horn antenna.
b) Compare wideband FM and narrowband FM.
c) With the help of neat diagram explain working of Strowger switching system.
d) Explain the working principle of ratio detector.
e) Which types of tones used in telephony?
Q. 5 Attempt any two of the following questions.
a) What are the types of wave propagation? Explain any one of them in detail.
b) Draw and explain FET reactance modulator used for FM modulation.
c) List the relative advantages and disadvantages of $A M, F M$ and PM.

S.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019

Electronics and Telecommunication Engineering

ANALOG COMMUNICATION

Day \& Date: Saturday, 23-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Question 1 is compulsory, It should be solved in first 30 minutes in Answer book.

2) Figures to the right indicates full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The amplitude of sidebands in FM signal are dependent upon mathematical process known as \qquad .
a) Gaussian function
b) Shannon's function
c) Bessel function
d) Fourier function
2) Which type of noise does not occur in transistor?
a) Shot noise
b) Flicker noise
c) Partition noise
d) Resistance noise
3) De-emphasis is used \qquad .
a) To attenuate high modulation frequencies
b) To attenuate low modulation frequencies
c) To attenuate mid-band modulation frequencies
d) To attenuate overall modulation frequencies
4) In FM system, if the depth of modulation is doubled, the output power \qquad .
a) increased by factor of $\sqrt{ } 2$
b) increased by factor of $\sqrt{ } 3$
c) increased by factor of 2
d) remains at unmodulated value
5) Frequency of dialing tone is \qquad .
a) 50 Hz
b) 33 Hz
c) 800 Hz
d) 133 Hz
6) A folded dipole consists of \qquad -.
a) Single element
b) Two elements
c) Three elements
d) Four elements
7) Strowger switching system is \qquad type of telephone system.
a) electronic
b) Manual
c) automatic
d) Electromechanical
8) Thermal noise voltage in resistor R is proportional to \qquad .
a) \sqrt{R}
b) R
c) R^{2}
d) independent of R
9) Standard intermediate frequency used for AM receiver is \qquad .
a) 455 MHz
b) 455 KHz
c) 455 Hz
d) None of these

SLR-FM-681

Set
10) In the TV receivers, the device used for tuning the receiver to the incoming signal is \qquad _.
a) Varactor diode
b) High pass Filter
c) Zener diode
d) Low pass filter
11) In TV transmission, picture signal is \qquad modulated.
a) Frequency
b) Phase
c) Amplitude
d) All of these
12) If a radio receiver amplifies all the signal frequencies equally well, it is said to have high \qquad -.
a) Sensitivity
b) Selectivity
c) Distortion
d) Fidelity
13) What is the ratio of modulating power to total power at 100% modulation?
a) $1: 3$
b) $1: 2$
c) $2: 3$
d) 3:2
14) For a three stage cascade amplifier, calculate the overall noise figure when each stage has a gain of 12 dB and noise figure of 8 dB .
a) 12
b) 24
c) 15
d) 13.55

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019
 Electronics and Telecommunication Engineering ANALOG COMMUNICATION

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four of the following questions.
a) Define and describe Independent Side Band (ISB) transmission with block diagram.
b) Explain the effect of cascade connection on signal to noise ratio.
c) Describe Frequency Division Multiplexing in brief.
d) Write a note on Automatic Gain Control (AGC). Why it is required?
e) Derive the expression for frequency spectrum of AM wave with bandwidth.
Q. 3 Attempt any two of the following questions.
a) Calculate the percentage power saving when carrier and one of the sidebands are suppressed in an amplitude modulated wave to a depth of 40 and 60 percent.
b) What are the different types of DSBSC generation? Explain DSBSC using JFET modulator.
c) Briefly comment on the importance of S / N ratio in a communication system.

Section - II

Q. 4 Attempt any four of the following questions.
a) With application explain horn antenna.
b) Compare wideband FM and narrowband FM.
c) With the help of neat diagram explain working of Strowger switching system.
d) Explain the working principle of ratio detector.
e) Which types of tones used in telephony?
Q. 5 Attempt any two of the following questions.
a) What are the types of wave propagation? Explain any one of them in detail.
b) Draw and explain FET reactance modulator used for FM modulation.
c) List the relative advantages and disadvantages of AM, FM and PM.

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019
 Electronics and Telecommunication Engineering ANALOG COMMUNICATION

Day \& Date: Saturday, 23-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Question 1 is compulsory, It should be solved in first 30 minutes in Answer book.

2) Figures to the right indicates full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) If a radio receiver amplifies all the signal frequencies equally well, it is said to have high \qquad .
a) Sensitivity
b) Selectivity
c) Distortion
d) Fidelity
2) What is the ratio of modulating power to total power at 100% modulation?
a) $1: 3$
b) $1: 2$
c) $2: 3$
d) 3:2
3) For a three stage cascade amplifier, calculate the overall noise figure when each stage has a gain of 12 dB and noise figure of 8 dB .
a) 12
b) 24
c) 15
d) 13.55
4) The amplitude of sidebands in FM signal are dependent upon mathematical process known as \qquad .
a) Gaussian function
b) Shannon's function
c) Bessel function
d) Fourier function
5) Which type of noise does not occur in transistor?
a) Shot noise
b) Flicker noise
c) Partition noise
d) Resistance noise
6) De-emphasis is used \qquad -
a) To attenuate high modulation frequencies
b) To attenuate low modulation frequencies
c) To attenuate mid-band modulation frequencies
d) To attenuate overall modulation frequencies
7) In FM system, if the depth of modulation is doubled, the output power \qquad .
a) increased by factor of $\sqrt{ } 2$
b) increased by factor of $\sqrt{ } 3$
c) increased by factor of 2
d) remains at unmodulated value
8) Frequency of dialing tone is \qquad .
a) 50 Hz
b) 33 Hz
c) 800 Hz
d) 133 Hz
9) A folded dipole consists of \qquad .
a) Single element
b) Two elements
c) Three elements
d) Four elements
10) Strowger switching system is \qquad type of telephone system.
a) electronic
b) Manual
c) automatic
d) Electromechanical
11) Thermal noise voltage in resistor R is proportional to \qquad .
a) \sqrt{R}
b) R
c) R^{2}
d) independent of R
12) Standard intermediate frequency used for AM receiver is \qquad .
a) 455 MHz
b) 455 KHz
c) 455 Hz
d) None of these
13) In the TV receivers, the device used for tuning the receiver to the incoming signal is \qquad .
a) Varactor diode
b) High pass Filter
c) Zener diode
d) Low pass filter
14) In TV transmission, picture signal is \qquad modulated.
a) Frequency
b) Phase
c) Amplitude
d) All of these

S.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics and Telecommunication Engineering ANALOG COMMUNICATION

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary

Section - I

Q. 2 Attempt any four of the following questions.
a) Define and describe Independent Side Band (ISB) transmission with block diagram.
b) Explain the effect of cascade connection on signal to noise ratio.
c) Describe Frequency Division Multiplexing in brief.
d) Write a note on Automatic Gain Control (AGC). Why it is required?
e) Derive the expression for frequency spectrum of AM wave with bandwidth.
Q. 3 Attempt any two of the following questions.
a) Calculate the percentage power saving when carrier and one of the sidebands are suppressed in an amplitude modulated wave to a depth of 40 and 60 percent.
b) What are the different types of DSBSC generation? Explain DSBSC using JFET modulator.
c) Briefly comment on the importance of S / N ratio in a communication system.

Section - II

Q. 4 Attempt any four of the following questions.
a) With application explain horn antenna.
b) Compare wideband FM and narrowband FM.
c) With the help of neat diagram explain working of Strowger switching system.
d) Explain the working principle of ratio detector.
e) Which types of tones used in telephony?
Q. 5 Attempt any two of the following questions.
a) What are the types of wave propagation? Explain any one of them in detail.
b) Draw and explain FET reactance modulator used for FM modulation.
c) List the relative advantages and disadvantages of AM, FM and PM.

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019

Electronics and Telecommunication Engineering

ANALOG COMMUNICATION

Day \& Date: Saturday, 23-11-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Question 1 is compulsory, It should be solved in first 30 minutes in Answer book.

2) Figures to the right indicates full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) De-emphasis is used \qquad .
a) To attenuate high modulation frequencies
b) To attenuate low modulation frequencies
c) To attenuate mid-band modulation frequencies
d) To attenuate overall modulation frequencies
2) In FM system, if the depth of modulation is doubled, the output power \qquad .
a) increased by factor of $\sqrt{ } 2$
b) increased by factor of $\sqrt{ } 3$
c) increased by factor of 2
d) remains at unmodulated value
3) Frequency of dialing tone is \qquad .
a) 50 Hz
b) 33 Hz
c) 800 Hz
d) 133 Hz
4) A folded dipole consists of \qquad .
a) Single element
b) Two elements
c) Three elements
d) Four elements
5) Strowger switching system is \qquad type of telephone system.
a) electronic
b) Manual
c) automatic
d) Electromechanical
6) Thermal noise voltage in resistor R is proportional to \qquad .
a) \sqrt{R}
b) R
c) R^{2}
d) independent of R
7) Standard intermediate frequency used for AM receiver is \qquad .
a) 455 MHz
b) 455 KHz
c) 455 Hz
d) None of these
8) In the TV receivers, the device used for tuning the receiver to the incoming signal is \qquad .
a) Varactor diode
b) High pass Filter
c) Zener diode
d) Low pass filter
9) In TV transmission, picture signal is \qquad modulated.
a) Frequency
b) Phase
c) Amplitude
d) All of these
10) If a radio receiver amplifies all the signal frequencies equally well, it is said to have high \qquad .
a) Sensitivity
b) Selectivity
c) Distortion
d) Fidelity
11) What is the ratio of modulating power to total power at 100% modulation?
a) $1: 3$
b) $1: 2$
c) $2: 3$
d) $3: 2$
12) For a three stage cascade amplifier, calculate the overall noise figure when each stage has a gain of 12 dB and noise figure of 8 dB .
a) 12
b) 24
c) 15
d) 13.55
13) The amplitude of sidebands in FM signal are dependent upon mathematical process known as \qquad .
a) Gaussian function
b) Shannon's function
c) Bessel function
d) Fourier function
14) Which type of noise does not occur in transistor?
a) Shot noise
b) Flicker noise
c) Partition noise
d) Resistance noise

S.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics and Telecommunication Engineering ANALOG COMMUNICATION

Day \& Date: Saturday, 23-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary

Section - I

Q. 2 Attempt any four of the following questions.
a) Define and describe Independent Side Band (ISB) transmission with block diagram.
b) Explain the effect of cascade connection on signal to noise ratio.
c) Describe Frequency Division Multiplexing in brief.
d) Write a note on Automatic Gain Control (AGC). Why it is required?
e) Derive the expression for frequency spectrum of AM wave with bandwidth.
Q. 3 Attempt any two of the following questions.
a) Calculate the percentage power saving when carrier and one of the sidebands are suppressed in an amplitude modulated wave to a depth of 40 and 60 percent.
b) What are the different types of DSBSC generation? Explain DSBSC using JFET modulator.
c) Briefly comment on the importance of S / N ratio in a communication system.

Section - II

Q. 4 Attempt any four of the following questions.
a) With application explain horn antenna.
b) Compare wideband FM and narrowband FM.
c) With the help of neat diagram explain working of Strowger switching system.
d) Explain the working principle of ratio detector.
e) Which types of tones used in telephony?
Q. 5 Attempt any two of the following questions.
a) What are the types of wave propagation? Explain any one of them in detail.
b) Draw and explain FET reactance modulator used for FM modulation.
c) List the relative advantages and disadvantages of AM, FM and PM.

S.E. (Part -II) (OId) (CGPA) Examination Nov/Dec-2019 ELECTRONICS \& TELECOMMUNICATION ENGINEERING CONTROL SYSTEMS

Day \& Date: Monday, 25-11-2019

Max. Marks: 70
Time: 02.30 PM To 05.30 PM

Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer book.

2) Assume suitable data if required
3) Figures to right indicate full marks.

MCQ/Objective Type Questions

Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) In an open loop control system \qquad .
a) output is independent of control input
b) output is dependent on control input
c) only system parameters have effect on the control output
d) None of the above
2)

\qquad has tendency to oscillate.
a) Open loop
b) Closed loop
c) Both a) and b)
d) Neither a) nor b)
3) Zero initial condition for a system means \qquad .
a) Input reference signal is zero
b) Zero stored energy
c) No initial movement of moving parts
d) System is at rest and no energy is stored in any of its components
4) The capacitance, in force-current analogy, is analogous to \qquad .
a) Momentum
b) Velocity
c) Displacement
d) Mass
5) The type 1 system has \qquad at the origin.
a) no pole
b) net pole
c) simple pole
d) two poles
6) When two blocks connected in parallel, resultant block is the \qquad of individual block.
a) Product
b) Division
c) Sum
d) Subtraction
7) The first two rows of Routh tabulation of a third order system are $\begin{array}{lll}S^{3} \mid 2 & 2 \\ S^{2} & 14 & 4\end{array}$
a) The characteristic equation has one root in right half s-plane
b) The characteristic equation has two roots on the $j w$ axis at $s= \pm j$
c) The characteristic equation has two roots on the jw axis at $\mathrm{s}= \pm 2 \mathrm{j}$
d) None of the these
8) Bode plot of the constant is a \qquad .
a) Line with a slope of $-20 \mathrm{~dB} /$ decade
b) Line with a slope of $-6 \mathrm{~dB} /$ decade
c) Line with a slope of $-40 \mathrm{~dB} /$ decade
d) Straight line parallel to frequency axis
9) In a type-I system, the steady state acceleration error is \qquad .
a) Zero
b) Unity
c) Infinity
d) None of these
10) In critically damped system, the damping factor of the system is \qquad .
a) Zero
b) Unity
c) Less than unity
d) greater than unity
11) The addition of zero in the transfer function causes \qquad _.
a) Phase lead compensation
b) Phase lag compensation
c) Lag- lead compensation
d) None of these
12) The phase shift of the second order system with transfer function $1 / S^{2}$ is \qquad .
a) 180°
b) -180°
c) 0^{0}
d) 90°
13) Starting point of Root Locus are \qquad .
a) open loop poles
b) close loop poles
c) open loop zeros
d) close loop zeros
14) A feedback control system has $G(s) H(s)=\frac{10}{s(s+2)}$, the ramp error constant is \qquad .
a) 10
b) 2
c) 5
d) None

S.E. (Part -II) (Old) (CGPA) Examination Nov/Dec-2019 ELECTRONICS \& TELECOMMUNICATION ENGINEERING CONTROL SYSTEMS

Day \& Date: Monday, 25-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume the suitable data whenever necessary.

SECTION I

Q. 2 Attempt any four:
a) Explain with block diagram Liquid level control system.
b) Differentiate between open loop and closed loop systems.
c) What is transfer function? Derive transfer function of closed loop control system.
d) Explain rules for block diagram reduction.
e) Define relative stability and conditional stability.
Q. 3 a) Find the transfer function of the system shown below using Mason's gain formula.

b) Solve any ONE

1) Find the transfer function of the following block diagram

2) A unity feedback control system has an open loop transfer function

$$
x=\frac{k}{(S+1)^{3}(S+4)}
$$

Determine the range of value of k for the closed loop system be stable.

SECTION II

Q. 4 Attempt any four

a) Explain Lag-Lead compensator.
b) Explain different standard test signals.
c) A second order system is given by following equitation find its Damping Factor, Delay time, Rise time, peak overshoot and.

$$
T(s)=\frac{25}{s^{2}+6 s+25}
$$

d) Explain how centroid and breakaway points are calculated in root locus.
e) Determine the steady state error of given system For Input is $r(t)=t^{2}$

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{100}{\mathrm{~s}^{2}(1+0.5 S)(\mathrm{s}+2)}
$$

Q. 5 Attempt any two.

a) Sketch the bode plot for the given system

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{80}{\mathrm{~s}(\mathrm{~s}+2)(\mathrm{s}+20)}
$$

Determine:

1) Gain crossover frequency
2) Phase crossover frequency
3) GM and PM
4) Comment on stability of system.
b) Draw the root locus for the system where K varies between K to infinite.

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{\mathrm{K}}{\mathrm{~s}(\mathrm{~s}+4)(\mathrm{s}+2)}
$$

c) For unity feedback system determine

$$
G(s) H(s)=\frac{10(s+1)}{s^{2}(s+2)(s+10)}
$$

1) Type of system
2) Error co-efficients
3) $1+4 t+t^{2} / 2$

S.E. (Part -II) (OId) (CGPA) Examination Nov/Dec-2019 ELECTRONICS \& TELECOMMUNICATION ENGINEERING CONTROL SYSTEMS

Max. Marks: 70
Time: 02.30 PM To 05.30 PM
Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer book.
2) Assume suitable data if required
3) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) Bode plot of the constant is a \qquad .
a) Line with a slope of $-20 \mathrm{~dB} /$ decade
b) Line with a slope of $-6 \mathrm{~dB} /$ decade
c) Line with a slope of $-40 \mathrm{~dB} /$ decade
d) Straight line parallel to frequency axis
2) In a type-I system, the steady state acceleration error is \qquad .
a) Zero
b) Unity
c) Infinity
d) None of these
3) In critically damped system, the damping factor of the system is \qquad .
a) Zero
b) Unity
c) Less than unity
d) greater than unity
4) The addition of zero in the transfer function causes \qquad .
a) Phase lead compensation
b) Phase lag compensation
c) Lag- lead compensation
d) None of these
5) The phase shift of the second order system with transfer function $1 / S^{2}$ is \qquad .
a) 180°
b) -180°
c) 0^{0}
d) 90°
6) Starting point of Root Locus are \qquad .
a) open loop poles
b) close loop poles
c) open loop zeros
d) close loop zeros
7) A feedback control system has $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{10}{\mathrm{~s}(\mathrm{~s}+2)}$, the ramp error constant is \qquad .
a) 10
b) 2
c) 5
d) None
8) In an open loop control system \qquad .
a) output is independent of control input
b) output is dependent on control input
c) only system parameters have effect on the control output
d) None of the above
9) ___ has tendency to oscillate.
a) Open loop
b) Closed loop
c) Both a) and b)
d) Neither a) nor b)
10) Zero initial condition for a system means \qquad .
a) Input reference signal is zero
b) Zero stored energy
c) No initial movement of moving parts
d) System is at rest and no energy is stored in any of its components
11) The capacitance, in force-current analogy, is analogous to \qquad .
a) Momentum
b) Velocity
c) Displacement
d) Mass
12) The type 1 system has \qquad at the origin.
a) no pole
b) net pole
c) simple pole
d) two poles
13) When two blocks connected in parallel, resultant block is the \qquad of individual block.
a) Product
b) Division
c) Sum
d) Subtraction
14) The first two rows of Routh tabulation of a third order system are
$S^{3} 12 \quad 2$
$S^{2} \mid 4 \quad 4$
a) The characteristic equation has one root in right half s-plane
b) The characteristic equation has two roots on the $j w$ axis at $s= \pm j$
c) The characteristic equation has two roots on the jw axis at $\mathrm{s}= \pm 2 \mathrm{j}$
d) None of the these

S.E. (Part -II) (Old) (CGPA) Examination Nov/Dec-2019 ELECTRONICS \& TELECOMMUNICATION ENGINEERING CONTROL SYSTEMS

Day \& Date: Monday, 25-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume the suitable data whenever necessary.

SECTION I

Q. 2 Attempt any four:
a) Explain with block diagram Liquid level control system.
b) Differentiate between open loop and closed loop systems.
c) What is transfer function? Derive transfer function of closed loop control system.
d) Explain rules for block diagram reduction.
e) Define relative stability and conditional stability.
Q. 3 a) Find the transfer function of the system shown below using Mason's gain formula.

b) Solve any ONE

1) Find the transfer function of the following block diagram

2) A unity feedback control system has an open loop transfer function

$$
x=\frac{k}{(S+1)^{3}(S+4)}
$$

Determine the range of value of k for the closed loop system be stable.

SECTION II

Q. 4 Attempt any four

a) Explain Lag-Lead compensator.
b) Explain different standard test signals.
c) A second order system is given by following equitation find its Damping Factor, Delay time, Rise time, peak overshoot and.

$$
T(s)=\frac{25}{s^{2}+6 s+25}
$$

d) Explain how centroid and breakaway points are calculated in root locus.
e) Determine the steady state error of given system For Input is $r(t)=t^{2}$

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{100}{\mathrm{~s}^{2}(1+0.5 S)(\mathrm{s}+2)}
$$

Q. 5 Attempt any two.

a) Sketch the bode plot for the given system

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{80}{\mathrm{~s}(\mathrm{~s}+2)(\mathrm{s}+20)}
$$

Determine:

1) Gain crossover frequency
2) Phase crossover frequency
3) GM and PM
4) Comment on stability of system.
b) Draw the root locus for the system where K varies between K to infinite.

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{\mathrm{K}}{\mathrm{~s}(\mathrm{~s}+4)(\mathrm{s}+2)}
$$

c) For unity feedback system determine

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{10(\mathrm{~s}+1)}{\mathrm{s}^{2}(\mathrm{~s}+2)(\mathrm{s}+10)}
$$

1) Type of system
2) Error co-efficients
3) $1+4 t+t^{2} / 2$

S.E. (Part -II) (OId) (CGPA) Examination Nov/Dec-2019 ELECTRONICS \& TELECOMMUNICATION ENGINEERING CONTROL SYSTEMS

Max. Marks: 70
Time: 02.30 PM To 05.30 PM
Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer book.
2) Assume suitable data if required
3) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) The type 1 system has \qquad at the origin.
a) no pole
b) net pole
c) simple pole
d) two poles
2) When two blocks connected in parallel, resultant block is the \qquad of individual block.
a) Product
b) Division
c) Sum
d) Subtraction
3) The first two rows of Routh tabulation of a third order system are $\begin{array}{lll}S^{3} & 12 & 2 \\ S^{2} & 14 & 4\end{array}$
a) The characteristic equation has one root in right half s-plane
b) The characteristic equation has two roots on the jw axis at $\mathrm{s}= \pm \mathrm{j}$
c) The characteristic equation has two roots on the $j w$ axis at $s= \pm 2 j$
d) None of the these
4) Bode plot of the constant is a \qquad .
a) Line with a slope of $-20 \mathrm{~dB} /$ decade
b) Line with a slope of $-6 \mathrm{~dB} / \mathrm{decade}$
c) Line with a slope of $-40 \mathrm{~dB} /$ decade
d) Straight line parallel to frequency axis
5) In a type-I system, the steady state acceleration error is \qquad .
a) Zero
b) Unity
c) Infinity
d) None of these
6) In critically damped system, the damping factor of the system is \qquad .
a) Zero
b) Unity
c) Less than unity
d) greater than unity
7) The addition of zero in the transfer function causes \qquad .
a) Phase lead compensation
b) Phase lag compensation
c) Lag- lead compensation
d) None of these
8) The phase shift of the second order system with transfer function $1 / S^{2}$ is \qquad .
a) 180°
b) -180°
c) 0^{0}
d) 90°
9) Starting point of Root Locus are \qquad .
a) open loop poles
b) close loop poles
c) open loop zeros
d) close loop zeros
10) A feedback control system has $G(s) H(s)=\frac{10}{s(s+2)}$, the ramp error constant is \qquad -.
a) 10
b) 2
c) 5
d) None
11) In an open loop control system \qquad .
a) output is independent of control input
b) output is dependent on control input
c) only system parameters have effect on the control output
d) None of the above
12) \qquad has tendency to oscillate.
a) Open loop
b) Closed loop
c) Both a) and b)
d) Neither a) nor b)
13) Zero initial condition for a system means \qquad .
a) Input reference signal is zero
b) Zero stored energy
c) No initial movement of moving parts
d) System is at rest and no energy is stored in any of its components
14) The capacitance, in force-current analogy, is analogous to \qquad .
a) Momentum
b) Velocity
c) Displacement
d) Mass

S.E. (Part -II) (Old) (CGPA) Examination Nov/Dec-2019 ELECTRONICS \& TELECOMMUNICATION ENGINEERING CONTROL SYSTEMS

Day \& Date: Monday, 25-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume the suitable data whenever necessary.

SECTION I

Q. 2 Attempt any four:
a) Explain with block diagram Liquid level control system.
b) Differentiate between open loop and closed loop systems.
c) What is transfer function? Derive transfer function of closed loop control system.
d) Explain rules for block diagram reduction.
e) Define relative stability and conditional stability.
Q. 3 a) Find the transfer function of the system shown below using Mason's gain formula.

b) Solve any ONE

1) Find the transfer function of the following block diagram

2) A unity feedback control system has an open loop transfer function

$$
x=\frac{k}{(S+1)^{3}(S+4)}
$$

Determine the range of value of k for the closed loop system be stable.

SECTION II

Q. 4 Attempt any four

a) Explain Lag-Lead compensator.
b) Explain different standard test signals.
c) A second order system is given by following equitation find its Damping Factor, Delay time, Rise time, peak overshoot and.

$$
T(s)=\frac{25}{s^{2}+6 s+25}
$$

d) Explain how centroid and breakaway points are calculated in root locus.
e) Determine the steady state error of given system For Input is $r(t)=t^{2}$

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{100}{\mathrm{~s}^{2}(1+0.5 S)(\mathrm{s}+2)}
$$

Q. 5 Attempt any two.

a) Sketch the bode plot for the given system

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{80}{\mathrm{~s}(\mathrm{~s}+2)(\mathrm{s}+20)}
$$

Determine:

1) Gain crossover frequency
2) Phase crossover frequency
3) GM and PM
4) Comment on stability of system.
b) Draw the root locus for the system where K varies between K to infinite.

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{\mathrm{K}}{\mathrm{~s}(\mathrm{~s}+4)(\mathrm{s}+2)}
$$

c) For unity feedback system determine

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{10(\mathrm{~s}+1)}{\mathrm{s}^{2}(\mathrm{~s}+2)(\mathrm{s}+10)}
$$

1) Type of system
2) Error co-efficients
3) $1+4 t+t^{2} / 2$

S.E. (Part -II) (OId) (CGPA) Examination Nov/Dec-2019 ELECTRONICS \& TELECOMMUNICATION ENGINEERING CONTROL SYSTEMS

Day \& Date: Monday, 25-11-2019

Max. Marks: 70
Time: 02.30 PM To 05.30 PM
Instructions: 1) Q.No. 1 is compulsory and should be solved in first 30 Minutes in answer book.
2) Assume suitable data if required
3) Figures to right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the 14 sentence.

1) In critically damped system, the damping factor of the system is \qquad .
a) Zero
b) Unity
c) Less than unity
d) greater than unity
2) The addition of zero in the transfer function causes \qquad .
a) Phase lead compensation
b) Phase lag compensation
c) Lag- lead compensation
d) None of these
3) The phase shift of the second order system with transfer function $1 / S^{2}$ is \qquad .
a) 180°
b) -180°
c) 0^{0}
d) 90°
4) Starting point of Root Locus are \qquad .
a) open loop poles
b) close loop poles
c) open loop zeros
d) close loop zeros
5) A feedback control system has $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{10}{\mathrm{~s}(\mathrm{~s}+2)}$, the ramp error constant is \qquad .
a) 10
b) 2
c) 5
d) None
6) In an open loop control system \qquad .
a) output is independent of control input
b) output is dependent on control input
c) only system parameters have effect on the control output
d) None of the above
7)

a) Open loop
b) Closed loop
c) Both a) and b)
d) Neither a) nor b)
8) Zero initial condition for a system means \qquad .
a) Input reference signal is zero
b) Zero stored energy
c) No initial movement of moving parts
d) System is at rest and no energy is stored in any of its components
9) The capacitance, in force-current analogy, is analogous to \qquad .
a) Momentum
b) Velocity
c) Displacement
d) Mass
10) The type 1 system has \qquad at the origin.
a) no pole
b) net pole
c) simple pole
d) two poles
11) When two blocks connected in parallel, resultant block is the \qquad of individual block.
a) Product
b) Division
c) Sum
d) Subtraction
12) The first two rows of Routh tabulation of a third order system are

$$
\begin{array}{lll}
S^{3} & 12 & 2 \\
S^{2} & 14 & 4
\end{array}
$$

a) The characteristic equation has one root in right half s-plane
b) The characteristic equation has two roots on the $j w$ axis at $s= \pm j$
c) The characteristic equation has two roots on the jw axis at $\mathrm{s}= \pm 2 \mathrm{j}$
d) None of the these
13) Bode plot of the constant is a \qquad .
a) Line with a slope of $-20 \mathrm{~dB} /$ decade
b) Line with a slope of $-6 \mathrm{~dB} / \mathrm{decade}$
c) Line with a slope of $-40 \mathrm{~dB} /$ decade
d) Straight line parallel to frequency axis
14) In a type-I system, the steady state acceleration error is \qquad .
a) Zero
b) Unity
c) Infinity
d) None of these

S.E. (Part -II) (Old) (CGPA) Examination Nov/Dec-2019 ELECTRONICS \& TELECOMMUNICATION ENGINEERING CONTROL SYSTEMS

Day \& Date: Monday, 25-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Assume the suitable data whenever necessary.

SECTION I

Q. 2 Attempt any four:
a) Explain with block diagram Liquid level control system.
b) Differentiate between open loop and closed loop systems.
c) What is transfer function? Derive transfer function of closed loop control system.
d) Explain rules for block diagram reduction.
e) Define relative stability and conditional stability.
Q. 3 a) Find the transfer function of the system shown below using Mason's gain formula.

b) Solve any ONE

1) Find the transfer function of the following block diagram

2) A unity feedback control system has an open loop transfer function

$$
x=\frac{k}{(S+1)^{3}(S+4)}
$$

Determine the range of value of k for the closed loop system be stable.

SECTION II

Q. 4 Attempt any four

a) Explain Lag-Lead compensator.
b) Explain different standard test signals.
c) A second order system is given by following equitation find its Damping Factor, Delay time, Rise time, peak overshoot and.

$$
T(s)=\frac{25}{s^{2}+6 s+25}
$$

d) Explain how centroid and breakaway points are calculated in root locus.
e) Determine the steady state error of given system For Input is $r(t)=t^{2}$

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{100}{\mathrm{~s}^{2}(1+0.5 \mathrm{~S})(\mathrm{s}+2)}
$$

Q. 5 Attempt any two.
a) Sketch the bode plot for the given system

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{80}{\mathrm{~s}(\mathrm{~s}+2)(\mathrm{s}+20)}
$$

Determine:

1) Gain crossover frequency
2) Phase crossover frequency
3) GM and PM
4) Comment on stability of system.
b) Draw the root locus for the system where K varies between K to infinite.

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{\mathrm{K}}{\mathrm{~s}(\mathrm{~s}+4)(\mathrm{s}+2)}
$$

c) For unity feedback system determine

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{10(\mathrm{~s}+1)}{\mathrm{s}^{2}(\mathrm{~s}+2)(\mathrm{s}+10)}
$$

1) Type of system
2) Error co-efficients
3) $1+4 t+t^{2} / 2$

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering LINEAR INTEGRATED CIRCUITS

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) For Summing amplifier the ratio of R_{f} / r_{1} must be \qquad .
a) Zero
b) One
c) Infinite
d) Less than one
2) When square wave signal is input to the differentiator then output is
\qquad
a) Triangular
b) Spikes
c) Square wave
d) None
3) Gain bandwidth product of IC 741 is \qquad .
a) 10 MHz
b) 1 MHz
c) infinite
d) 1 KHz
4) Slew rate of the IC 741 is \qquad .
a) $0.5 \mathrm{~V} / \mu \mathrm{sec}$
b) $5 \mathrm{~V} / \mu \mathrm{sec}$
c) $150 \mathrm{~V} / \mu \mathrm{sec}$
d) None
5) Gain of opamp is decided by following circuit.
a) DIBO Amplifier
b) Current Mirror
c) Level Shifter
d) None
6) Which of the following is the example of comparator?
a) ZCD
b) Schmitt trigger
c) Window detector
d) All
7) Schmitt Trigger is also called as \qquad .
a) Square wave generator
b) Squaring circuit
c) Triangular generator
d) None
8) The gain for wein bridge oscillator at resonance is given by \qquad
a) 4
b) 29
c) 3
d) 1.16
9) Which of the following is sinusoidal oscillator?
a) Wein bridge
b) Phase shift
c) Quadrature
d) All of above
10) The advantage of active filter is
a) Gain adjustment flexibility
b) Frequency adjustment flexibility
c) Both a) and b)
d) None of these
11) Analog multipliers are available as \qquad -
a) One quadrant
b) Two quadrant
c) Four quadrant
d) All above
12) Using log amplifier we can perform
a) $\log _{n}(x)$
b) $\quad \log _{10}(x)$
c) $\sinh (x)$
d) all above
13) Butterworth filter is also known as \qquad filter.
a) Flat flat
b) flat ripple
c) ripple rippled
d) none
14) Gain of opamp as buffer is \qquad .
a) zero
b) infinite
c) unity
d) less than one
15) Figures to the right indicate full marks.

Section - I
Q. 2 Solve any four.
a) Explain current mirror circuit.
b) What is virtual ground concept? How it is useful in simplifying circuit analysis?
c) Explain high frequency equivalent circuit of opamp.
d) Explain V-I convertor with floating load.
e) Define: CMRR, PSRR, Slew Rate, Vio
Q. 3 Solve any two.
a) Explain opamp as adder, averaging and scaling amplifier.
b) Explain block diagram of Opamp with parameters contributed by each block.
c) How opamp can be used as Integrator?

Section - II

Q. 4 Solve any four
a) Explain ZCD in inverting and non inverting mode.
b) Explain square wave generator.
c) Explain advantages of active filters over passive filters.
d) Explain the Block diagram of PLL.
e) How diode can be used with opamp to act as half wave rectifier?
Q. 5 Solve any two.
a) Design the first order Butterworth filter with $F_{L}=1 \mathrm{KHz}$ with gain 2.
b) Design the Wein bridge oscillator to generate frequency of 500 Hz .
c) Explain in detail IC 8038 \& its working.

S.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering LINEAR INTEGRATED CIRCUITS

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The gain for wein bridge oscillator at resonance is given by \qquad
a) 4
b) 29
c) 3
d) 1.16
2) Which of the following is sinusoidal oscillator?
a) Wein bridge
b) Phase shift
c) Quadrature
d) All of above
3) The advantage of active filter is \qquad .
a) Gain adjustment flexibility
b) Frequency adjustment flexibility
c) Both a) and b)
d) None of these
4) Analog multipliers are available as \qquad .
a) One quadrant
b) Two quadrant
c) Four quadrant
d) All above
5) Using log amplifier we can perform
a) $\log _{n}(x)$
b) $\quad \log _{10}(x)$
c) $\sinh (x)$
d) all above
6) Butterworth filter is also known as \qquad filter.
a) Flat flat
b) flat ripple
c) ripple rippled
d) none
7) Gain of opamp as buffer is \qquad -
a) zero
b) infinite
c) unity
d) less than one
8) For Summing amplifier the ratio of R_{f} / r_{1} must be \qquad .
a) Zero
b) One
c) Infinite
d) Less than one
9) When square wave signal is input to the differentiator then output is
a) Triangular
b) Spikes
c) Square wave
d) None
10) Gain bandwidth product of IC 741 is
a) 10 MHz
c) infinite
b) 1 MHz
d) 1 KHz
\qquad .
11) Slew rate of the IC 741 is \qquad .
a) $0.5 \mathrm{~V} / \mu \mathrm{sec}$
b) $5 \mathrm{~V} / \mu \mathrm{sec}$
c) $150 \mathrm{~V} / \mu \mathrm{sec}$
d) None
12) Gain of opamp is decided by following circuit.
a) DIBO Amplifier
b) Current Mirror
c) Level Shifter
d) None
13) Which of the following is the example of comparator?
a) ZCD
b) Schmitt trigger
c) Window detector
d) All
14) Schmitt Trigger is also called as \qquad
a) Square wave generator
b) Squaring circuit
c) Triangular generator
d) None

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering LINEAR INTEGRATED CIRCUITS

Day \& Date: Tuesday, 26-11-2019 Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I
Q. 2 Solve any four.
a) Explain current mirror circuit.
b) What is virtual ground concept? How it is useful in simplifying circuit analysis?
c) Explain high frequency equivalent circuit of opamp.
d) Explain V-I convertor with floating load.
e) Define: CMRR, PSRR, Slew Rate, Vio
Q. 3 Solve any two.
a) Explain opamp as adder, averaging and scaling amplifier.
b) Explain block diagram of Opamp with parameters contributed by each block.
c) How opamp can be used as Integrator?

Section - II

Q. 4 Solve any four

a) Explain ZCD in inverting and non inverting mode.
b) Explain square wave generator.
c) Explain advantages of active filters over passive filters.
d) Explain the Block diagram of PLL.
e) How diode can be used with opamp to act as half wave rectifier?
Q. 5 Solve any two.
a) Design the first order Butterworth filter with $F_{L}=1 \mathrm{KHz}$ with gain 2.
b) Design the Wein bridge oscillator to generate frequency of 500 Hz .
c) Explain in detail IC 8038 \& its working.

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering LINEAR INTEGRATED CIRCUITS

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Gain of opamp is decided by following circuit.
a) DIBO Amplifier
b) Current Mirror
c) Level Shifter
d) None
2) Which of the following is the example of comparator?
a) ZCD
b) Schmitt trigger
c) Window detector
d) All
3) Schmitt Trigger is also called as \qquad b)
a) Square wave generator
b) Squaring circuit
c) Triangular generator
d) None
4) The gain for wein bridge oscillator at resonance is given by \qquad
a) 4
b) 29
c) 3
d) $\quad 1.16$
5) Which of the following is sinusoidal oscillator?
a) Wein bridge
b) Phase shift
c) Quadrature
d) All of above
6) The advantage of active filter is \qquad .
a) Gain adjustment flexibility
b) Frequency adjustment flexibility
c) Both a) and b)
d) None of these
7) Analog multipliers are available as \qquad .
a) One quadrant
b) Two quadrant
c) Four quadrant
d) All above
8) Using log amplifier we can perform
a) $\log _{n}(x)$
b) $\quad \log _{10}(x)$
c) $\sinh (x)$
d) all above
9) Butterworth filter is also known as \qquad filter.
a) Flat flat
b) flat ripple
c) ripple rippled
d) none

SLR-FM-683
 Set

10) Gain of opamp as buffer is \qquad .
a) zero
b) infinite
c) unity
d) less than one
11) For Summing amplifier the ratio of R_{f} / r_{1} must be \qquad .
a) Zero
b) One
c) Infinite
d) Less than one
12) When square wave signal is input to the differentiator then output is
a) Triangular
b) Spikes
c) Square wave
d) None
13) Gain bandwidth product of IC 741 is \qquad -
a) 10 MHz
b) 1 MHz
c) infinite
d) 1 KHz
14) Slew rate of the IC 741 is \qquad .
a) $0.5 \mathrm{~V} / \mu \mathrm{sec}$
b) $5 \mathrm{~V} / \mu \mathrm{sec}$
c) $150 \mathrm{~V} / \mu \mathrm{sec}$
d) None

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering LINEAR INTEGRATED CIRCUITS

Day \& Date: Tuesday, 26-11-2019 Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I
Q. 2 Solve any four.
a) Explain current mirror circuit.
b) What is virtual ground concept? How it is useful in simplifying circuit analysis?
c) Explain high frequency equivalent circuit of opamp.
d) Explain V-I convertor with floating load.
e) Define: CMRR, PSRR, Slew Rate, Vio
Q. 3 Solve any two.
a) Explain opamp as adder, averaging and scaling amplifier.
b) Explain block diagram of Opamp with parameters contributed by each block.
c) How opamp can be used as Integrator?

Section - II

Q. 4 Solve any four

a) Explain ZCD in inverting and non inverting mode.
b) Explain square wave generator.
c) Explain advantages of active filters over passive filters.
d) Explain the Block diagram of PLL.
e) How diode can be used with opamp to act as half wave rectifier?
Q. 5 Solve any two.
a) Design the first order Butterworth filter with $F_{L}=1 \mathrm{KHz}$ with gain 2.
b) Design the Wein bridge oscillator to generate frequency of 500 Hz .
c) Explain in detail IC 8038 \& its working.

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering LINEAR INTEGRATED CIRCUITS

Day \& Date: Tuesday, 26-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer Book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The advantage of active filter is \qquad .
a) Gain adjustment flexibility
b) Frequency adjustment flexibility
c) Both a) and b)
d) None of these
2) Analog multipliers are available as \qquad -
a) One quadrant
b) Two quadrant
c) Four quadrant
d) All above
3) Using log amplifier we can perform
a) $\log _{n}(x)$
b) $\quad \log _{10}(x)$
c) $\sinh (x)$
d) all above
4) Butterworth filter is also known as \qquad filter.
a) Flat flat
b) flat ripple
c) ripple rippled
d) none
5) Gain of opamp as buffer is \qquad .
a) zero
b) infinite
c) unity
d) less than one
6) For Summing amplifier the ratio of R_{f} / r_{1} must be \qquad .
a) Zero
b) One
c) Infinite
d) Less than one
7) When square wave signal is input to the differentiator then output is
\qquad
a) Triangular
b) Spikes
c) Square wave
d) None
8) Gain bandwidth product of IC 741 is \qquad .
a) 10 MHz
b) 1 MHz
c) infinite
d) 1 KHz
9) Slew rate of the IC 741 is \qquad .
a) $0.5 \mathrm{~V} / \mu \mathrm{sec}$
b) $5 \mathrm{~V} / \mu \mathrm{sec}$
c) $150 \mathrm{~V} / \mu \mathrm{sec}$
d) None
10) Gain of opamp is decided by following circuit.
a) DIBO Amplifier
b) Current Mirror
c) Level Shifter
d) None
11) Which of the following is the example of comparator?
a) ZCD
b) Schmitt trigger
c) Window detector
d) All
12) Schmitt Trigger is also called as \qquad .
a) Square wave generator
b) Squaring circuit
c) Triangular generator
d) None
13) The gain for wein bridge oscillator at resonance is given by \qquad
a) 4
b) 29
c) 3
d) 1.16
14) Which of the following is sinusoidal oscillator?
a) Wein bridge
b) Phase shift
c) Quadrature
d) All of above
S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering

 LINEAR INTEGRATED CIRCUITSDay \& Date: Tuesday, 26-11-2019 Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I
Q. 2 Solve any four.
a) Explain current mirror circuit.
b) What is virtual ground concept? How it is useful in simplifying circuit analysis?
c) Explain high frequency equivalent circuit of opamp.
d) Explain V-I convertor with floating load.
e) Define: CMRR, PSRR, Slew Rate, Vio
Q. 3 Solve any two.
a) Explain opamp as adder, averaging and scaling amplifier.
b) Explain block diagram of Opamp with parameters contributed by each block.
c) How opamp can be used as Integrator?

Section - II

Q. 4 Solve any four

a) Explain ZCD in inverting and non inverting mode.
b) Explain square wave generator.
c) Explain advantages of active filters over passive filters.
d) Explain the Block diagram of PLL.
e) How diode can be used with opamp to act as half wave rectifier?
Q. 5 Solve any two.
a) Design the first order Butterworth filter with $F_{L}=1 \mathrm{KHz}$ with gain 2.
b) Design the Wein bridge oscillator to generate frequency of 500 Hz .
c) Explain in detail IC 8038 \& its working.

| Seat
 No. |
| :--- | :--- |

Set
P

S.E. (Part - II) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives given below and rewrite the sentence.

1) The discrete time signal $x(n)=(-1)^{n}$ is periodic with fundamental period.
a) 6
b) 4
c) 2
d) 0
2) Periodic signals are \qquad .
a) $x(t+T)=x(t)$
b) $\mathrm{x}(\mathrm{t}-\mathrm{T})=\mathrm{x}(\mathrm{t})$
c) $x(n+m N)=x(n)$
d) All above
3) A useful property of the unit impulse $\delta(\mathrm{t})$ is that \qquad .
a) δ (at)
b) $\delta(\mathrm{at})=\delta(\mathrm{t})$
c) $\delta(\mathrm{at})=\frac{1}{\mathrm{a}} \delta(\mathrm{t})$
d) $\delta(a t)=[\delta(t)]^{a}$
4) If signal $f(t)$ has energy, E, the energy of signal $f(2 t)$ is equal to \qquad .
a) E
b) $E / 2$
c) 2 E
d) 4 E
5) A given system is characterized by the differential equation : $\frac{d^{2} y(t)}{d t^{2}}-\frac{d t(t)}{d t}-2 y(t)=x(t)$ The system is.
a) Linear and unstable
b) Linear and stable
c) Nonlinear and unstable
d) Nonlinear and stable
6) The system characterized by the equation $y(t)=a x(t)+b$
a) Linear for any value of b
b) Linear if $b>0$
c) Linear if $b<0$
d) Non linear
7) If $\mathrm{h}(\mathrm{n})=[\delta(\mathrm{n}-\mathrm{l})-\delta(\mathrm{n})]^{*} \delta(\mathrm{n}-1)$ then alternatively written as \qquad .
a) $h(n)=[\delta(n)-\delta(n-1)]$
b) $h(n)=[\delta(n-1)-\delta(n)]$
c) $h(n)=[\delta(n+1)-\delta(n-1)]$
d) None
8) The frequency of a continuous time signal $x(t)$ changes on transformation from $\mathrm{x}(\mathrm{t})$ to $\mathrm{x}(\alpha \mathrm{t}), \alpha>1$ by a factor \qquad .
a) α
b) $1 / \alpha$
c) α^{2}
d) None
9) Fourier spectrum (transform) of non-periods signal will have \qquad .
a) Magnitude spectrum
b) Phase spectrum
c) Both a \& b
d) Constant value
10) Inverse FT of 1 is \qquad .
a) $u(t)$
b) $\partial(t)$
c) 0
d) Infinite
11) Dirichlet conditions for periodic signals are in each period.
a) function $x(t)$ has only finite number of maxima \& minima
b) function $x(t)$ has finite number of discontinuities
c) function $\mathrm{x}(\mathrm{t})$ is absolutely integrable over one period
d) All of above
12) ROC of $x(n)$ contains \qquad .
a) Poles
b) Zeros
c) No poles
d) No zeros
13) ROC of $Z T$ of unit step seq is \qquad .
a) $|Z|<1$
b) $|Z|>1$
c) Real part of $Z>0$
d) $|Z|=0$
14) Inverse $Z T$ of $X(Z / a)$ \qquad .
a) $x(n / a)$
b) $x(n) / a$
c) $a^{n} x(n)$
d) $a x(n)$

Seat
 No.
 S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Set
P

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four of the following questions.
a) Find even and odd components of the following signals.

1) $\mathrm{x}(\mathrm{t})=1+\mathrm{t}+3 \mathrm{t}^{2}+5 \mathrm{t}^{3}+9 \mathrm{t}^{4}$
2) $\mathrm{x}(\mathrm{t})=1+\mathrm{t} \cos (\mathrm{t})+\mathrm{t}^{2} \sin (\mathrm{t})+\mathrm{t}^{3} \sin (\mathrm{t}) \cos (\mathrm{t})$
b) Explain operations performed on independent variables.
c) Determine whether the following signal is periodic or non-periodic. If periodic find its fundamental period.
3) $\sin ^{3}(2 t)$
d) Explain properties of LTI Systems.
e) Draw Direct form-I and Direct form-II implementation for the following LTI system.
$\frac{d}{d t} y(t)+10 y(t)=2 x(t)$
Q. 3 Attempt any Two of the following questions.
a) Verify the general property of system for the following system.
$\frac{d}{d t} y(t)+t y(t)=x(t)$
b) 1) Find the step response of the following system $h(t)=t u(t)$. Justify also whether LTI system is stable or not stable.
4) State and prove the properties of convolution integral.
c) Perform the convolution operation of two function in time domain.
$\mathrm{h}(\mathrm{t})=\mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t})$ and $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})$

> Section - II

Q. 4 Attempt any four of the following questions.

a) State \& explain sampling theorem.
b) Explain modulation property of FT.
c) Find ZT \& sketch ROC
$\mathrm{x}(\mathrm{n})=(0.6)^{n} u(n)+(0.4)^{n} u(n)$
d) Find ZT of $x(n)=u(n+1) u(n)$
e) Find inverse $Z T$ of $X(Z)=\frac{z}{2 z^{2}-3 z+1}$ \& ROC is $|Z|>1$

Q. 5 Attempt any Two of the following questions.

a) Consider analog signal $x(t)=3 \cos 2000 \pi t+5 \sin 6000 \pi t+10 \cos 1000 \pi t$.
i) What is sampling rate?
ii) For this signal assuming that signal is sampled using $\mathrm{fs}=5000 \mathrm{~Hz}$. What is DT signal?
b) Determine FT of $\mathrm{x}(\mathrm{t})=e^{-a|t|}$ \& plot magnitude spectrum.
c) Find ZT of $\mathrm{x}(\mathrm{n})=n^{2} u(n)$

Seat
 No.

Set
Q

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.

2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives given below and rewrite the sentence.

1) The frequency of a continuous time signal $x(t)$ changes on transformation from $\mathrm{x}(\mathrm{t})$ to $\mathrm{x}(\alpha \mathrm{t}), \alpha>1$ by a factor \qquad .
a) α
b) $1 / \alpha$
c) α^{2}
d) None
2) Fourier spectrum (transform) of non-periods signal will have \qquad .
a) Magnitude spectrum
b) Phase spectrum
c) Both a \& b
d) Constant value
3) Inverse FT of 1 is \qquad .
a) $u(t)$
b) $\partial(t)$
c) 0
d) Infinite
4) Dirichlet conditions for periodic signals are in each period.
a) function $x(t)$ has only finite number of maxima \& minima
b) function $x(t)$ has finite number of discontinuities
c) function $x(t)$ is absolutely integrable over one period
d) All of above
5) ROC of $x(n)$ contains \qquad .
a) Poles
b) Zeros
c) No poles
d) No zeros
6) ROC of ZT of unit step seq is \qquad .
a) $|Z|<1$
b) $|Z|>1$
c) Real part of $\mathrm{Z}>0$
d) $|Z|=0$
7) Inverse $Z T$ of $X(Z / a)$ \qquad .
a) $x(n / a)$
b) $x(n) / a$
c) $a^{n} x(n)$
d) $a x(n)$
8) The discrete time signal $x(n)=(-1)^{n}$ is periodic with fundamental period.
a) 6
b) 4
c) 2
d) 0
9) Periodic signals are \qquad .
a) $x(t+T)=x(t)$
b) $\mathrm{x}(\mathrm{t}-\mathrm{T})=\mathrm{x}(\mathrm{t})$
c) $x(n+m N)=x(n)$
d) All above
10) A useful property of the unit impulse $\delta(\mathrm{t})$ is that \qquad .
a) $\delta(\mathrm{at})$
b) $\delta(\mathrm{at})=\delta(\mathrm{t})$
c) $\delta(\mathrm{at})=\frac{1}{\mathrm{a}} \delta(\mathrm{t})$
d) $\delta(a t)=[\delta(t)]^{a}$
11) If signal $f(t)$ has energy, E, the energy of signal $f(2 t)$ is equal to \qquad .
a) E
b) $E / 2$
c) 2 E
d) 4 E
12) A given system is characterized by the differential equation :
$\frac{d^{2} y(t)}{d t^{2}}-\frac{d t(t)}{d t}-2 y(t)=x(t)$ The system is.
a) Linear and unstable
b) Linear and stable
c) Nonlinear and unstable
d) Nonlinear and stable
13) The system characterized by the equation $y(t)=a x(t)+b$
a) Linear for any value of b
b) Linear if $b>0$
c) Linear if $b<0$
d) Non linear
14) If $\mathrm{h}(\mathrm{n})=[\delta(\mathrm{n}-\mathrm{l})-\delta(\mathrm{n})]^{*} \delta(\mathrm{n}-1)$ then alternatively written as \qquad .
a) $h(n)=[\delta(n)-\delta(n-1)]$
b) $\mathrm{h}(\mathrm{n})=[\delta(\mathrm{n}-1)-\delta(\mathrm{n})]$
c) $h(n)=[\delta(n+1)-\delta(n-1)]$
d) None

Seat

No.

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Day \& Date: Wednesday, 27-11-2019

Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four of the following questions.
a) Find even and odd components of the following signals.

1) $\mathrm{x}(\mathrm{t})=1+\mathrm{t}+3 \mathrm{t}^{2}+5 \mathrm{t}^{3}+9 \mathrm{t}^{4}$
2) $\mathrm{x}(\mathrm{t})=1+\mathrm{t} \cos (\mathrm{t})+\mathrm{t}^{2} \sin (\mathrm{t})+\mathrm{t}^{3} \sin (\mathrm{t}) \cos (\mathrm{t})$
b) Explain operations performed on independent variables.
c) Determine whether the following signal is periodic or non-periodic. If periodic find its fundamental period.
3) $\sin ^{3}(2 t)$
d) Explain properties of LTI Systems.
e) Draw Direct form-I and Direct form-II implementation for the following LTI system.
$\frac{d}{d t} y(t)+10 y(t)=2 x(t)$
Q. 3 Attempt any Two of the following questions.
a) Verify the general property of system for the following system.
$\frac{d}{d t} y(t)+t y(t)=x(t)$
b) 1) Find the step response of the following system $h(t)=t u(t)$. Justify also whether LTI system is stable or not stable.
4) State and prove the properties of convolution integral.
c) Perform the convolution operation of two function in time domain.
$\mathrm{h}(\mathrm{t})=\mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t})$ and $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})$

> Section - II

Q. 4 Attempt any four of the following questions.

a) State \& explain sampling theorem.
b) Explain modulation property of FT.
c) Find ZT \& sketch ROC
$\mathrm{x}(\mathrm{n})=(0.6)^{n} u(n)+(0.4)^{n} u(n)$
d) Find ZT of $x(n)=u(n+1) u(n)$
e) Find inverse $Z T$ of $X(Z)=\frac{z}{2 z^{2}-3 z+1}$ \& ROC is $|Z|>1$

Q. 5 Attempt any Two of the following questions.

a) Consider analog signal $x(t)=3 \cos 2000 \pi t+5 \sin 6000 \pi t+10 \cos 1000 \pi t$.
i) What is sampling rate?
ii) For this signal assuming that signal is sampled using $\mathrm{fs}=5000 \mathrm{~Hz}$. What is DT signal?
b) Determine FT of $\mathrm{x}(\mathrm{t})=e^{-a|t|}$ \& plot magnitude spectrum.
c) Find ZT of $\mathrm{x}(\mathrm{n})=n^{2} u(n)$

Seat
 No.

Set R

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives given below and rewrite the sentence.

1) A given system is characterized by the differential equation : $\frac{d^{2} y(t)}{d t^{2}}-\frac{d t(t)}{d t}-2 y(t)=x(t)$ The system is.
a) Linear and unstable
b) Linear and stable
c) Nonlinear and unstable
d) Nonlinear and stable
2) The system characterized by the equation $y(t)=a x(t)+b$
a) Linear for any value of b
b) Linear if $b>0$
c) Linear if $b<0$
d) Non linear
3) If $\mathrm{h}(\mathrm{n})=[\delta(\mathrm{n}-\mathrm{l})-\delta(\mathrm{n})]^{*} \delta(\mathrm{n}-1)$ then alternatively written as \qquad .
a) $h(n)=[\delta(n)-\delta(n-1)]$
b) $h(n)=[\delta(n-1)-\delta(n)]$
c) $h(n)=[\delta(n+1)-\delta(n-1)]$
d) None
4) The frequency of a continuous time signal $x(t)$ changes on transformation from $x(t)$ to $x(\alpha t), \alpha>1$ by a factor \qquad .
a) α
b) $1 / \alpha$
c) α^{2}
d) None
5) Fourier spectrum (transform) of non-periods signal will have \qquad .
a) Magnitude spectrum
b) Phase spectrum
c) Both a \& b
d) Constant value
6) Inverse FT of 1 is \qquad .
a) $u(t)$
b) $\partial(t)$
c) 0
d) Infinite
7) Dirichlet conditions for periodic signals are in each period.
a) function $x(t)$ has only finite number of maxima \& minima
b) function $x(t)$ has finite number of discontinuities
c) function $\mathrm{x}(\mathrm{t})$ is absolutely integrable over one period
d) All of above
8) ROC of $x(n)$ contains \qquad .
a) Poles
b) Zeros
c) No poles
d) No zeros
9) ROC of $Z T$ of unit step seq is \qquad .
a) $|Z|<1$
b) $|Z|>1$
c) Real part of $\mathrm{Z}>0$
d) $|Z|=0$
10) Inverse $Z T$ of $X(Z / a)$ \qquad .
a) $x(n / a)$
b) $x(n) / a$
c) $a^{n} x(n)$
d) $a x(n)$
11) The discrete time signal $x(n)=(-1)^{n}$ is periodic with fundamental period.
a) 6
b) 4
c) 2
d) 0
12) Periodic signals are \qquad .
a) $x(t+T)=x(t)$
b) $\mathrm{x}(\mathrm{t}-\mathrm{T})=\mathrm{x}(\mathrm{t})$
c) $x(n+m N)=x(n)$
d) All above
13) A useful property of the unit impulse $\delta(\mathrm{t})$ is that \qquad .
a) $\delta(\mathrm{at})$
b) $\delta(\mathrm{at})=\delta(\mathrm{t})$
c) $\delta(\mathrm{at})=\frac{1}{\mathrm{a}} \delta(\mathrm{t})$
d) $\delta(\mathrm{at})=[\delta(\mathrm{t})]^{\mathrm{a}}$
14) If signal $f(t)$ has energy, E, the energy of signal $f(2 t)$ is equal to \qquad .
a) E
b) $E / 2$
c) 2 E
d) 4 E

Seat

No.
Set R

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four of the following questions.
a) Find even and odd components of the following signals.

1) $\mathrm{x}(\mathrm{t})=1+\mathrm{t}+3 \mathrm{t}^{2}+5 \mathrm{t}^{3}+9 \mathrm{t}^{4}$
2) $\mathrm{x}(\mathrm{t})=1+\mathrm{t} \cos (\mathrm{t})+\mathrm{t}^{2} \sin (\mathrm{t})+\mathrm{t}^{3} \sin (\mathrm{t}) \cos (\mathrm{t})$
b) Explain operations performed on independent variables.
c) Determine whether the following signal is periodic or non-periodic. If periodic find its fundamental period.
3) $\sin ^{3}(2 t)$
d) Explain properties of LTI Systems.
e) Draw Direct form-I and Direct form-II implementation for the following LTI system.
$\frac{d}{d t} y(t)+10 y(t)=2 x(t)$
Q. 3 Attempt any Two of the following questions.
a) Verify the general property of system for the following system.
$\frac{d}{d t} y(t)+t y(t)=x(t)$
b) 1) Find the step response of the following system $\mathrm{h}(\mathrm{t})=\mathrm{t} u(\mathrm{t})$. Justify also whether LTI system is stable or not stable.
4) State and prove the properties of convolution integral.
c) Perform the convolution operation of two function in time domain.
$\mathrm{h}(\mathrm{t})=\mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t})$ and $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})$

> Section - II

Q. 4 Attempt any four of the following questions.

a) State \& explain sampling theorem.
b) Explain modulation property of FT.
c) Find ZT \& sketch ROC
$\mathrm{x}(\mathrm{n})=(0.6)^{n} u(n)+(0.4)^{n} u(n)$
d) Find ZT of $x(n)=u(n+1) u(n)$
e) Find inverse $Z T$ of $X(Z)=\frac{z}{2 z^{2}-3 z+1}$ \& ROC is $|Z|>1$

Q. 5 Attempt any Two of the following questions.

a) Consider analog signal $x(t)=3 \cos 2000 \pi t+5 \sin 6000 \pi t+10 \cos 1000 \pi t$.
i) What is sampling rate?
ii) For this signal assuming that signal is sampled using $\mathrm{fs}=5000 \mathrm{~Hz}$. What is DT signal?
b) Determine FT of $\mathrm{x}(\mathrm{t})=e^{-a|t|}$ \& plot magnitude spectrum.
c) Find ZT of $\mathrm{x}(\mathrm{n})=n^{2} u(n)$

Seat	
No.	

Set

S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives given below and rewrite the sentence.

1) Inverse FT of 1 is \qquad .
a) $u(t)$
b) $\partial(t)$
c) 0
d) Infinite
2) Dirichlet conditions for periodic signals are in each period.
a) function $x(t)$ has only finite number of maxima \& minima
b) function $x(t)$ has finite number of discontinuities
c) function $x(t)$ is absolutely integrable over one period
d) All of above
3) ROC of $x(n)$ contains \qquad .
a) Poles
b) Zeros
c) No poles
d) No zeros
4) ROC of $Z T$ of unit step seq is \qquad .
a) $|Z|<1$
b) $|Z|>1$
c) Real part of $Z>0$
d) $|Z|=0$
5) Inverse $Z T$ of $X(Z / a)$ \qquad .
a) $x(n / a)$
b) $x(n) / a$
c) $a^{n} x(n)$
d) $a x(n)$
6) The discrete time signal $x(n)=(-1)^{\mathrm{n}}$ is periodic with fundamental period.
a) 6
b) 4
c) 2
d) 0
7) Periodic signals are \qquad .
a) $x(t+T)=x(t)$
b) $\mathrm{x}(\mathrm{t}-\mathrm{T})=\mathrm{x}(\mathrm{t})$
c) $x(n+m N)=x(n)$
d) All above
8) A useful property of the unit impulse $\delta(\mathrm{t})$ is that \qquad .
a) $\delta(\mathrm{at})$
b) $\delta(\mathrm{at})=\delta(\mathrm{t})$
c) $\delta(\mathrm{at})=\frac{1}{\mathrm{a}} \delta(\mathrm{t})$
d) $\delta(a t)=[\delta(t)]^{a}$
9) If signal $f(t)$ has energy, E, the energy of signal $f(2 t)$ is equal to \qquad .
a) E
b) $E / 2$
c) 2 E
d) 4 E
10) A given system is characterized by the differential equation :
$\frac{d^{2} y(t)}{d t^{2}}-\frac{d t(t)}{d t}-2 y(t)=x(t)$ The system is.
a) Linear and unstable
b) Linear and stable
c) Nonlinear and unstable
d) Nonlinear and stable
11) The system characterized by the equation $y(t)=a x(t)+b$
a) Linear for any value of b
b) Linear if $b>0$
c) Linear if $b<0$
d) Non linear
12) If $\mathrm{h}(\mathrm{n})=[\delta(\mathrm{n}-\mathrm{l})-\delta(\mathrm{n})]^{*} \delta(\mathrm{n}-1)$ then alternatively written as \qquad .
a) $h(n)=[\delta(n)-\delta(n-1)]$
b) $h(n)=[\delta(n-1)-\delta(n)]$
c) $h(n)=[\delta(n+1)-\delta(n-1)]$
d) None
13) The frequency of a continuous time signal $x(t)$ changes on transformation from $x(t)$ to $x(\alpha \mathrm{t}), \alpha>1$ by a factor \qquad .
a) α
b) $1 / \alpha$
c) α^{2}
d) None
14) Fourier spectrum (transform) of non-periods signal will have \qquad .
a) Magnitude spectrum
b) Phase spectrum
c) Both a \& b
d) Constant value

Seat
 No.
 S.E. (Part - II) (OId) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SIGNALS AND SYSTEMS

Day \& Date: Wednesday, 27-11-2019

Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Attempt any four of the following questions.
a) Find even and odd components of the following signals.

1) $\mathrm{x}(\mathrm{t})=1+\mathrm{t}+3 \mathrm{t}^{2}+5 \mathrm{t}^{3}+9 \mathrm{t}^{4}$
2) $\mathrm{x}(\mathrm{t})=1+\mathrm{t} \cos (\mathrm{t})+\mathrm{t}^{2} \sin (\mathrm{t})+\mathrm{t}^{3} \sin (\mathrm{t}) \cos (\mathrm{t})$
b) Explain operations performed on independent variables.
c) Determine whether the following signal is periodic or non-periodic. If periodic find its fundamental period.
3) $\sin ^{3}(2 t)$
d) Explain properties of LTI Systems.
e) Draw Direct form-I and Direct form-II implementation for the following LTI system.
$\frac{d}{d t} y(t)+10 y(t)=2 x(t)$
Q. 3 Attempt any Two of the following questions.
a) Verify the general property of system for the following system.
$\frac{d}{d t} y(t)+t y(t)=x(t)$
b) 1) Find the step response of the following system $h(t)=t u(t)$. Justify also whether LTI system is stable or not stable.
4) State and prove the properties of convolution integral.
c) Perform the convolution operation of two function in time domain.
$\mathrm{h}(\mathrm{t})=\mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t})$ and $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})$

> Section - II

Q. 4 Attempt any four of the following questions.

a) State \& explain sampling theorem.
b) Explain modulation property of FT.
c) Find ZT \& sketch ROC
$\mathrm{x}(\mathrm{n})=(0.6)^{n} u(n)+(0.4)^{n} u(n)$
d) Find ZT of $x(n)=u(n+1) u(n)$
e) Find inverse $Z T$ of $X(Z)=\frac{z}{2 z^{2}-3 z+1}$ \& ROC is $|Z|>1$

Q. 5 Attempt any Two of the following questions.

a) Consider analog signal $x(t)=3 \cos 2000 \pi t+5 \sin 6000 \pi t+10 \cos 1000 \pi t$.
i) What is sampling rate?
ii) For this signal assuming that signal is sampled using $\mathrm{fs}=5000 \mathrm{~Hz}$. What is DT signal?
b) Determine FT of $\mathrm{x}(\mathrm{t})=e^{-a|t|}$ \& plot magnitude spectrum.
c) Find ZT of $\mathrm{x}(\mathrm{n})=n^{2} u(n)$

| Seat |
| :--- | :--- |
| No. |

Set

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEM

Day \& Date: Friday, 06-12-2019
Max. Marks: 70

Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if necessary.
3) Figure must be draw wherever necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) A field line and an equipotential surface are \qquad .
a) always parallel
b) always at 90°
c) inclined at any angle
d) none of the above
2) Which of the following is true for electrostatics?
a) $E=-\nabla V$
b) $\nabla^{2} V=0$
c) Both (a) and (b)
d) None of these
3) Potential energy of a test charge, when moved from a lower potential point to a higher potential point \qquad .
a) Remains the same
b) Increases
c) Decreases
d) Becomes zero
4) As per Gauss's Law, the total electric flux Ψ through a closed surface and the total charge $Q_{\text {en }}$ that surface are related as \qquad .
a) $\oint D . d s=Q$
b) $\Psi=Q_{e n}$
c) Both a \& b
d) $\oint D . d s=0$
5) The capacitance of isolated capacitor is \qquad -.
a) $4 \pi \varepsilon_{0} \varepsilon_{r} a$
b) $\frac{4 \pi \varepsilon}{\frac{1}{a}-\frac{1}{b}}$
c) $4 \pi \varepsilon_{0} \varepsilon_{r}(a-b)$
d) None of these
6) $\quad d v=r^{2} \sin \theta d r d \Phi d z$ is the different volume in \qquad .
a) Cylindrical co-ordinate system
b) Spherical co-ordinate system
c) Cartesian co-ordinate system
d) None of the above
7) Statement 1: Potential is the gradient of electric field intensity.

Statement 2: Electric field intensity is opposite to the direction in which V is increases.
Statement 1 \& Statement 2 are respectively.
a) True, False
b) True, True
c) False, True
d) False, False
8) Directivity is \qquad .
a) Inversely proportional to beamwidth
b) Inversely proportional to square of beamwidth
c) directly proportional to beamwidth
d) directly proportional to square of beamwidth
9) The unit of permeability is \qquad .
a) Henry/m
b) Farad/m
c) Henry
d) Webber
10) The length of mobile antenna is \qquad .
a) λ
b) $\lambda / 2$
c) $\lambda / 4$
d) $>\lambda$
11) For plane waves, the angle between electric and magnetic field is \qquad .
a) 90°
b) 180°
c) 0°
d) 720°
12) Unit of magnetic flux density is \qquad .
a) V / m
b) m / V
c) $\mathrm{C} / \mathrm{m}^{2}$
d) Tesla
13) The wavelength of a 10 GHz plane wave is \qquad .
a) 300 m
b) 300 mm
c) 3 mm
d) 30 mm
14) The ration of the magnitude of electric \& magnetic fields is termed as \qquad .
a) resistance
b) Admittance
c) conductance
d) Impedance

Seat
No.

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEM

Day \& Date: Friday, 06-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data wherever necessary.

Section - I

Q. 2 Solve Any Three.

a) State and prove Gauss Theorem?
b) Determine the work done to carry - $2 \mu \mathrm{C}$ charge from P1 $(2,1,-1)$ to P2 (8, $2,-1$) in the field
$E=y a_{x}+x a_{y}$ along path $x=2 y^{2}$.
c) Given the potential $V=\frac{10}{\mathrm{r}^{2}} \sin \theta \cos \phi$ find D at $(2, \pi / 2,0)$.
d) Let $\mathrm{a}=120 \mathrm{~cm}^{2}, \mathrm{~d}=5 \mathrm{~mm}$ and $\varepsilon_{\mathrm{r}}=12$ for parallel plate capacitor.

1) Calculate the capacitance.
2) If $\mathrm{Vo}=40 \mathrm{~V}$ find E \& stored energy.
e) Explain coulombs law and its vector form?
Q. 3 Solve Any Two
a) Find the work done in moving a point charge
$Q=5 \mu C$ from $(0,0,0)$ to $(2, \pi / 4, \pi / 2)$ in the field.
$E=5 e^{-r / 4} a_{r}+\frac{10}{r \sin \theta} a_{\Phi} v / m$.
b) Derive expression on electric field due to infinite sheet charge?
c) State \& Prove Divergence theorem?
$D=y x z a_{x}-y^{2} a_{y}+y z a_{z}$. Evaluate Divergence Theorem of both side of unit cube $0 \leq x, y, z \leq 1$.

Section - II

Q. 4 Solve any four

a) What do you mean by field zones of antenna? Elaborate the concept with neat sketch.
b) Find the contribution to the magnetic flux density at point P caused by Semicircle section, two horizontal sections and one vertical section of the conductors. $I=6 A$.

c) Derive Helmholtz wave equations for electromagnetic waves.
d) Verify whether if the wave in free space specified below satisfy Maxwell equations or not.
$E=2 \sin x \cdot \operatorname{sint} . a_{y}$ $H=(2 / \mu) \cos x \cdot \cos t \cdot a_{z}$
e) What is Radiation resistance of antenna? Explain any five properties of antenna.
Q. 5 Attempt any two
a) Explain with suitable derivation, the Maxwell's equations in Time varying fields.
b) Derive Pointing Theorem and give its physical interpretation.
c) Differentiate Yagi array, broad side array and end fire array with their properties.

Seat

No.
Set

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEM

Day \& Date: Friday, 06-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if necessary.
3) Figure must be draw wherever necessary.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Directivity is \qquad .
a) Inversely proportional to beamwidth
b) Inversely proportional to square of beamwidth
c) directly proportional to beamwidth
d) directly proportional to square of beamwidth
2) The unit of permeability is \qquad .
a) Henry/m
b) Farad/m
c) Henry
d) Webber
3) The length of mobile antenna is \qquad .
a) λ
b) $\lambda / 2$
c) $\lambda / 4$
d) $>\lambda$
4) For plane waves, the angle between electric and magnetic field is \qquad .
a) 90°
b) 180°
c) 0°
d) 720°
5) Unit of magnetic flux density is \qquad .
a) V / m
b) m / V
c) $\mathrm{C} / \mathrm{m}^{2}$
d) Tesla
6) The wavelength of a 10 GHz plane wave is \qquad .
a) 300 m
b) 300 mm
c) 3 mm
d) 30 mm
7) The ration of the magnitude of electric \& magnetic fields is termed as \qquad .
a) resistance
b) Admittance
c) conductance
d) Impedance
8) A field line and an equipotential surface are \qquad 0°
a) always parallel
b) always at 90°
c) inclined at any angle
d) none of the above
9) Which of the following is true for electrostatics?
a) $E=-\nabla V$
b) $\nabla^{2} V=0$
c) Both (a) and (b)
d) None of these
10) Potential energy of a test charge, when moved from a lower potential point to a higher potential point \qquad .
a) Remains the same
b) Increases
c) Decreases
d) Becomes zero
11) As per Gauss's Law, the total electric flux Ψ through a closed surface and the total charge $Q_{\text {en }}$ that surface are related as \qquad .
a) $\oint D . d s=Q$
b) $\Psi=Q_{e n}$
c) Both a \& b
d) $\oint D . d s=0$
12) The capacitance of isolated capacitor is \qquad .
a) $4 \pi \varepsilon_{0} \varepsilon_{r} a$
b) $\frac{4 \pi \varepsilon}{\frac{1}{a}-\frac{1}{b}}$
c) $4 \pi \varepsilon_{0} \varepsilon_{r}(a-b)$
d) None of these
13) $d v=r^{2} \sin \theta d r d \Phi d z$ is the different volume in \qquad .
a) Cylindrical co-ordinate system b) Spherical co-ordinate system
c) Cartesian co-ordinate system d) None of the above
14) Statement 1: Potential is the gradient of electric field intensity.

Statement 2: Electric field intensity is opposite to the direction in which V is increases.
Statement $1 \&$ Statement 2 are respectively.
a) True, False
b) True, True
c) False, True
d) False, False

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEM

Day \& Date: Friday, 06-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data wherever necessary.

Section - I

Q. 2 Solve Any Three.

a) State and prove Gauss Theorem?
b) Determine the work done to carry - $2 \mu \mathrm{C}$ charge from P1 $(2,1,-1)$ to P2 (8, $2,-1$) in the field
$E=y a_{x}+x a_{y}$ along path $x=2 y^{2}$.
c) Given the potential $V=\frac{10}{\mathrm{r}^{2}} \sin \theta \cos \phi$ find D at $(2, \pi / 2,0)$.
d) Let $\mathrm{a}=120 \mathrm{~cm}^{2}, \mathrm{~d}=5 \mathrm{~mm}$ and $\varepsilon_{\mathrm{r}}=12$ for parallel plate capacitor.

1) Calculate the capacitance.
2) If $\mathrm{Vo}=40 \mathrm{~V}$ find E \& stored energy.
e) Explain coulombs law and its vector form?
Q. 3 Solve Any Two
a) Find the work done in moving a point charge
$Q=5 \mu C$ from $(0,0,0)$ to $(2, \pi / 4, \pi / 2)$ in the field.
$E=5 e^{-r / 4} a_{r}+\frac{10}{r \sin \theta} a_{\Phi} v / m$.
b) Derive expression on electric field due to infinite sheet charge?
c) State \& Prove Divergence theorem?
$D=y x z a_{x}-y^{2} a_{y}+y z a_{z}$. Evaluate Divergence Theorem of both side of unit cube $0 \leq x, y, z \leq 1$.

Section - II

Q. 4 Solve any four
a) What do you mean by field zones of antenna? Elaborate the concept with neat sketch.
b) Find the contribution to the magnetic flux density at point P caused by

Semicircle section, two horizontal sections and one vertical section of the conductors. $I=6 A$.

c) Derive Helmholtz wave equations for electromagnetic waves.
d) Verify whether if the wave in free space specified below satisfy Maxwell equations or not.
$E=2 \sin x \cdot \operatorname{sint} . a_{y}$ $H=(2 / \mu) \cos x \cdot \cos t \cdot a_{z}$
e) What is Radiation resistance of antenna? Explain any five properties of antenna.
Q. 5 Attempt any two
a) Explain with suitable derivation, the Maxwell's equations in Time varying fields.
b) Derive Pointing Theorem and give its physical interpretation.
c) Differentiate Yagi array, broad side array and end fire array with their properties.

| Seat |
| :--- | :--- |
| No. |

Set

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEM

Day \& Date: Friday, 06-12-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if necessary.
3) Figure must be draw wherever necessary.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The capacitance of isolated capacitor is \qquad -.
a) $4 \pi \varepsilon_{0} \varepsilon_{r} a$
b) $\frac{4 \pi \varepsilon}{\frac{1}{a}-\frac{1}{b}}$
c) $4 \pi \varepsilon_{0} \varepsilon_{r}(a-b)$
d) None of these
2) $\quad d v=r^{2} \sin \theta d r d \Phi d z$ is the different volume in \qquad .
a) Cylindrical co-ordinate system
b) Spherical co-ordinate system
c) Cartesian co-ordinate system
d) None of the above
3) Statement 1: Potential is the gradient of electric field intensity.

Statement 2: Electric field intensity is opposite to the direction in which V is increases.
Statement 1 \& Statement 2 are respectively.
a) True, False
b) True, True
c) False, True
d) False, False
4) Directivity is \qquad .
a) Inversely proportional to beamwidth
b) Inversely proportional to square of beamwidth
c) directly proportional to beamwidth
d) directly proportional to square of beamwidth
5) The unit of permeability is \qquad .
a) Henry/m
b) Farad/m
c) Henry
d) Webber
6) The length of mobile antenna is \qquad .
a) λ
b) $\lambda / 2$
c) $\lambda / 4$
d) $>\lambda$
7) For plane waves, the angle between electric and magnetic field is \qquad .
a) 90°
b) 180°
c) 0°
d) 720°
8) Unit of magnetic flux density is \qquad .
a) V / m
b) m / V
c) $\mathrm{C} / \mathrm{m}^{2}$
d) Tesla
9) The wavelength of a 10 GHz plane wave is \qquad .
a) 300 m
b) 300 mm
c) 3 mm
d) 30 mm
10) The ration of the magnitude of electric \& magnetic fields is termed as \qquad .
a) resistance
b) Admittance
c) conductance
d) Impedance
11) A field line and an equipotential surface are \qquad .
a) always parallel
b) always at 90°
c) inclined at any angle
d) none of the above
12) Which of the following is true for electrostatics?
a) $E=-\nabla V$
b) $\nabla^{2} V=0$
c) Both (a) and (b)
d) None of these
13) Potential energy of a test charge, when moved from a lower potential point to a higher potential point \qquad .
a) Remains the same
b) Increases
c) Decreases
d) Becomes zero
14) As per Gauss's Law, the total electric flux Ψ through a closed surface and the total charge $Q_{\text {en }}$ that surface are related as \qquad _.
a) $\oint D . d s=Q$
b) $\Psi=Q_{\text {en }}$
c) Both a \& b
d) $\oint D . d s=0$

Seat
No.

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEM

Day \& Date: Friday, 06-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data wherever necessary.

Section - I

Q. 2 Solve Any Three.

a) State and prove Gauss Theorem?
b) Determine the work done to carry - $2 \mu \mathrm{C}$ charge from P1 $(2,1,-1)$ to P2 (8, $2,-1$) in the field
$E=y a_{x}+x a_{y}$ along path $x=2 y^{2}$.
c) Given the potential $V=\frac{10}{\mathrm{r}^{2}} \sin \theta \cos \phi$ find D at $(2, \pi / 2,0)$.
d) Let $\mathrm{a}=120 \mathrm{~cm}^{2}, \mathrm{~d}=5 \mathrm{~mm}$ and $\varepsilon_{\mathrm{r}}=12$ for parallel plate capacitor.

1) Calculate the capacitance.
2) If $\mathrm{Vo}=40 \mathrm{~V}$ find E \& stored energy.
e) Explain coulombs law and its vector form?
Q. 3 Solve Any Two
a) Find the work done in moving a point charge
$Q=5 \mu C$ from $(0,0,0)$ to $(2, \pi / 4, \pi / 2)$ in the field.
$E=5 e^{-r / 4} a_{r}+\frac{10}{r \sin \theta} a_{\Phi} v / m$.
b) Derive expression on electric field due to infinite sheet charge?
c) State \& Prove Divergence theorem?
$D=y x z a_{x}-y^{2} a_{y}+y z a_{z}$. Evaluate Divergence Theorem of both side of unit cube $0 \leq x, y, z \leq 1$.

Section - II

Q. 4 Solve any four

a) What do you mean by field zones of antenna? Elaborate the concept with neat sketch.
b) Find the contribution to the magnetic flux density at point P caused by Semicircle section, two horizontal sections and one vertical section of the conductors. $I=6 A$.

c) Derive Helmholtz wave equations for electromagnetic waves.
d) Verify whether if the wave in free space specified below satisfy Maxwell equations or not.
$E=2 \sin x \cdot \operatorname{sint} . a_{y}$ $H=(2 / \mu) \cos x \cdot \cos t \cdot a_{z}$
e) What is Radiation resistance of antenna? Explain any five properties of antenna.
Q. 5 Attempt any two
a) Explain with suitable derivation, the Maxwell's equations in Time varying fields.
b) Derive Pointing Theorem and give its physical interpretation.
c) Differentiate Yagi array, broad side array and end fire array with their properties.

| Seat |
| :--- | :--- |
| No. |

Set

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEM

Day \& Date: Friday, 06-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Assume suitable data if necessary.
3) Figure must be draw wherever necessary.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The length of mobile antenna is \qquad .
a) λ
b) $\lambda / 2$
c) $\lambda / 4$
d) $>\lambda$
2) For plane waves, the angle between electric and magnetic field is \qquad .
a) 90°
b) 180°
c) 0°
d) 720°
3) Unit of magnetic flux density is \qquad .
a) V / m
b) m / V
c) $\mathrm{C} / \mathrm{m}^{2}$
d) Tesla
4) The wavelength of a 10 GHz plane wave is \qquad .
a) 300 m
b) 300 mm
c) 3 mm
d) 30 mm
5) The ration of the magnitude of electric \& magnetic fields is termed as \qquad .
a) resistance
b) Admittance
c) conductance
d) Impedance
6) A field line and an equipotential surface are \qquad .
a) always parallel
b) always at 90°
c) inclined at any angle
d) none of the above
7) Which of the following is true for electrostatics?
a) $E=-\nabla V$
b) $\nabla^{2} V=0$
c) Both (a) and (b)
d) None of these
8) Potential energy of a test charge, when moved from a lower potential point to a higher potential point \qquad .
a) Remains the same
b) Increases
c) Decreases
d) Becomes zero
9) As per Gauss's Law, the total electric flux Ψ through a closed surface and the total charge $Q_{\text {en }}$ that surface are related as \qquad .
a) $\oint D . d s=Q$
b) $\Psi=Q_{e n}$
c) Both a \& b
d) $\oint D . d s=0$
10) The capacitance of isolated capacitor is \qquad .
a) $4 \pi \varepsilon_{0} \varepsilon_{r} a$
b) $\frac{1 \pi}{\frac{1}{a}-\frac{1}{b}}$
c) $4 \pi \varepsilon_{0} \varepsilon_{r}(a-b)$
d) None of these
11) $d v=r^{2} \sin \theta d r d \Phi d z$ is the different volume in \qquad .
a) Cylindrical co-ordinate system
b) Spherical co-ordinate system
c) Cartesian co-ordinate system
d) None of the above
12) Statement 1: Potential is the gradient of electric field intensity.

Statement 2: Electric field intensity is opposite to the direction in which V is increases.
Statement $1 \&$ Statement 2 are respectively.
a) True, False
b) True, True
c) False, True
d) False, False
13) Directivity is \qquad .
a) Inversely proportional to beamwidth
b) Inversely proportional to square of beamwidth
c) directly proportional to beamwidth
d) directly proportional to square of beamwidth
14) The unit of permeability is \qquad .
a) Henry/m
b) Farad/m
c) Henry
d) Webber

Seat
No.

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering ELECTRO MAGNETIC ENGINEERING \& RADIATING SYSTEM

Day \& Date: Friday, 06-11-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume suitable data wherever necessary.

Section - I

Q. 2 Solve Any Three.

a) State and prove Gauss Theorem?
b) Determine the work done to carry - $2 \mu \mathrm{C}$ charge from P1 $(2,1,-1)$ to P2 (8, $2,-1$) in the field
$E=y a_{x}+x a_{y}$ along path $x=2 y^{2}$.
c) Given the potential $V=\frac{10}{\mathrm{r}^{2}} \sin \theta \cos \phi$ find D at $(2, \pi / 2,0)$.
d) Let $\mathrm{a}=120 \mathrm{~cm}^{2}, \mathrm{~d}=5 \mathrm{~mm}$ and $\varepsilon_{\mathrm{r}}=12$ for parallel plate capacitor.

1) Calculate the capacitance.
2) If $\mathrm{Vo}=40 \mathrm{~V}$ find E \& stored energy.
e) Explain coulombs law and its vector form?
Q. 3 Solve Any Two
a) Find the work done in moving a point charge
$Q=5 \mu C$ from $(0,0,0)$ to $(2, \pi / 4, \pi / 2)$ in the field.
$E=5 e^{-r / 4} a_{r}+\frac{10}{r \sin \theta} a_{\Phi} v / m$.
b) Derive expression on electric field due to infinite sheet charge?
c) State \& Prove Divergence theorem?
$D=y x z a_{x}-y^{2} a_{y}+y z a_{z}$. Evaluate Divergence Theorem of both side of unit cube $0 \leq x, y, z \leq 1$.

Section - II

Q. 4 Solve any four

a) What do you mean by field zones of antenna? Elaborate the concept with neat sketch.
b) Find the contribution to the magnetic flux density at point P caused by Semicircle section, two horizontal sections and one vertical section of the conductors. $\mathrm{I}=6 \mathrm{~A}$.

c) Derive Helmholtz wave equations for electromagnetic waves.
d) Verify whether if the wave in free space specified below satisfy Maxwell equations or not.
$E=2 \sin x \cdot \sin t \cdot a_{y}$ $H=(2 / \mu) \cos x \cdot \cos t \cdot a_{z}$
e) What is Radiation resistance of antenna? Explain any five properties of antenna.
Q. 5 Attempt any two
a) Explain with suitable derivation, the Maxwell's equations in Time varying fields.
b) Derive Pointing Theorem and give its physical interpretation.
c) Differentiate Yagi array, broad side array and end fire array with their properties.

SLR-FM-686

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14

Q. 1 Choose the correct alternatives from the options and rewrite the sentence.
 14

1) The capacity of communication channel with bandwidth of 5 MHz and 15 SNR is approximately \qquad .
a) 10 Mbps
b) 20 Mbps
c) 75 Mbps
d) 150 Mbps
2) A source delivers symbols $m 1, m 2, m 3, m 4$ with probabilities $1 / 4,1 / 4,1 / 4$, $1 / 4$ respectively. The entropy of the system is \qquad .
a) $2 \mathrm{bits} / \mathrm{sec}$
b) 2 bits/symbols
c) 2 symbols
d) 2 symbol/bit
3) The bandwidth requirement of Pulse Width Modulation is higher than that of Pulse amplitude modulation \qquad .
a) True
b) False
4) In a pulse code modulation (PCM) the information is transmitted in the form of \qquad .
a) variation in the amplitude of pulses
b) variation in the width of pulses
c) variation in the position of pulses
d) code word each of N bit length
5) The non uniform quantization leads to \qquad .
a) reduction in transmission bandwidth
b) increase in maximum SNR
c) increase in SNR for low level signals
d) simplification of quantization process
6) In \qquad encoding, we use three levels: positive, zero and negative.
a) unipolar
b) Bipolar
c) polar
d) none of the above
7) The process of correcting channel induced distortion is called \qquad .
a) ISI
b) matched filter
c) correlation receiver
d) Equalization
8) In MSK, the difference between the higher and lower frequency is \qquad .
a) Same as the bit rate
b) Half of the bit rate
c) Twice of the bit rate
d) Four time the bit rate
9) In multichannel digital communication in AWGN channels are fixed but vary in \qquad .
a) magnitude and phase
b) magnitude and frequency
c) frequency and phase
d) none
10) The correlation receiver consist of \qquad .
a) a multiplier and integrator
b) an adder and an integrator
c) a multiplier and a differentiation
d) an adder and a differentiator
11) QPSK is a modulation scheme where each symbol consists of \qquad .
a) 4 bits
b) 2 bits
c) 1 bits
d) M number of bits, depending upon the requirement
12) In Binary FSK, mark and space respectively represent.
a) 1 and 0
b) 0 and 1
c) 11 and 00
d) 00 and 11
13) Minimum shift keying is similar to \qquad .
a) Continuous phase frequency shift keying
b) Binary phase shift keying
c) Binary frequency shift keying
d) QPSK
14) Advantages of digital communication are \qquad .
a) Easy multiplexing
b) Easy processing
c) Reliable
d) All of the mentioned

Seat	
No.	

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Solve any four of the questions.
a) With the help of block diagram explain the working of Delta Modulation. What are its drawbacks?
b) With the waveforms explain how PPM is derived from PAM.
c) Write a note on intersymbol interference.
d) An analog signal bandlimited to 10 KHz is quantized in 8 levels of PCM system with probabilities of $1 / 4,1 / 5,1 / 5,1 / 10,1 / 10,1 / 20,1 / 20$ and $1 / 20$ respectively. Find the entropy and the rate of information.
e) Explain working of adaptive Equalizer.
Q. 3 Solve any two of the following.
a) Apply Huffman Coding Procedure for following message ensemble. Also calculate average length of code and its efficiency. Assume $\mathrm{M}=4$.
$\left.\begin{array}{lccccccc}{[X]=[x 1} & x 2 & x 3 & x 4 & x 5 & x 6 & x 7 & x 8\end{array}\right]$
b) Explain any one method of symbol synchronization in detail.
c) With the block diagram explain PCM-TDM Telephone system.

Section - II

Q. 4 Solve any four of the followings.
a) With block diagram explain non-coherent FSK.
b) List out advantages of multicarrier communication system
c) Explain Differential coherent PSK.
d) Write a note on wideband FSK in short.
e) Write a note on M-ary orthogonal signals.
Q. 5 Solve any two of the following.
a) Write a note on QAM in detail.
b) Explain multichannel digital communication in AWGN channels.
c) Explain the matched filter receiver in detail.

SLR-FM-686

Seat	
No.	

Set \mathbf{Q}

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) In MSK, the difference between the higher and lower frequency is \qquad .
a) Same as the bit rate
b) Half of the bit rate
c) Twice of the bit rate
d) Four time the bit rate
2) In multichannel digital communication in AWGN channels are fixed but vary in \qquad .
a) magnitude and phase
b) magnitude and frequency
c) frequency and phase
d) none
3) The correlation receiver consist of \qquad .
a) a multiplier and integrator
b) an adder and an integrator
c) a multiplier and a differentiation
d) an adder and a differentiator
4) QPSK is a modulation scheme where each symbol consists of \qquad .
a) 4 bits
b) 2 bits
c) 1 bits
d) M number of bits, depending upon the requirement
5) In Binary FSK, mark and space respectively represent.
a) 1 and 0
b) 0 and 1
c) 11 and 00
d) 00 and 11
6) Minimum shift keying is similar to \qquad .
a) Continuous phase frequency shift keying
b) Binary phase shift keying
c) Binary frequency shift keying
d) QPSK
7) Advantages of digital communication are \qquad .
a) Easy multiplexing
b) Easy processing
c) Reliable
d) All of the mentioned
8) The capacity of communication channel with bandwidth of 5 MHz and 15 SNR is approximately \qquad .
a) 10 Mbps
b) 20 Mbps
c) 75 Mbps
d) 150 Mbps
9) A source delivers symbols $m 1, m 2, m 3, m 4$ with probabilities $1 / 4,1 / 4,1 / 4$, $1 / 4$ respectively. The entropy of the system is \qquad .
a) $2 \mathrm{bits} / \mathrm{sec}$
b) 2 bits/symbols
c) 2 symbols
d) 2 symbol/bit
10) The bandwidth requirement of Pulse Width Modulation is higher than that of Pulse amplitude modulation \qquad -
a) True
b) False
11) In a pulse code modulation (PCM) the information is transmitted in the form of \qquad .
a) variation in the amplitude of pulses
b) variation in the width of pulses
c) variation in the position of pulses
d) code word each of N bit length
12) The non uniform quantization leads to \qquad .
a) reduction in transmission bandwidth
b) increase in maximum SNR
c) increase in SNR for low level signals
d) simplification of quantization process
13) \ln \qquad encoding, we use three levels: positive, zero and negative.
a) unipolar
b) Bipolar
c) polar
d) none of the above
14) The process of correcting channel induced distortion is called \qquad .
a) ISI
b) matched filter
c) correlation receiver
d) Equalization

SLR-FM-686

Seat
No.

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Solve any four of the questions.
a) With the help of block diagram explain the working of Delta Modulation. What are its drawbacks?
b) With the waveforms explain how PPM is derived from PAM.
c) Write a note on intersymbol interference.
d) An analog signal bandlimited to 10 KHz is quantized in 8 levels of PCM system with probabilities of $1 / 4,1 / 5,1 / 5,1 / 10,1 / 10,1 / 20,1 / 20$ and $1 / 20$ respectively. Find the entropy and the rate of information.
e) Explain working of adaptive Equalizer.
Q. 3 Solve any two of the following.
a) Apply Huffman Coding Procedure for following message ensemble. Also calculate average length of code and its efficiency. Assume $\mathrm{M}=4$.
$\left.\begin{array}{lccccccc}{[X]=[x 1} & x 2 & x 3 & x 4 & x 5 & x 6 & x 7 & x 8] \\ {[P]=[0.2} & 0.2 & 0.15 & 0.15 & 0.1 & 0.1 & 0.05 & 0.05\end{array}\right]$
b) Explain any one method of symbol synchronization in detail.
c) With the block diagram explain PCM-TDM Telephone system.

Section - II

Q. 4 Solve any four of the followings.
a) With block diagram explain non-coherent FSK.
b) List out advantages of multicarrier communication system
c) Explain Differential coherent PSK.
d) Write a note on wideband FSK in short.
e) Write a note on M -ary orthogonal signals.
Q. 5 Solve any two of the following.
a) Write a note on QAM in detail.
b) Explain multichannel digital communication in AWGN channels.
c) Explain the matched filter receiver in detail.

Seat	
No.	

Set R

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The non uniform quantization leads to \qquad .
a) reduction in transmission bandwidth
b) increase in maximum SNR
c) increase in SNR for low level signals
d) simplification of quantization process
2) In \qquad encoding, we use three levels: positive, zero and negative.
a) unipolar
b) Bipolar
c) polar
d) none of the above
3) The process of correcting channel induced distortion is called \qquad .
a) ISI
b) matched filter
c) correlation receiver
d) Equalization
4) In MSK, the difference between the higher and lower frequency is \qquad .
a) Same as the bit rate
b) Half of the bit rate
c) Twice of the bit rate
d) Four time the bit rate
5) In multichannel digital communication in AWGN channels are fixed but vary in \qquad .
a) magnitude and phase
b) magnitude and frequency
c) frequency and phase
d) none
6) The correlation receiver consist of \qquad .
a) a multiplier and integrator
b) an adder and an integrator
c) a multiplier and a differentiation
d) an adder and a differentiator
7) QPSK is a modulation scheme where each symbol consists of \qquad .
a) 4 bits
b) 2 bits
c) 1 bits
d) M number of bits, depending upon the requirement
8) In Binary FSK, mark and space respectively represent.
a) 1 and 0
b) 0 and 1
c) 11 and 00
d) 00 and 11
9) Minimum shift keying is similar to \qquad .
a) Continuous phase frequency shift keying
b) Binary phase shift keying
c) Binary frequency shift keying
d) QPSK
10) Advantages of digital communication are \qquad .
a) Easy multiplexing
b) Easy processing
c) Reliable
d) All of the mentioned
11) The capacity of communication channel with bandwidth of 5 MHz and 15 SNR is approximately \qquad .
a) 10 Mbps
b) 20 Mbps
c) 75 Mbps
d) 150 Mbps
12) A source delivers symbols $m 1, m 2, m 3, m 4$ with probabilities $1 / 4,1 / 4,1 / 4$, $1 / 4$ respectively. The entropy of the system is \qquad .
a) $2 \mathrm{bits} / \mathrm{sec}$
b) 2 bits/symbols
c) 2 symbols
d) 2 symbol/bit
13) The bandwidth requirement of Pulse Width Modulation is higher than that of Pulse amplitude modulation \qquad .
a) True
b) False
14) In a pulse code modulation (PCM) the information is transmitted in the form of \qquad .
a) variation in the amplitude of pulses
b) variation in the width of pulses
c) variation in the position of pulses
d) code word each of N bit length

SLR-FM-686

Seat
No.

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I

Q. 2 Solve any four of the questions.
a) With the help of block diagram explain the working of Delta Modulation. What are its drawbacks?
b) With the waveforms explain how PPM is derived from PAM.
c) Write a note on intersymbol interference.
d) An analog signal bandlimited to 10 KHz is quantized in 8 levels of PCM system with probabilities of $1 / 4,1 / 5,1 / 5,1 / 10,1 / 10,1 / 20,1 / 20$ and $1 / 20$ respectively. Find the entropy and the rate of information.
e) Explain working of adaptive Equalizer.
Q. 3 Solve any two of the following.
a) Apply Huffman Coding Procedure for following message ensemble. Also calculate average length of code and its efficiency. Assume $\mathrm{M}=4$.

$[X]=[x 1$	$x 2$	$x 3$	$x 4$	$x 5$	$x 6$	$x 7$	$x 8]$
$[P]=[0.2$	0.2	0.15	0.15	0.1	0.1	0.05	$0.05]$

b) Explain any one method of symbol synchronization in detail.
c) With the block diagram explain PCM-TDM Telephone system.

Section - II

Q. 4 Solve any four of the followings.
a) With block diagram explain non-coherent FSK.
b) List out advantages of multicarrier communication system
c) Explain Differential coherent PSK.
d) Write a note on wideband FSK in short.
e) Write a note on M-ary orthogonal signals.
Q. 5 Solve any two of the following.
a) Write a note on QAM in detail.
b) Explain multichannel digital communication in AWGN channels.
c) Explain the matched filter receiver in detail.

Seat	
No.	

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION
Day \& Date: Monday, 09-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) The correlation receiver consist of \qquad .
a) a multiplier and integrator
b) an adder and an integrator
c) a multiplier and a differentiation
d) an adder and a differentiator
2) QPSK is a modulation scheme where each symbol consists of \qquad .
a) 4 bits
b) 2 bits
c) 1 bits
d) M number of bits, depending upon the requirement
3) In Binary FSK, mark and space respectively represent.
a) 1 and 0
b) 0 and 1
c) 11 and 00
d) 00 and 11
4) Minimum shift keying is similar to \qquad .
a) Continuous phase frequency shift keying
b) Binary phase shift keying
c) Binary frequency shift keying
d) QPSK
5) Advantages of digital communication are \qquad .
a) Easy multiplexing
b) Easy processing
c) Reliable
d) All of the mentioned
6) The capacity of communication channel with bandwidth of 5 MHz and 15 SNR is approximately \qquad .
a) 10 Mbps
b) 20 Mbps
c) 75 Mbps
d) 150 Mbps
7) A source delivers symbols $m 1, m 2, m 3, m 4$ with probabilities $1 / 4,1 / 4,1 / 4$, $1 / 4$ respectively. The entropy of the system is \qquad .
a) $2 \mathrm{bits} / \mathrm{sec}$
b) 2 bits/symbols
c) 2 symbols
d) 2 symbol/bit
8) The bandwidth requirement of Pulse Width Modulation is higher than that of Pulse amplitude modulation \qquad .
a) True
b) False
9) In a pulse code modulation (PCM) the information is transmitted in the form of \qquad .
a) variation in the amplitude of pulses
b) variation in the width of pulses
c) variation in the position of pulses
d) code word each of N bit length
10) The non uniform quantization leads to \qquad .
a) reduction in transmission bandwidth
b) increase in maximum SNR
c) increase in SNR for low level signals
d) simplification of quantization process
11) \ln \qquad encoding, we use three levels: positive, zero and negative.
a) unipolar
b) Bipolar
c) polar
d) none of the above
12) The process of correcting channel induced distortion is called \qquad .
a) ISI
b) matched filter
c) correlation receiver
d) Equalization
13) In MSK, the difference between the higher and lower frequency is
\qquad .
a) Same as the bit rate
b) Half of the bit rate
c) Twice of the bit rate
d) Four time the bit rate
14) In multichannel digital communication in AWGN channels are fixed but vary in \qquad .
a) magnitude and phase
b) magnitude and frequency
c) frequency and phase
d) none

SLR-FM-686

Seat

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering PRINCIPLES OF DIGITAL COMMUNICATION

Day \& Date: Monday, 09-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.

Section - I
Q. 2 Solve any four of the questions.
a) With the help of block diagram explain the working of Delta Modulation. What are its drawbacks?
b) With the waveforms explain how PPM is derived from PAM.
c) Write a note on intersymbol interference.
d) An analog signal bandlimited to 10 KHz is quantized in 8 levels of PCM system with probabilities of $1 / 4,1 / 5,1 / 5,1 / 10,1 / 10,1 / 20,1 / 20$ and $1 / 20$ respectively. Find the entropy and the rate of information.
e) Explain working of adaptive Equalizer.
Q. 3 Solve any two of the following.
a) Apply Huffman Coding Procedure for following message ensemble. Also calculate average length of code and its efficiency. Assume $M=4$.

$[X]=[x 1$	$x 2$	$x 3$	$x 4$	$x 5$	$x 6$	$x 7$	$x 8]$
$[P]=[0.2$	0.2	0.15	0.15	0.1	0.1	0.05	$0.05]$

b) Explain any one method of symbol synchronization in detail.
c) With the block diagram explain PCM-TDM Telephone system.

Section - II

Q. 4 Solve any four of the followings.
a) With block diagram explain non-coherent FSK.
b) List out advantages of multicarrier communication system
c) Explain Differential coherent PSK.
d) Write a note on wideband FSK in short.
e) Write a note on M-ary orthogonal signals.
Q. 5 Solve any two of the following.
a) Write a note on QAM in detail.
b) Explain multichannel digital communication in AWGN channels.
c) Explain the matched filter receiver in detail.
T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM
Day \& Date: Wednesday, 11-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicates full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Cascade Arrangement is Present in \qquad .
a) Evolutionary Development
b) Incremental Delivery
c) Waterfall Model
d) None
2) Functional Requirements considers \qquad .
a) Output
b) Input
c) Security
d) Input \& output
3) System testing involves \qquad .
a) Integration testing
b) Release testing
c) Interface testing
d) Both a and b
4) Behavioral Model is called as \qquad .
a) Object Model
b) Dataflow model
c) Context Model
d) V Model
5) RUP having four phases in a sequence as \qquad .
a) Inception- Collaboration-Transition - Revision.
b) Inception- Elaboration -Construction-Transition.
c) Elaboration-Inception-Construction-Transition.
d) Transition-Inception- Elaboration -Construction
6) Dataflow Model \& state machine model are types of \qquad .
a) Context Model
b) Behavioral Model
c) Data Model
d) All
7) Partition testing is part of \qquad .
a) Release testing
b) Component testing
c) System testing
d) Performance testing
8) Test automation helps to \qquad .
a) Reduce the cost of testing
b) Increase the cost of testing
c) Reduce time of testing
d) Increase time of testing
9) CBSE Approach is based on \qquad .
a) Existence of reusable components
b) Existence of new components
c) Nonexistence of components
d) None of above
10) Software Specification is process of \qquad .
a) Understanding \& defining service required
b) Identifying the constraints on system
c) Both a \& b
d) Identifying document
11) Scheduling can best be defined as the process used to determine \qquad .
a) overall project duration
b) project cost estimating
c) the project management plan
d) sub-contractor's responsibilities
12) Risk is \qquad .
a) Event which may arrive in future
b) Negative effect causing events
c) Problems arriving in project
d) All are correct
13) The basic resource of the organization is \qquad .
a) Money
b) Machines
c) Manpower
d) All of them
14) Framework of risk contains the categories as \qquad .
a) Actors
b) Task
c) Structure and technology
d) All

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM

Day \& Date: Wednesday, 11-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any three.
a) Explain Software Life Cycle concept.
b) Explain Test Automation.
c) Explain in detail System Testing.
d) Compare: V Model with Prototyping Model.
e) List \& Explain char. of Software Process.
Q. 3 Solve any two.
a) Write note on RUP with Diagram \& Phases.
b) List types of non-functional requirement. Explain general structure of requirement.
c) List System Models \& explain any one of them.
d) Compare Functional Requirement with Nonfunctional Requirement.

Section - II

Q. 4 Solve any three.
a) Discuss PERT.
b) Explain Model of Risk Framework.
c) List Steps for Resource Planning.
d) Explain the management process with its need.
Q. 5 Solve any two.
a) Explain project evaluation with its significance.
b) Explain risk identification? Which are two methods used for risk identification.
c) Draw an activity network using either activity on node or activity on arrow network convention for Project "Choosing \& Purchasing a Laptop".

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM

Day \& Date: Wednesday, 11-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicates full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Test automation helps to \qquad -.
a) Reduce the cost of testing
b) Increase the cost of testing
c) Reduce time of testing
d) Increase time of testing
2) CBSE Approach is based on \qquad -
a) Existence of reusable components
b) Existence of new components
c) Nonexistence of components
d) None of above
3) Software Specification is process of \qquad .
a) Understanding \& defining service required
b) Identifying the constraints on system
c) Both a \& b
d) Identifying document
4) Scheduling can best be defined as the process used to determine \qquad .
a) overall project duration
b) project cost estimating
c) the project management plan
d) sub-contractor's responsibilities
5) Risk is \qquad .
a) Event which may arrive in future
b) Negative effect causing events
c) Problems arriving in project
d) All are correct
6) The basic resource of the organization is \qquad .
a) Money
b) Machines
c) Manpower
d) All of them
7) Framework of risk contains the categories as \qquad .
a) Actors
b) Task
c) Structure and technology
d) All
8) Cascade Arrangement is Present in \qquad
a) Evolutionary Development
b) Incremental Delivery
c) Waterfall Model
d) None

SLR-FM-687
 Set

9) Functional Requirements considers
a) Output
b) Input
c) Security
d) Input \& output
10) System testing involves \qquad .
a) Integration testing
b) Release testing
c) Interface testing
d) Both a and b
11) Behavioral Model is called as \qquad .
a) Object Model
b) Dataflow model
c) Context Model
d) V Model
12) RUP having four phases in a sequence as \qquad .
a) Inception- Collaboration-Transition - Revision.
b) Inception- Elaboration -Construction-Transition.
c) Elaboration-Inception-Construction-Transition.
d) Transition-Inception- Elaboration -Construction
13) Dataflow Model \& state machine model are types of \qquad .
a) Context Model
b) Behavioral Model
c) Data Model
d) All
14) Partition testing is part of \qquad .
a) Release testing
b) Component testing
c) System testing
d) Performance testing

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM

Day \& Date: Wednesday, 11-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any three.
a) Explain Software Life Cycle concept.
b) Explain Test Automation.
c) Explain in detail System Testing.
d) Compare: V Model with Prototyping Model.
e) List \& Explain char. of Software Process.
Q. 3 Solve any two.
a) Write note on RUP with Diagram \& Phases.
b) List types of non-functional requirement. Explain general structure of requirement.
c) List System Models \& explain any one of them.
d) Compare Functional Requirement with Nonfunctional Requirement.

Section - II

Q. 4 Solve any three.
a) Discuss PERT.
b) Explain Model of Risk Framework.
c) List Steps for Resource Planning.
d) Explain the management process with its need.
Q. 5 Solve any two.
a) Explain project evaluation with its significance.
b) Explain risk identification? Which are two methods used for risk identification.
c) Draw an activity network using either activity on node or activity on arrow network convention for Project "Choosing \& Purchasing a Laptop".
T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM
Day \& Date: Wednesday, 11-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicates full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) RUP having four phases in a sequence as \qquad .
a) Inception- Collaboration-Transition - Revision.
b) Inception- Elaboration-Construction-Transition.
c) Elaboration-Inception-Construction-Transition.
d) Transition-Inception- Elaboration -Construction
2) Dataflow Model \& state machine model are types of \qquad .
a) Context Model
b) Behavioral Model
c) Data Model
d) All
3) Partition testing is part of \qquad .
a) Release testing
b) Component testing
c) System testing
d) Performance testing
4) Test automation helps to \qquad .
b) Increase the cost of testing
a) Reduce the cost of testing
d) Increase time of testing
5) CBSE Approach is based on \qquad .
a) Existence of reusable components
b) Existence of new components
c) Nonexistence of components
d) None of above
6) Software Specification is process of \qquad .
a) Understanding \& defining service required
b) Identifying the constraints on system
c) Both a \& b
d) Identifying document
7) Scheduling can best be defined as the process used to determine \qquad .
a) overall project duration
b) project cost estimating
c) the project management plan
d) sub-contractor's responsibilities
8) Risk is \qquad .
a) Event which may arrive in future
b) Negative effect causing events
c) Problems arriving in project
d) All are correct
9) The basic resource of the organization is \qquad .
a) Money
b) Machines
c) Manpower
d) All of them
10) Framework of risk contains the categories as \qquad .
a) Actors
b) Task
c) Structure and technology
d) All
11) Cascade Arrangement is Present in \qquad
a) Evolutionary Development
b) Incremental Delivery
c) Waterfall Model
d) None
12) Functional Requirements considers \qquad .
a) Output
b) Input
c) Security
d) Input \& output
13) System testing involves \qquad .
a) Integration testing
b) Release testing
c) Interface testing
d) Both a and b
14) Behavioral Model is called as \qquad .
a) Object Model
b) Dataflow model
c) Context Model
d) V Model

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019

Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM

Day \& Date: Wednesday, 11-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any three.
a) Explain Software Life Cycle concept.
b) Explain Test Automation.
c) Explain in detail System Testing.
d) Compare: V Model with Prototyping Model.
e) List \& Explain char. of Software Process.
Q. 3 Solve any two.
a) Write note on RUP with Diagram \& Phases.
b) List types of non-functional requirement. Explain general structure of requirement.
c) List System Models \& explain any one of them.
d) Compare Functional Requirement with Nonfunctional Requirement.

Section - II

Q. 4 Solve any three.
a) Discuss PERT.
b) Explain Model of Risk Framework.
c) List Steps for Resource Planning.
d) Explain the management process with its need.
Q. 5 Solve any two.
a) Explain project evaluation with its significance.
b) Explain risk identification? Which are two methods used for risk identification.
c) Draw an activity network using either activity on node or activity on arrow network convention for Project "Choosing \& Purchasing a Laptop".
T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM
Day \& Date: Wednesday, 11-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicates full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Software Specification is process of \qquad .
a) Understanding \& defining service required
b) Identifying the constraints on system
c) Both a \& b
d) Identifying document
2) Scheduling can best be defined as the process used to determine \qquad .
a) overall project duration
b) project cost estimating
c) the project management plan
d) sub-contractor's responsibilities
3) Risk is \qquad .
a) Event which may arrive in future
b) Negative effect causing events
c) Problems arriving in project
d) All are correct
4) The basic resource of the organization is \qquad .
a) Money
b) Machines
c) Manpower
d) All of them
5) Framework of risk contains the categories as \qquad .
a) Actors
b) Task
c) Structure and technology
d) All
6) Cascade Arrangement is Present in \qquad .
a) Evolutionary Development
b) Incremental Delivery
c) Waterfall Model
d) None
7) Functional Requirements considers \qquad .
a) Output
b) Input
c) Security
d) Input \& output
8) System testing involves \qquad .
a) Integration testing
b) Release testing
c) Interface testing
d) Both a and b
9) Behavioral Model is called as \qquad .
a) Object Model
b) Dataflow model
c) Context Model
d) V Model
10) RUP having four phases in a sequence as \qquad .
a) Inception- Collaboration-Transition - Revision.
b) Inception- Elaboration -Construction-Transition.
c) Elaboration-Inception-Construction-Transition.
d) Transition-Inception- Elaboration-Construction
11) Dataflow Model \& state machine model are types of \qquad .
a) Context Model
b) Behavioral Model
c) Data Model
d) All
12) Partition testing is part of \qquad .
a) Release testing
b) Component testing
c) System testing
d) Performance testing
13) Test automation helps to \qquad .
a) Reduce the cost of testing
b) Increase the cost of testing
c) Reduce time of testing
d) Increase time of testing
14) CBSE Approach is based on \qquad .
a) Existence of reusable components
b) Existence of new components
c) Nonexistence of components
d) None of above

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering SOFTWARE ENGINEERING \& PROJECT MANAGEMENT SYSTEM

Day \& Date: Wednesday, 11-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I

Q. 2 Solve any three.
a) Explain Software Life Cycle concept.
b) Explain Test Automation.
c) Explain in detail System Testing.
d) Compare: V Model with Prototyping Model.
e) List \& Explain char. of Software Process.
Q. 3 Solve any two.
a) Write note on RUP with Diagram \& Phases.
b) List types of non-functional requirement. Explain general structure of requirement.
c) List System Models \& explain any one of them.
d) Compare Functional Requirement with Nonfunctional Requirement.

Section - II

Q. 4 Solve any three.
a) Discuss PERT.
b) Explain Model of Risk Framework.
c) List Steps for Resource Planning.
d) Explain the management process with its need.
Q. 5 Solve any two.
a) Explain project evaluation with its significance.
b) Explain risk identification? Which are two methods used for risk identification.
c) Draw an activity network using either activity on node or activity on arrow network convention for Project "Choosing \& Purchasing a Laptop".

Seat
 No.
 T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Set
P

Day \& Date: Friday, 13-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions
Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) A Discrete Time signal has \qquad .
a) Continuous time continuous amplitude
b) Continuous time discrete amplitude
c) Discrete time continuous amplitude
d) Discrete time discrete amplitude
2) Circular convolution of the sequences $x(n)=\{1,2,1\}$ and $h(n)=\{1,-2,2\}$ is \qquad .
a) $\{1,2,1\}$
b) $\{3,2,1\}$
c) $\{3,2,-1\}$
d) $\{3,2,2\}$
3) Multiplication are required to compute N point DFT \qquad .
a) N
b) $\mathrm{N}(\mathrm{N}-1)$
c) N^{2}
d) N^{3}
4) The magnitude response for DFT exhibits complex conjugate property if time sequence is \qquad .
a) a real sequence
b) a complex sequence
c) an imaginary sequence
d) not a real sequence
5) Decimation in time FFT decimates \qquad .
a) DFT coefficients
b) Input sequence
c) Both sequence and DFT
d) None
6) Circular convolution can be performed using the methods \qquad .
a) Concentric Circle
b) Matrix Multiplication
c) Both a \& b
d) None of above
7) In DIT, the data $x(n)$ is stored in \qquad order.
a) Reversed order
b) Bit reversal
c) Non-shuffled
d) None
8) Convolution of Ideal filter response and sync function results in.
a) Side Lobe oscillations
b) Main Lobe oscillations
c) Sharpening of a transition width
d) Decrease in main lobe
9) Unwrapped phase response of FIR filter in pass band is \qquad .
a) Exponentially increasing
b) Exponentially decreasing
c) Non-linear
d) linear
10) When analog butter worth filter is converted to DT filter using Impulse Invariance method, then \qquad .
a) Aliasing can be eliminated
b) Aliasing is always present
c) Aliasing can be reduced by reducing T
d) Aliasing cannot be reduced by reducing T
11) The binary signed number 0.11010111 when rounded to seven bits will result in number given by \qquad .
a) 0.1101011
b) 0.1101010
c) 0.1101100
d) 0.1101110
12) Properties of butter worth low pass filter is given by \qquad .
a) The poles of butter worth filter lies on a circle
b) The poles of butter worth filter lies outside the a circle
c) The poles of butter worth filter lies inside the a circle
d) Not a real sequence
13) The mapping for Impulse Invariance Method is \qquad .
a) many to many mapping
b) many to one mapping
c) one to one mapping
d) none of above
14) Impulse invariant method will convert analog filter to DT filter that has \qquad .
a) Same frequency response as that of analog filter and is stable
b) Different frequency response and is unstable
c) Same frequency response and is unstable
d) Different frequency response and is stable

Seat

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume necessary data if necessary.

Section - I

Q. 2 Attempt any three.

a) Determine the cross correlation sequence of sequences.
$X(n)=\{1,2,3,4,5\}, y(n)=\{5,6,7,8,9\}$
b) Find the circular convolution of given data sequences.
$X_{1}(n)=\{1,1,-1,-1\}, x_{2}(n)=\{1,0,-1,0,-1\}$
c) Explain the periodicity property of DFT.
d) Derive the equation for Circular convolution.
e) Explain Chirp 'Z' transform in short.
Q. 3 Attempt any two.
a) Determine the output of a linear FIR filter whose impulse response $h(n)=\{1,2,3\}$ and the input signal $x(n)=\{1,2,3,4,5,6,7,8,9\}$ using overlap save method, verify by linear convolution.
b) Determine the DFT of the given data sequence $X(n)=\{-1,2,-3,4,9,-20,12,6\}$ By Decimation in time FFT Algorithm.
c) Given $x(n)=2^{n}$ and $N=8$, find $X(k)$ using DIF FFT algorithm.

Section - II

Q. 4 Solve Any Three.
a) Explain in detail Fourier Series Design Method.
b) Realize the system with difference equation in Cascade Form.

$$
y(n)=\frac{3}{4} y(n-1)-\frac{1}{8} y(n-2)+x(n)+\frac{1}{3} x(n-1)
$$

c) Explain the finite word length effect in FIR Filter.
d) What is warping effect? What is its effect on magnitude and phase response?
e) Explain the application of DSP in Telecommunication.
Q. 5 Solve any two.
a) Design a ideal high pass filter with a frequency response using hanning window.

$$
\begin{aligned}
H d\left(e^{j \omega}\right) & =1 \text { for } \frac{\pi}{4} \leq|\omega| \leq \pi \\
& =0 \text { for }|\omega| \leq \frac{\pi}{4}
\end{aligned}
$$

Find the values of $h(n)$ for $\mathrm{N}=11$ and Find $\mathrm{H}(\mathrm{Z})$.
b) Apply impulse invariant method and find $\mathrm{H}(\mathrm{z})$ for $H(s)=\frac{s+a}{(s+a)^{2}+b^{2}}$
c) A digital filter with a 3 dB bandwidth of 0.25π is to be designed from the analog filter whose system response is $H(s)=\frac{\Omega_{\mathrm{c}}}{s+\Omega_{\mathrm{c}}}$ Use Bilinear transformation and obtain $\mathrm{H}(\mathrm{z})$.

SLR-FM-688

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) Convolution of Ideal filter response and sync function results in.
a) Side Lobe oscillations
b) Main Lobe oscillations
c) Sharpening of a transition width
d) Decrease in main lobe
2) Unwrapped phase response of FIR filter in pass band is \qquad .
a) Exponentially increasing
b) Exponentially decreasing
c) Non- linear
d) linear
3) When analog butter worth filter is converted to DT filter using Impulse Invariance method, then \qquad -.
a) Aliasing can be eliminated
b) Aliasing is always present
c) Aliasing can be reduced by reducing T
d) Aliasing cannot be reduced by reducing T
4) The binary signed number 0.11010111 when rounded to seven bits will result in number given by \qquad .
a) 0.1101011
b) 0.1101010
c) 0.1101100
d) 0.1101110
5) Properties of butter worth low pass filter is given by \qquad .
a) The poles of butter worth filter lies on a circle
b) The poles of butter worth filter lies outside the a circle
c) The poles of butter worth filter lies inside the a circle
d) Not a real sequence
6) The mapping for Impulse Invariance Method is \qquad .
a) many to many mapping
b) many to one mapping
c) one to one mapping
d) none of above
7) Impulse invariant method will convert analog filter to DT filter that has \qquad .
a) Same frequency response as that of analog filter and is stable
b) Different frequency response and is unstable
c) Same frequency response and is unstable
d) Different frequency response and is stable
8) A Discrete Time signal has \qquad .
a) Continuous time continuous amplitude
b) Continuous time discrete amplitude
c) Discrete time continuous amplitude
d) Discrete time discrete amplitude
9) Circular convolution of the sequences $x(n)=\{1,2,1\}$ and $h(n)=\{1,-2,2\}$ is \qquad .
a) $\{1,2,1\}$
b) $\{3,2,1\}$
c) $\{3,2,-1\}$
d) $\{3,2,2\}$
10) Multiplication are required to compute N point DFT \qquad .
a) N
b) $\mathrm{N}(\mathrm{N}-1)$
c) N^{2}
d) N^{3}
11) The magnitude response for DFT exhibits complex conjugate property if time sequence is \qquad .
a) a real sequence
b) a complex sequence
c) an imaginary sequence
d) not a real sequence
12) Decimation in time FFT decimates \qquad .
a) DFT coefficients
b) Input sequence
c) Both sequence and DFT
d) None
13) Circular convolution can be performed using the methods
a) Concentric Circle
b) Matrix Multiplication
c) Both a \& b
d) None of above
14) In DIT, the data $x(n)$ is stored in \qquad order.
a) Reversed order
b) Bit reversal
c) Non-shuffled
d) None

Seat
No.

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume necessary data if necessary.

Section - I

Q. 2 Attempt any three.

a) Determine the cross correlation sequence of sequences.
$X(n)=\{1,2,3,4,5\}, y(n)=\{5,6,7,8,9\}$
b) Find the circular convolution of given data sequences.
$X_{1}(n)=\{1,1,-1,-1\}, X_{2}(n)=\{1,0,-1,0,-1\}$
c) Explain the periodicity property of DFT.
d) Derive the equation for Circular convolution.
e) Explain Chirp 'Z' transform in short.
Q. 3 Attempt any two.
a) Determine the output of a linear FIR filter whose impulse response $h(n)=\{1,2,3\}$ and the input signal $x(n)=\{1,2,3,4,5,6,7,8,9\}$ using overlap save method, verify by linear convolution.
b) Determine the DFT of the given data sequence $X(n)=\{-1,2,-3,4,9,-20,12,6\}$ By Decimation in time FFT Algorithm.
c) Given $x(n)=2^{n}$ and $N=8$,find $X(k)$ using DIF FFT algorithm.

Section - II

Q. 4 Solve Any Three.
a) Explain in detail Fourier Series Design Method.
b) Realize the system with difference equation in Cascade Form.

$$
y(n)=\frac{3}{4} y(n-1)-\frac{1}{8} y(n-2)+x(n)+\frac{1}{3} x(n-1)
$$

c) Explain the finite word length effect in FIR Filter.
d) What is warping effect? What is its effect on magnitude and phase response?
e) Explain the application of DSP in Telecommunication.

Q. 5 Solve any two.

a) Design a ideal high pass filter with a frequency response using hanning window.

$$
\begin{aligned}
H d\left(e^{j \omega}\right) & =1 \text { for } \frac{\pi}{4} \leq|\omega| \leq \pi \\
& =0 \text { for }|\omega| \leq \frac{\pi}{4}
\end{aligned}
$$

Find the values of $h(n)$ for $\mathrm{N}=11$ and Find $\mathrm{H}(\mathrm{Z})$.
b) Apply impulse invariant method and find $\mathrm{H}(\mathrm{z})$ for $H(s)=\frac{s+a}{(s+a)^{2}+b^{2}}$
c) A digital filter with a 3 dB bandwidth of 0.25π is to be designed from the analog filter whose system response is $H(s)=\frac{\Omega_{\mathrm{c}}}{s+\Omega_{\mathrm{c}}}$ Use Bilinear transformation and obtain $\mathrm{H}(\mathrm{z})$.

Seat

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) Decimation in time FFT decimates \qquad .
a) DFT coefficients
b) Input sequence
c) Both sequence and DFT
d) None
2) Circular convolution can be performed using the methods \qquad .
a) Concentric Circle
b) Matrix Multiplication
c) Both a \& b
d) None of above
3) In DIT, the data $x(n)$ is stored in \qquad order.
a) Reversed order
b) Bit reversal
c) Non-shuffled
d) None
4) Convolution of Ideal filter response and sync function results in.
a) Side Lobe oscillations
b) Main Lobe oscillations
c) Sharpening of a transition width
d) Decrease in main lobe
5) Unwrapped phase response of FIR filter in pass band is \qquad .
a) Exponentially increasing
b) Exponentially decreasing
c) Non- linear
d) linear
6) When analog butter worth filter is converted to DT filter using Impulse Invariance method, then \qquad .
a) Aliasing can be eliminated
b) Aliasing is always present
c) Aliasing can be reduced by reducing T
d) Aliasing cannot be reduced by reducing T
7) The binary signed number 0.11010111 when rounded to seven bits will result in number given by \qquad .
a) 0.1101011
b) 0.1101010
c) 0.1101100
d) 0.1101110
8) Properties of butter worth low pass filter is given by \qquad .
a) The poles of butter worth filter lies on a circle
b) The poles of butter worth filter lies outside the a circle
c) The poles of butter worth filter lies inside the a circle
d) Not a real sequence
9) The mapping for Impulse Invariance Method is \qquad .
a) many to many mapping
b) many to one mapping
c) one to one mapping
d) none of above
10) Impulse invariant method will convert analog filter to DT filter that has \qquad .
a) Same frequency response as that of analog filter and is stable
b) Different frequency response and is unstable
c) Same frequency response and is unstable
d) Different frequency response and is stable
11) A Discrete Time signal has \qquad .
a) Continuous time continuous amplitude
b) Continuous time discrete amplitude
c) Discrete time continuous amplitude
d) Discrete time discrete amplitude
12) Circular convolution of the sequences $x(n)=\{1,2,1\}$ and $h(n)=\{1,-2,2\}$ is \qquad .
a) $\{1,2,1\}$
b) $\{3,2,1\}$
c) $\{3,2,-1\}$
d) $\{3,2,2\}$
13) Multiplication are required to compute N point DFT \qquad .
a) N
b) $\mathrm{N}(\mathrm{N}-1)$
c) N^{2}
d) N^{3}
14) The magnitude response for DFT exhibits complex conjugate property if time sequence is \qquad .
a) a real sequence
b) a complex sequence
c) an imaginary sequence
d) not a real sequence

SLR-FM-688

Seat

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume necessary data if necessary.

Section - I

Q. 2 Attempt any three.

a) Determine the cross correlation sequence of sequences.
$X(n)=\{1,2,3,4,5\}, y(n)=\{5,6,7,8,9\}$
b) Find the circular convolution of given data sequences.
$X_{1}(n)=\{1,1,-1,-1\}, X_{2}(n)=\{1,0,-1,0,-1\}$
c) Explain the periodicity property of DFT.
d) Derive the equation for Circular convolution.
e) Explain Chirp 'Z' transform in short.
Q. 3 Attempt any two.
a) Determine the output of a linear FIR filter whose impulse response $h(n)=\{1,2,3\}$ and the input signal $x(n)=\{1,2,3,4,5,6,7,8,9\}$ using overlap save method, verify by linear convolution.
b) Determine the DFT of the given data sequence $X(n)=\{-1,2,-3,4,9,-20,12,6\}$ By Decimation in time FFT Algorithm.
c) Given $x(n)=2^{n}$ and $N=8$, find $X(k)$ using DIF FFT algorithm.

Section - II

Q. 4 Solve Any Three.
a) Explain in detail Fourier Series Design Method.
b) Realize the system with difference equation in Cascade Form.

$$
y(n)=\frac{3}{4} y(n-1)-\frac{1}{8} y(n-2)+x(n)+\frac{1}{3} x(n-1)
$$

c) Explain the finite word length effect in FIR Filter.
d) What is warping effect? What is its effect on magnitude and phase response?
e) Explain the application of DSP in Telecommunication.

Q. 5 Solve any two.

a) Design a ideal high pass filter with a frequency response using hanning window.

$$
\begin{aligned}
H d\left(e^{j \omega}\right) & =1 \text { for } \frac{\pi}{4} \leq|\omega| \leq \pi \\
& =0 \text { for }|\omega| \leq \frac{\pi}{4}
\end{aligned}
$$

Find the values of $h(n)$ for $\mathrm{N}=11$ and Find $\mathrm{H}(\mathrm{Z})$.
b) Apply impulse invariant method and find $\mathrm{H}(\mathrm{z})$ for $H(s)=\frac{s+a}{(s+a)^{2}+b^{2}}$
c) A digital filter with a 3 dB bandwidth of 0.25π is to be designed from the analog filter whose system response is $H(s)=\frac{\Omega_{\mathrm{c}}}{s+\Omega_{\mathrm{c}}}$ Use Bilinear transformation and obtain $\mathrm{H}(\mathrm{z})$.

Seat

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 14

1) When analog butter worth filter is converted to DT filter using Impulse

Invariance method, then \qquad .
a) Aliasing can be eliminated
b) Aliasing is always present
c) Aliasing can be reduced by reducing T
d) Aliasing cannot be reduced by reducing T
2) The binary signed number 0.11010111 when rounded to seven bits will result in number given by \qquad .
a) 0.1101011
b) 0.1101010
c) 0.1101100
d) 0.1101110
3) Properties of butter worth low pass filter is given by \qquad .
a) The poles of butter worth filter lies on a circle
b) The poles of butter worth filter lies outside the a circle
c) The poles of butter worth filter lies inside the a circle
d) Not a real sequence
4) The mapping for Impulse Invariance Method is \qquad .
a) many to many mapping
b) many to one mapping
c) one to one mapping
d) none of above
5) Impulse invariant method will convert analog filter to DT filter that has \qquad .
a) Same frequency response as that of analog filter and is stable
b) Different frequency response and is unstable
c) Same frequency response and is unstable
d) Different frequency response and is stable
6) A Discrete Time signal has \qquad .
a) Continuous time continuous amplitude
b) Continuous time discrete amplitude
c) Discrete time continuous amplitude
d) Discrete time discrete amplitude
7) Circular convolution of the sequences $x(n)=\{1,2,1\}$ and $h(n)=\{1,-2,2\}$ is \qquad .
a) $\{1,2,1\}$
b) $\{3,2,1\}$
c) $\{3,2,-1\}$
d) $\{3,2,2\}$
8) Multiplication are required to compute N point DFT \qquad .
a) N
b) $\mathrm{N}(\mathrm{N}-1)$
c) N^{2}
d) N^{3}
9) The magnitude response for DFT exhibits complex conjugate property if time sequence is \qquad .
a) a real sequence
b) a complex sequence
c) an imaginary sequence
d) not a real sequence
10) Decimation in time FFT decimates \qquad .
a) DFT coefficients
b) Input sequence
c) Both sequence and DFT
d) None
11) Circular convolution can be performed using the methods \qquad .
a) Concentric Circle
b) Matrix Multiplication
c) Both a \& b
d) None of above
12) In DIT, the data $x(n)$ is stored in \qquad order.
a) Reversed order
b) Bit reversal
c) Non-shuffled
d) None
13) Convolution of Ideal filter response and sync function results in.
a) Side Lobe oscillations
b) Main Lobe oscillations
c) Sharpening of a transition width
d) Decrease in main lobe
14) Unwrapped phase response of FIR filter in pass band is \qquad .
a) Exponentially increasing
b) Exponentially decreasing
c) Non- linear
d) linear

Seat

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering DIGITAL SIGNAL PROCESSING

Day \& Date: Friday, 13-12-2019
Max. Marks: 56
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figure to the right indicates full marks.
3) Assume necessary data if necessary.

Section - I

Q. 2 Attempt any three.

a) Determine the cross correlation sequence of sequences.
$X(n)=\{1, \underset{4}{2}, 3,4,5\}, y(n)=\{5,6,7,8,9\}$
b) Find the circular convolution of given data sequences.
$X_{1}(n)=\{1,1,-1,-1\}, X_{2}(n)=\{1,0,-1,0,-1\}$
c) Explain the periodicity property of DFT.
d) Derive the equation for Circular convolution.
e) Explain Chirp 'Z' transform in short.
Q. 3 Attempt any two.
a) Determine the output of a linear FIR filter whose impulse response $h(n)=\{1,2,3\}$ and the input signal $x(n)=\{1,2,3,4,5,6,7,8,9\}$ using overlap save method, verify by linear convolution.
b) Determine the DFT of the given data sequence $X(n)=\{-1,2,-3,4,9,-20,12,6\}$ By Decimation in time FFT Algorithm.
c) Given $x(n)=2^{n}$ and $N=8$, find $X(k)$ using DIF FFT algorithm.

Section - II

Q. 4 Solve Any Three.
a) Explain in detail Fourier Series Design Method.
b) Realize the system with difference equation in Cascade Form.

$$
y(n)=\frac{3}{4} y(n-1)-\frac{1}{8} y(n-2)+x(n)+\frac{1}{3} x(n-1)
$$

c) Explain the finite word length effect in FIR Filter.
d) What is warping effect? What is its effect on magnitude and phase response?
e) Explain the application of DSP in Telecommunication.

Q. 5 Solve any two.

a) Design a ideal high pass filter with a frequency response using hanning window.

$$
\begin{aligned}
H d\left(e^{j \omega}\right) & =1 \text { for } \frac{\pi}{4} \leq|\omega| \leq \pi \\
& =0 \text { for }|\omega| \leq \frac{\pi}{4}
\end{aligned}
$$

Find the values of $h(n)$ for $\mathrm{N}=11$ and Find $\mathrm{H}(\mathrm{Z})$.
b) Apply impulse invariant method and find $\mathrm{H}(\mathrm{z})$ for $H(s)=\frac{s+a}{(s+a)^{2}+b^{2}}$
c) A digital filter with a 3 dB bandwidth of 0.25π is to be designed from the analog filter whose system response is $H(s)=\frac{\Omega_{\mathrm{c}}}{s+\Omega_{\mathrm{c}}}$ Use Bilinear transformation and obtain $\mathrm{H}(\mathrm{z})$.

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROPROCESSORS

Day \& Date: Monday, 16-12-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
 2) Figures to the right indicates full marks
 3) Assume suitable data if necessary.
 MCQ/Objective Type Questions
 Duration: 30 Minutes
 Marks: 14

Q. 1 Choose the correct alternatives from the options.

1) The contents of accumulator before CMA instruction are A 5 H . Its contents after instruction execution is \qquad .
a) A 5 H
b) 5 AH
c) AAH
d) 55 H
2) The contents of accumulator after execution of following Instructions will be,
MVI A, B7 H
ORA A
RAL
a) 4 FH
b) 5 EH
c) 5 FH
d) EFH
3) The width of address bus and data bus of 8085 are respectively \qquad .
a) 16,8
b) 8,16
c) 8,8
d) 16,16
4) In response to RST 7.5 interrupt, the execution of control transfers to memory location \qquad .
a) 0000 H
b) 002 CH
c) 0034 H
d) 003 CH
5) The status of S0 and S1 pins for memory write is \qquad .
a) 0,0
b) 0,1
c) 1,0
d) 1,1
6) If the contents of SP are 1000 H , the content of B and C registers after PUSH B instruction are \qquad -.
a) $0 F F F F H, O F F E H$
b) OFFE H, OFFF
c) $1000 \mathrm{H}, 0$ FFF H
d) $1000 \mathrm{H}, 1001 \mathrm{H}$
7) In an 8085 based system, the maximum number of input output devices can be connected using I/O mapped I/O method is \qquad .
a) 64
b) 512
c) 256
d) 65536
8) 8255 is interfaced with 8085 in memory mapped I/O mode, then to read the data and store to I/O, respectively, uses the instructions \qquad .
a) IN add, OUT add
b) STA, add, LDA add
c) LDA add, LDA add
d) LDA add, STA add
9) Control word format for mode 0 of 8253 for counter 0, Read/Load LSB data byte only and BCD counter is \qquad .
a) 10 H
b) 12 H
c) 11 H
d) None of the above
10) How many flags are there in 8086 ?
a) 9
b) 8
c) 10
d) 7
11) Direction of Gate signal for 8253 IC is \qquad .
a) Input
b) Output
c) Bidirectional
d) None
12) Key debouncing can be obtained thro \qquad
a) Only software
b) Only hardware
c) Both hardware \& software
d) None
13) In control word format, if $R L=1$ and $R L 0=0$ then the operation performed is \qquad .
a) read /Load Least significant byte only
b) read/Load most significant byte only
c) read /Load LSB First and then MSB
d) read /Load MSB First and then LSB
14) 8251 supports the baud rate for asynchronous communication is \qquad .
a) DC to 19.2 K band
b) DC to 64 K band
c) DC to 128 K band
d) Any baud rate

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROPROCESSORS

Day \& Date: Monday, 16-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I
Q. 2 Solve any four.
a) Write an ALP for addition of two 16 bit BCD numbers.
b) Compare memory mapped I/O and I/O mapped I/O in detail.
c) Describe the features of 8085 .
d) Explain in detail addressing modes of 8085.
e) Write an ALP to generate delay of 100 ms using crystal frequency of 3 MHz .
Q. 3 Solve any two.
a) Explain the following instructions in detail.

1) PUSH B
2) $D A D D$
3) INXH
4) CMP B
b) Interface $6 \mathrm{~K} \times 8$ EPROM memory using $2 \mathrm{k} \times 8$ memory chip. Give addressing range of each chip.
c) Draw and Explain hardware Interrupt structure of 8085.

Section - II

Q. 4 Solve any three.
a) Explain mode 0 and mode 1 of 8255 PPI .
b) Draw flag register of 8086 microprocessor. List the features of Pentium processor.
c) Interface 8085 with 8255 using Memory mapped I/O technique.
d) Draw and explain block diagram of 8251.
Q. 5 Solve any two.
a) Explain IC 8253 by considering the following parameters.

1) Feature.
2) Internal Block Diagram.
3) Control word format.
b) Interface ADC (8 bit, 8 channel) with 8085 . Explain the interfacing circuit. Write ALP to read analog input and store the digital value at some memory location. Assume I/O mapped I/O technique.
c) Interface stepper motor with 8085 microprocessor. Write an ALP to rotate stepper motor for only 180 degree angle rotation in clockwise direction then stop.
Assume step angle=7.5 degree/step.

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROPROCESSORS

Day \& Date: Monday, 16-12-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
2) Figures to the right indicates full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 14
Q. 1 Choose the correct alternatives from the options.

1) 8255 is interfaced with 8085 in memory mapped I/O mode, then to read the data and store to I/O, respectively, uses the instructions \qquad .
a) IN add, OUT add
b) STA, add, LDA add
c) LDA add, LDA add
d) LDA add, STA add
2) Control word format for mode 0 of 8253 for counter 0, Read/Load LSB data byte only and BCD counter is \qquad -
a) 10 H
b) 12 H
c) 11 H
d) None of the above
3) How many flags are there in 8086 ?
a) 9
b) 8
c) 10
d) 7
4) Direction of Gate signal for 8253 IC is \qquad .
a) Input
b) Output
c) Bidirectional
d) None
5) Key debouncing can be obtained thro \qquad .
a) Only software
b) Only hardware
c) Both hardware \& software
d) None
6) In control word format, if $R L=1$ and $R L O=0$ then the operation performed is \qquad .
a) read/Load Least significant byte only
b) read/Load most significant byte only
c) read /Load LSB First and then MSB
d) read /Load MSB First and then LSB
7) 8251 supports the baud rate for asynchronous communication is \qquad .
a) DC to 19.2 K band
b) DC to 64 K band
c) DC to 128 K band
d) Any baud rate
8) The contents of accumulator before CMA instruction are A 5 H . Its contents after instruction execution is \qquad
a) A 5 H
b) 5 AH
c) AAH
d) 55 H

SLR-FM-689

Set
9) The contents of accumulator after execution of following Instructions will be,
MVI A, B7 H
ORA A
RAL
a) 4 FH
b) 5 EH
c) 5 FH
d) EFH
10) The width of address bus and data bus of 8085 are respectively \qquad .
a) 16,8
b) 8,16
c) 8,8
d) 16,16
11) In response to RST 7.5 interrupt, the execution of control transfers to memory location \qquad .
a) 0000 H
b) 002 CH
c) 0034 H
d) 003 CH
12) The status of $S 0$ and $S 1$ pins for memory write is \qquad .
a) 0,0
b) 0,1
c) 1,0
d) 1,1
13) If the contents of $S P$ are 1000 H , the content of B and C registers after PUSH B instruction are \qquad _.
a) 0FFFH, OFFEH
b) OFFE H, OFFF
c) $1000 \mathrm{H}, 0 F F F \mathrm{H}$
d) $1000 \mathrm{H}, 1001 \mathrm{H}$
14) In an 8085 based system, the maximum number of input output devices can be connected using I/O mapped I/O method is \qquad .
a) 64
b) 512
c) 256
d) 65536

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROPROCESSORS

Day \& Date: Monday, 16-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Solve any four.

16a) Write an ALP for addition of two 16 bit BCD numbers.
b) Compare memory mapped I/O and I/O mapped I/O in detail.
c) Describe the features of 8085 .
d) Explain in detail addressing modes of 8085.
e) Write an ALP to generate delay of 100 ms using crystal frequency of 3 MHz .
Q. 3 Solve any two.
a) Explain the following instructions in detail.

1) PUSH B
2) $D A D D$
3) INXH
4) CMP B
b) Interface $6 \mathrm{~K} \times 8$ EPROM memory using $2 \mathrm{k} \times 8$ memory chip. Give addressing range of each chip.
c) Draw and Explain hardware Interrupt structure of 8085.

Section - II

Q. 4 Solve any three.
a) Explain mode 0 and mode 1 of 8255 PPI .
b) Draw flag register of 8086 microprocessor. List the features of Pentium processor.
c) Interface 8085 with 8255 using Memory mapped I/O technique.
d) Draw and explain block diagram of 8251.
Q. 5 Solve any two.
a) Explain IC 8253 by considering the following parameters.

1) Feature.
2) Internal Block Diagram.
3) Control word format.
b) Interface ADC (8 bit, 8 channel) with 8085. Explain the interfacing circuit. Write ALP to read analog input and store the digital value at some memory location. Assume I/O mapped I/O technique.
c) Interface stepper motor with 8085 microprocessor. Write an ALP to rotate stepper motor for only 180 degree angle rotation in clockwise direction then stop.
Assume step angle=7.5 degree/step.

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROPROCESSORS

Day \& Date: Monday, 16-12-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
 2) Figures to the right indicates full marks
 3) Assume suitable data if necessary.
 MCQ/Objective Type Questions
 Duration: 30 Minutes
 Marks: 14
 Q. 1 Choose the correct alternatives from the options.

1) The status of $S 0$ and $S 1$ pins for memory write is \qquad .
a) 0,0
b) 0,1
c) 1,0
d) 1,1
2) If the contents of $S P$ are 1000 H , the content of B and C registers after PUSH B instruction are \qquad .
a) $0 F F F F H, 0 F F E H$
b) OFFE H, OFFF
c) $1000 \mathrm{H}, 0 F F F \mathrm{H}$
d) $1000 \mathrm{H}, 1001 \mathrm{H}$
3) In an 8085 based system, the maximum number of input output devices can be connected using I/O mapped I/O method is \qquad —.
a) 64
b) 512
c) 256
d) 65536
4) 8255 is interfaced with 8085 in memory mapped I/O mode, then to read the data and store to I/O, respectively, uses the instructions \qquad .
a) IN add, OUT add
b) STA, add, LDA add
c) LDA add, LDA add
d) LDA add, STA add
5) Control word format for mode 0 of 8253 for counter 0, Read/Load LSB data byte only and BCD counter is \qquad $-$
a) 10 H
b) 12 H
c) 11 H
d) None of the above
6) How many flags are there in 8086 ?
a) 9
b) 8
c) 10
d) 7
7) Direction of Gate signal for 8253 IC is \qquad .
a) Input
b) Output
c) Bidirectional
d) None
8) Key debouncing can be obtained thro \qquad .
a) Only software
b) Only hardware
c) Both hardware \& software
d) None
9) In control word format, if $R L=1$ and $R L O=0$ then the operation performed is \qquad .
a) read /Load Least significant byte only
b) read/Load most significant byte only
c) read /Load LSB First and then MSB
d) read /Load MSB First and then LSB
10) 8251 supports the baud rate for asynchronous communication is \qquad .
a) DC to 19.2 K band
b) DC to 64 K band
c) DC to 128 K band
d) Any baud rate
11) The contents of accumulator before CMA instruction are A 5 H . Its contents after instruction execution is \qquad .
a) A 5 H
b) 5 AH
c) AAH
d) 55 H
12) The contents of accumulator after execution of following Instructions will be,
MVI A, B7 H
ORA A
RAL
a) 4 FH
b) 5 EH
c) 5 FH
d) EFH
13) The width of address bus and data bus of 8085 are respectively \qquad -.
a) 16,8
b) 8,16
c) 8,8
d) 16,16
14) In response to RST 7.5 interrupt, the execution of control transfers to memory location \qquad .
a) 0000 H
b) 002 CH
c) 0034 H
d) 003 CH

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROPROCESSORS

Day \& Date: Monday, 16-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I
Q. 2 Solve any four.
a) Write an ALP for addition of two 16 bit BCD numbers.
b) Compare memory mapped I/O and I/O mapped I/O in detail.
c) Describe the features of 8085 .
d) Explain in detail addressing modes of 8085.
e) Write an ALP to generate delay of 100 ms using crystal frequency of 3 MHz .
Q. 3 Solve any two.
a) Explain the following instructions in detail.

1) PUSH B
2) $D A D D$
3) INXH
4) CMP B
b) Interface $6 \mathrm{~K} \times 8$ EPROM memory using $2 \mathrm{k} \times 8$ memory chip. Give addressing range of each chip.
c) Draw and Explain hardware Interrupt structure of 8085.

Section - II

Q. 4 Solve any three.
a) Explain mode 0 and mode 1 of 8255 PPI .
b) Draw flag register of 8086 microprocessor. List the features of Pentium processor.
c) Interface 8085 with 8255 using Memory mapped I/O technique.
d) Draw and explain block diagram of 8251.
Q. 5 Solve any two.
a) Explain IC 8253 by considering the following parameters.

1) Feature.
2) Internal Block Diagram.
3) Control word format.
b) Interface ADC (8 bit, 8 channel) with 8085. Explain the interfacing circuit. Write ALP to read analog input and store the digital value at some memory location. Assume I/O mapped I/O technique.
c) Interface stepper motor with 8085 microprocessor. Write an ALP to rotate stepper motor for only 180 degree angle rotation in clockwise direction then stop.
Assume step angle=7.5 degree/step.

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROPROCESSORS

Day \& Date: Monday, 16-12-2019

Max. Marks: 70
Time: 02:30 PM To 05:30 PM

Instructions: 1) Q. No. 1 is compulsory and should be solved in first 30 minutes in answer book.
 2) Figures to the right indicates full marks.
 3) Assume suitable data if necessary.
 MCQ/Objective Type Questions
 Duration: 30 Minutes
 Marks: 14
 Q. 1 Choose the correct alternatives from the options.

1) How many flags are there in 8086 ?
a) 9
b) 8
c) 10
d) 7
2) Direction of Gate signal for 8253 IC is \qquad .
a) Input
b) Output
c) Bidirectional
d) None
3) Key debouncing can be obtained thro \qquad .
a) Only software
b) Only hardware
c) Both hardware \& software
d) None
4) In control word format, if $R L=1$ and $R L O=0$ then the operation performed is \qquad .
a) read/Load Least significant byte only
b) read/Load most significant byte only
c) read /Load LSB First and then MSB
d) read /Load MSB First and then LSB
5) 8251 supports the baud rate for asynchronous communication is \qquad .
a) DC to 19.2 K band
b) DC to 64 K band
c) DC to 128 K band
d) Any baud rate
6) The contents of accumulator before CMA instruction are A 5 H . Its contents after instruction execution is \qquad .
a) A 5 H
b) 5 AH
c) AAH
d) 55 H
7) The contents of accumulator after execution of following Instructions will be,
MVI A, B7 H
ORA A
RAL
a) 4 FH
b) 5 EH
c) 5 FH
d) EFH
8) The width of address bus and data bus of 8085 are respectively \qquad .
a) 16,8
b) 8,16
c) 8,8
d) 16,16

SLR-FM-689

Set
9) In response to RST 7.5 interrupt, the execution of control transfers to memory location \qquad .
a) 0000 H
b) 002 CH
c) 0034 H
d) 003 CH
10) The status of $S 0$ and $S 1$ pins for memory write is \qquad .
a) 0,0
b) 0,1
c) 1,0
d) 1,1
11) If the contents of $S P$ are 1000 H , the content of B and C registers after PUSH B instruction are \qquad —.
a) $0 F F F F H, O F F E H$
b) OFFE H, OFFF
c) $1000 \mathrm{H}, 0$ FFF H
d) $1000 \mathrm{H}, 1001 \mathrm{H}$
12) In an 8085 based system, the maximum number of input output devices can be connected using I/O mapped I/O method is \qquad .
a) 64
b) 512
c) 256
d) 65536
13) 8255 is interfaced with 8085 in memory mapped I/O mode, then to read the data and store to I/O, respectively, uses the instructions \qquad .
a) IN add, OUT add
b) STA, add, LDA add
c) LDA add, LDA add
d) LDA add, STA add
14) Control word format for mode 0 of 8253 for counter 0, Read/Load LSB data byte only and BCD counter is \qquad -
a) 10 H
b) 12 H
c) 11 H
d) None of the above

SLR-FM-689

T.E. (Part - I) (Old) (CGPA) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering MICROPROCESSORS

Day \& Date: Monday, 16-12-2019
Max. Marks: 56

Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicates full marks.
3) Assume suitable data if necessary.

Section - I
Q. 2 Solve any four.
a) Write an ALP for addition of two 16 bit BCD numbers.
b) Compare memory mapped I/O and I/O mapped I/O in detail.
c) Describe the features of 8085 .
d) Explain in detail addressing modes of 8085.
e) Write an ALP to generate delay of 100 ms using crystal frequency of 3 MHz .
Q. 3 Solve any two.
a) Explain the following instructions in detail.

1) PUSH B
2) $D A D D$
3) INXH
4) CMP B
b) Interface $6 \mathrm{~K} \times 8$ EPROM memory using $2 \mathrm{k} \times 8$ memory chip. Give addressing range of each chip.
c) Draw and Explain hardware Interrupt structure of 8085.

Section - II

Q. 4 Solve any three.
a) Explain mode 0 and mode 1 of 8255 PPI .
b) Draw flag register of 8086 microprocessor. List the features of Pentium processor.
c) Interface 8085 with 8255 using Memory mapped I/O technique.
d) Draw and explain block diagram of 8251.
Q. 5 Solve any two.
a) Explain IC 8253 by considering the following parameters.

1) Feature.
2) Internal Block Diagram.
3) Control word format.
b) Interface ADC (8 bit, 8 channel) with 8085 . Explain the interfacing circuit. Write ALP to read analog input and store the digital value at some memory location. Assume I/O mapped I/O technique.
c) Interface stepper motor with 8085 microprocessor. Write an ALP to rotate stepper motor for only 180 degree angle rotation in clockwise direction then stop.
Assume step angle=7.5 degree/step.

T.E. (Part - II) (Old) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering INDUSTRIAL ELECTRONICS

Day \& Date: Friday, 29-11-2019
Max. Marks: 100
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 20

Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) TRIAC can be termed as \qquad .
a) AC switch
b) DC switch
c) Both a) and b)
d) Square wave switch
2) Thyristor is a semiconductor switch which is \qquad .
a) Unidirectional
b) Bidirectional
c) AC switch
d) Both b) and c)
3) In commutation circuit, employed to turn off an SCR, satisfactory turn off time is obtained when \qquad .
a) Circuit turn off time is less than device turn off time
b) Circuit turn off time is greater than device turn off time
c) Circuit time constant is greater than device turn off time
d) Circuit time constant is less than device turn off time
4) In SCR angle of conduction can be varied by changing \qquad .
a) Anode voltage
b) Anode current
c) Forward current rating
d) Gatecurrent
5) Thyristor can be termed as \qquad switch and TRIAC can be termed as __ switch.
a) AC, DC
b) DC, AC
c) AC, AC
d) DC, DC
6) Which of the following PNPN devices are bidirectional?
a) TRIAC
b) DIAC
c) Thyristor
d) Both a and b
7) If addition of $\alpha 1$ and $\alpha 2$ reaches unity then anode current will reach (w.r.t. two transistor analogy of SCR) \qquad
a) zero
b) infinity
c) negative
d) none
8) A single phase fully controlled converter with highly inductive load and freewheeling diode provides \qquad direction of voltage and \qquad of current.
a) Positive, negative
b) Positive, positive
c) Negative, negative
d) Negative, positive
9) Single phase full converter with highly inductive load is \qquad quadrant converter.
a) Single
b) Two
c) Four
d) Both a) and b)
10) In single phase full Converter with highly inductive load output is in Inverting mode when \qquad . [Alpha=a]
a) $a<90$
b) $\quad a=0$
c) a >90
d) None
11) Which chopper circuit uses saturable reactor?
a) Auxiliary commutated
b) Jones Chopper
c) Morgan Chopper
d) Load commutated
12) A cyclo converter can be.
a) Step up
b) Step down
c) Step up or step down
d) None
13) In a 3 phase fully controlled converter the firing frequency is \qquad .
a) 3 times the line frequency
b) 6 times the line frequency
c) 9 times the line frequency
d) 12 times the line frequency
14) The cycloconverter is used in \qquad .
a) AC drive
b) DC drive
c) Both
d) None
15) Back up time for off line UPS depends on \qquad .
a) Load
b) Battery
c) Both
d) None
16) Chopper Converter is \qquad .
a) $A C$ to $D C$
b) DC to AC
c) $D C$ to $D C$
d) AC to AC
17) If $T_{\text {ON }}$ is kept constant and $T_{\text {OFF }}$ is varied then chopper control technique is \qquad .
a) Variable frequency
b) Fixed frequency
c) Current limit control
d) Both a) and b)

SLR-FM-769
 Set \mathbf{P}

18) For a step-up chopper, when the duty cycle is increased the average value of the output voltage \qquad .
a) increases
b) decreases
c) remains the same
d) none
19) A three-phase three pulse type controlled converter is constructed using 3 SCR devices. The circuit is supplying an R load with $\alpha<30^{\circ}$. As such, each SCR device would conduct for \qquad .
a) 60° each cycle
b) 120° each cycle
c) 180° each cycle
d) 360° each cycle
20) In a single phase half-wave thyristor circuit with R load \& $V s=V m$ sinct, the maximum value of the load current can be given by \qquad .
a) $2 \mathrm{Vm} / \mathrm{R}$
b) $\quad \mathrm{Vs} / \mathrm{R}$
c) $V m / 2$
d) $\quad \mathrm{Vs} / 2$

SLR-FM-769

Seat
 No.

T.E. (Part - II) (Old) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering INDUSTRIAL ELECTRONICS

Day \& Date: Friday, 29-11-2019
Max. Marks: 80
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I
Q. 2 Solve any four.
a) Explain class C and class D commutation for SCR.
b) Draw and explain construction, working \& characteristics of DIAC.
c) Write a short note on IGBT.
d) Explain dv/dt protection for SCR.
e) Compare MOSFET and IGBT.
Q. 3 Solve any three.
a) Draw and explain the two transistor model of SCR. Derive the anode current equation.
b) Draw circuit diagram, waveforms and explain 3-phase half wave Converter with R load.
c) Explain construction, working \& VI characteristics of TRIAC.
d) Explain construction, working \& VI characteristics of SCR.

Section - II

Q. 4 Attempt any four.
a) Explain the principle of dielectric heating.
b) Explain working of online UPS with suitable block diagram.
c) Explain working multiple pulse width modulation technique.
d) Draw and explain single phase to single phase step down cycloconverter.
e) Explain static DC circuit breaker.

Q. 5 Attempt any three.

a) Explain working of series resonant inverter. Draw input and output waveform.
b) Explain principle of induction heating \& explain any one applications of induction heating.
c) Draw \& explain Jones and Morgan chopper.
d) Draw \& explain single phase parallel inverter with inductive load.

T.E. (Part - II) (Old) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering INDUSTRIAL ELECTRONICS

Day \& Date: Friday, 29-11-2019
Max. Marks: 100
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 20

Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) Which of the following PNPN devices are bidirectional?
a) TRIAC
b) DIAC
c) Thyristor
d) Both a and b
2) If addition of $\alpha 1$ and $\alpha 2$ reaches unity then anode current will reach
(w.r.t. two transistor analogy of SCR) \qquad .
a) zero
b) infinity
c) negative
d) none
3) A single phase fully controlled converter with highly inductive load and freewheeling diode provides \qquad direction of voltage and \qquad of current.
a) Positive, negative
b) Positive, positive
c) Negative, negative
d) Negative, positive
4) Single phase full converter with highly inductive load is \qquad quadrant converter.
a) Single
b) Two
c) Four
d) Both a) and b)
5) In single phase full Converter with highly inductive load output is in Inverting mode when \qquad . [Alpha=a]
a) $a<90$
b) $\quad \mathrm{a}=0$
c) a >90
d) None
6) Which chopper circuit uses saturable reactor?
a) Auxiliary commutated
b) Jones Chopper
c) Morgan Chopper
d) Load commutated
7) A cyclo converter can be.
a) Step up
b) Step down
c) Step up or step down
d) None
8) In a 3 phase fully controlled converter the firing frequency is \qquad .
a) 3 times the line frequency
b) 6 times the line frequency
c) 9 times the line frequency
d) 12 times the line frequency
9) The cycloconverter is used in \qquad .
a) AC drive
b) DC drive
c) Both
d) None
10) Back up time for off line UPS depends on \qquad .
a) Load
b) Battery
c) Both
d) None
11) Chopper Converter is \qquad .
a) $A C$ to $D C$
b) DC to AC
c) $D C$ to $D C$
d) $A C$ to $A C$
12) If $T_{\text {ON }}$ is kept constant and $T_{\text {OFF }}$ is varied then chopper control technique is \qquad .
a) Variable frequency
b) Fixed frequency
c) Current limit control
d) Both a) and b)
13) For a step-up chopper, when the duty cycle is increased the average value of the output voltage \qquad -
a) increases
b) decreases
c) remains the same
d) none
14) A three-phase three pulse type controlled converter is constructed using 3 SCR devices. The circuit is supplying an R load with $\alpha<30^{\circ}$. As such, each SCR device would conduct for \qquad .
a) 60° each cycle
b) 120° each cycle
c) 180° each cycle
d) 360° each cycle
15) In a single phase half-wave thyristor circuit with R load \& $\mathrm{Vs}=\mathrm{Vm} \sin \omega t$, the maximum value of the load current can be given by \qquad .
a) $2 \mathrm{Vm} / \mathrm{R}$
b) $\quad \mathrm{Vs} / \mathrm{R}$
c) $V m / 2$
d) $\quad \mathrm{Vs} / 2$
16) TRIAC can be termed as \qquad .
a) AC switch
b) DC switch
c) Both a) and b)
d) Square wave switch
17) Thyristor is a semiconductor switch which is \qquad .
a) Unidirectional
b) Bidirectional
c) AC switch
d) Both b) and c)
18) In commutation circuit, employed to turn off an SCR, satisfactory turn off time is obtained when \qquad .
a) Circuit turn off time is less than device turn off time
b) Circuit turn off time is greater than device turn off time
c) Circuit time constant is greater than device turn off time
d) Circuit time constant is less than device turn off time

SLR-FM-769

19) In SCR angle of conduction can be varied by changing \qquad .
a) Anode voltage
b) Anode current
c) Forward current rating
d) Gatecurrent
20) Thyristor can be termed as \qquad switch and TRIAC can be termed as __ switch.
a) AC, DC
b) DC, AC
c) $A C, A C$
d) DC, DC

Seat
 No.

T.E. (Part - II) (Old) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering INDUSTRIAL ELECTRONICS

Day \& Date: Friday, 29-11-2019
Max. Marks: 80
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I
Q. 2 Solve any four.
a) Explain class C and class D commutation for SCR.
b) Draw and explain construction, working \& characteristics of DIAC.
c) Write a short note on IGBT.
d) Explain dv/dt protection for SCR.
e) Compare MOSFET and IGBT.
Q. 3 Solve any three.
a) Draw and explain the two transistor model of SCR. Derive the anode current equation.
b) Draw circuit diagram, waveforms and explain 3-phase half wave Converter with R load.
c) Explain construction, working \& VI characteristics of TRIAC.
d) Explain construction, working \& VI characteristics of SCR.

Section - II

Q. 4 Attempt any four.
a) Explain the principle of dielectric heating.
b) Explain working of online UPS with suitable block diagram.
c) Explain working multiple pulse width modulation technique.
d) Draw and explain single phase to single phase step down cycloconverter.
e) Explain static DC circuit breaker.

Q. 5 Attempt any three.

a) Explain working of series resonant inverter. Draw input and output waveform.
b) Explain principle of induction heating \& explain any one applications of induction heating.
c) Draw \& explain Jones and Morgan chopper.
d) Draw \& explain single phase parallel inverter with inductive load.

Seat	
No.	

T.E. (Part - II) (Old) Examination Nov/Dec-2019
 Electronics \& Telecommunication Engineering INDUSTRIAL ELECTRONICS

Day \& Date: Friday, 29-11-2019
Max. Marks: 100
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 20

Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) Which chopper circuit uses saturable reactor?
a) Auxiliary commutated
b) Jones Chopper
c) Morgan Chopper
d) Load commutated
2) A cyclo converter can be.
a) Step up
b) Step down
c) Step up or step down
d) None
3) In a 3 phase fully controlled converter the firing frequency is \qquad .
a) 3 times the line frequency
b) 6 times the line frequency
c) 9 times the line frequency
d) 12 times the line frequency
4) The cycloconverter is used in \qquad .
a) AC drive
b) DC drive
c) Both
d) None
5) Back up time for off line UPS depends on \qquad .
a) Load
b) Battery
c) Both
d) None
6) Chopper Converter is \qquad .
a) AC to DC
b) DC to AC
c) $D C$ to $D C$
d) $A C$ to $A C$
7) If $T_{\text {ON }}$ is kept constant and $T_{\text {OFF }}$ is varied then chopper control technique is \qquad .
a) Variable frequency
b) Fixed frequency
c) Current limit control
d) Both a) and b)
8) For a step-up chopper, when the duty cycle is increased the average value of the output voltage \qquad .
a) increases
b) decreases
C) remains the same
d) none
9) A three-phase three pulse type controlled converter is constructed using 3 SCR devices. The circuit is supplying an R load with $\alpha<30^{\circ}$. As such, each SCR device would conduct for \qquad .
a) 60° each cycle
b) 120° each cycle
c) 180° each cycle
d) 360° each cycle
10) In a single phase half-wave thyristor circuit with R load $\& V s=V m$ sin ωt, the maximum value of the load current can be given by \qquad .
a) $2 \mathrm{Vm} / \mathrm{R}$
b) $\quad \mathrm{Vs} / \mathrm{R}$
c) $V m / 2$
d) $\quad \mathrm{Vs} / 2$
11) TRIAC can be termed as \qquad .
a) AC switch
b) DC switch
c) Both a) and b)
d) Square wave switch
12) Thyristor is a semiconductor switch which is \qquad .
a) Unidirectional
b) Bidirectional
c) AC switch
d) Both b) and c)
13) In commutation circuit, employed to turn off an SCR, satisfactory turn off time is obtained when \qquad .
a) Circuit turn off time is less than device turn off time
b) Circuit turn off time is greater than device turn off time
c) Circuit time constant is greater than device turn off time
d) Circuit time constant is less than device turn off time
14) In SCR angle of conduction can be varied by changing \qquad .
a) Anode voltage
b) Anode current
c) Forward current rating
d) Gatecurrent
15) Thyristor can be termed as \qquad switch and TRIAC can be termed as switch.
a) AC, DC
b) DC, AC
c) $A C, A C$
d) DC, DC
16) Which of the following PNPN devices are bidirectional?
a) TRIAC
b) DIAC
c) Thyristor
d) Both a and b
17) If addition of $\alpha 1$ and $\alpha 2$ reaches unity then anode current will reach (w.r.t. two transistor analogy of SCR) \qquad .
a) zero
b) infinity
c) negative
d) none

SLR-FM-769
 Set \mathbf{R}

18) A single phase fully controlled converter with highly inductive load and freewheeling diode provides \qquad direction of voltage and \qquad of current.
a) Positive, negative
b) Positive, positive
c) Negative, negative
d) Negative, positive
19) Single phase full converter with highly inductive load is \qquad quadrant converter.
a) Single
b) Two
c) Four
d) Both a) and b)
20) In single phase full Converter with highly inductive load output is in Inverting mode when \qquad . [Alpha=a]
a) a <90
b) $\quad a=0$
c) $\mathrm{a}>90$
d) None

Seat
 No.

 T.E. (Part - II) (Old) Examination Nov/Dec-2019

 T.E. (Part - II) (Old) Examination Nov/Dec-2019

 Electronics \& Telecommunication Engineering

 Electronics \& Telecommunication Engineering INDUSTRIAL ELECTRONICS

 INDUSTRIAL ELECTRONICS}Day \& Date: Friday, 29-11-2019
Max. Marks: 80
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I
Q. 2 Solve any four.
a) Explain class C and class D commutation for SCR.
b) Draw and explain construction, working \& characteristics of DIAC.
c) Write a short note on IGBT.
d) Explain dv/dt protection for SCR.
e) Compare MOSFET and IGBT.
Q. 3 Solve any three.
a) Draw and explain the two transistor model of SCR. Derive the anode current equation.
b) Draw circuit diagram, waveforms and explain 3-phase half wave Converter with R load.
c) Explain construction, working \& VI characteristics of TRIAC.
d) Explain construction, working \& VI characteristics of SCR.

Section - II

Q. 4 Attempt any four.
a) Explain the principle of dielectric heating.
b) Explain working of online UPS with suitable block diagram.
c) Explain working multiple pulse width modulation technique.
d) Draw and explain single phase to single phase step down cycloconverter.
e) Explain static DC circuit breaker.

Q. 5 Attempt any three.

a) Explain working of series resonant inverter. Draw input and output waveform.
b) Explain principle of induction heating \& explain any one applications of induction heating.
c) Draw \& explain Jones and Morgan chopper.
d) Draw \& explain single phase parallel inverter with inductive load.

Seat

No.

T.E. (Part - II) (Old) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering INDUSTRIAL ELECTRONICS

Day \& Date: Friday, 29-11-2019
Max. Marks: 100
Time: 10:00 AM To 01:00 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 20

Q. 1 Choose the correct alternatives from the options and rewrite the sentence.

1) Chopper Converter is \qquad .
a) $A C$ to $D C$
b) DC to AC
c) $D C$ to $D C$
d) $A C$ to $A C$
2) If $T_{\text {ON }}$ is kept constant and $T_{\text {OFF }}$ is varied then chopper control technique is \qquad .
a) Variable frequency
b) Fixed frequency
c) Current limit control
d) Both a) and b)
3) For a step-up chopper, when the duty cycle is increased the average value of the output voltage \qquad -
a) increases
b) decreases
c) remains the same
d) none
4) A three-phase three pulse type controlled converter is constructed using 3 SCR devices. The circuit is supplying an R load with $\alpha<30^{\circ}$. As such, each SCR device would conduct for \qquad .
a) 60° each cycle
b) 120° each cycle
c) 180° each cycle
d) 360° each cycle
5) In a single phase half-wave thyristor circuit with R load $\& \mathrm{Vs}=\mathrm{Vm} \sin \omega t$, the maximum value of the load current can be given by \qquad .
a) $2 \mathrm{Vm} / \mathrm{R}$
b) $\quad \mathrm{Vs} / \mathrm{R}$
c) $V m / 2$
d) $\quad V \mathrm{~s} / 2$
6) TRIAC can be termed as \qquad .
a) AC switch
b) DC switch
c) Both a) and b)
d) Square wave switch
7) Thyristor is a semiconductor switch which is \qquad .
a) Unidirectional
b) Bidirectional
c) AC switch
d) Both b) and c)
8) In commutation circuit, employed to turn off an SCR, satisfactory turn off time is obtained when \qquad .
a) Circuit turn off time is less than device turn off time
b) Circuit turn off time is greater than device turn off time
c) Circuit time constant is greater than device turn off time
d) Circuit time constant is less than device turn off time
9) In SCR angle of conduction can be varied by changing \qquad .
a) Anode voltage
b) Anode current
c) Forward current rating
d) Gatecurrent
10) Thyristor can be termed as \qquad switch and TRIAC can be termed as
a) AC, DC
b) DC, AC
c) AC, AC
d) DC, DC
11) Which of the following PNPN devices are bidirectional?
a) TRIAC
b) DIAC
c) Thyristor
d) Both a and b
12) If addition of $\alpha 1$ and $\alpha 2$ reaches unity then anode current will reach (w.r.t. two transistor analogy of SCR) \qquad
a) zero
b) infinity
c) negative
d) none
13) A single phase fully controlled converter with highly inductive load and freewheeling diode provides \qquad direction of voltage and \qquad of current.
a) Positive, negative
b) Positive, positive
c) Negative, negative
d) Negative, positive
14) Single phase full converter with highly inductive load is \qquad quadrant converter.
a) Single
b) Two
c) Four
d) Both a) and b)
15) In single phase full Converter with highly inductive load output is in Inverting mode when \qquad . [Alpha=a]
a) $\mathrm{a}<90$
b) $a=0$
c) $\mathrm{a}>90$
d) None
16) Which chopper circuit uses saturable reactor?
a) Auxiliary commutated
b) Jones Chopper
c) Morgan Chopper
d) Load commutated
17) A cyclo converter can be.
a) Step up
b) Step down
c) Step up or step down
d) None

SLR-FM-769
 Set
 S

18) In a 3 phase fully controlled converter the firing frequency is \qquad .
a) 3 times the line frequency
b) 6 times the line frequency
c) 9 times the line frequency
d) 12 times the line frequency
19) The cycloconverter is used in \qquad
a) AC drive
b) DC drive
c) Both
d) None
20) Back up time for off line UPS depends on \qquad .
a) Load
b) Battery
c) Both
d) None

Seat
 No.

 T.E. (Part - II) (Old) Examination Nov/Dec-2019

 T.E. (Part - II) (Old) Examination Nov/Dec-2019

 Electronics \& Telecommunication Engineering

 Electronics \& Telecommunication Engineering INDUSTRIAL ELECTRONICS

 INDUSTRIAL ELECTRONICS}Day \& Date: Friday, 29-11-2019
Max. Marks: 80
Time: 10:00 AM To 01:00 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.

Section - I
Q. 2 Solve any four.
a) Explain class C and class D commutation for SCR.
b) Draw and explain construction, working \& characteristics of DIAC.
c) Write a short note on IGBT.
d) Explain dv/dt protection for SCR.
e) Compare MOSFET and IGBT.
Q. 3 Solve any three.
a) Draw and explain the two transistor model of SCR. Derive the anode current equation.
b) Draw circuit diagram, waveforms and explain 3-phase half wave Converter with R load.
c) Explain construction, working \& VI characteristics of TRIAC.
d) Explain construction, working \& VI characteristics of SCR.

Section - II

Q. 4 Attempt any four.
a) Explain the principle of dielectric heating.
b) Explain working of online UPS with suitable block diagram.
c) Explain working multiple pulse width modulation technique.
d) Draw and explain single phase to single phase step down cycloconverter.
e) Explain static DC circuit breaker.

Q. 5 Attempt any three.

a) Explain working of series resonant inverter. Draw input and output waveform.
b) Explain principle of induction heating \& explain any one applications of induction heating.
c) Draw \& explain Jones and Morgan chopper.
d) Draw \& explain single phase parallel inverter with inductive load.

Seat	
No.	

B.E. (Part - II) (Old) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering FUZZY LOGIC

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 100
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 20
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 20

1) Implication connective is equivalent to Fuzzy relation R as
a) $(A \times B) \cup(\bar{A} \times Y)$
b) $(A \times B) \cup(A \times Y)$
C) $(A \times B) \cap(\bar{A} \times Y)$
d) None
2) A / B is defined as \qquad .
a) The collection of all elements in the universe that reside in A \& don't reside in B
b) The collection of all elements in the universe that reside in B \& don't reside in A
c) Null set
d) None
3) Fuzzy system are \qquad .
a) Control system
b) Rule based system
c) Both (a) and (b)
d) None
4) $\quad A U A^{\prime}=X$ is called as \qquad .
a) Axiom of excluded middle
b) Axiom of Contradiction
c) Union operation
d) None
5) The support of a fuzzy set A within a universal set X is the crisp set that contain all elements of X that have \qquad .
a) Infinite membership grade in A
b) Non zero membership grade in A
c) zero membership grade in A
d) None
6) The induction is performed by \qquad .
a) Standard value
b) Mean value calculations
c) Entropy minimizations
d) None
7) Centroid method is also known as \qquad
a) Centre of area
b) Centre of gravity
c) Both (a) and (b)
d) None
8) The optimum partition, U^{*}, to be the partition that produces \qquad .
a) Max value of J function
b) Min value of J function
c) Value of J function
d) None
9) Family of Fuzzy partition matrices, M_{FC}, for the classification involving C classes and n data points \qquad .
a) $\left\{\left(U \mid \mu i k \in[0,1] ; \sum_{i=1}^{C} \mu i k=1 ; 0<\sum_{k=1}^{C}<n ;\right\}\right.$
b) $\left\{\left(U \mid \mu i k \in[0,1] ; \sum_{i=1}^{C} \mu i k=1 ; 0<\sum_{i=1}^{C}<n ;\right\}\right.$
c) $\left\{\left(U \mid \mu i k \in[0,1] ; \sum_{i=1}^{n} \mu i k=1 ; 0<\sum_{k=1}^{c}<n ;\right\}\right.$
d) None
10) Fuzzy relation R based on, IF A, THEN B as \qquad .
a) $B \rightarrow A$
b) $A \rightarrow B$
c) $A \rightarrow \bar{B}$
d) None
11) Cognitive maps graphically describes a system in terms of \qquad .
a) Concept variables
b) Concept variables and causal relations
c) Causal relations
d) None
12) In simple fuzzy logic controllers, partition the universe of discourse by each variable into a number of fuzzy subsets, assigning each a \qquad .
a) Membership function
b) IF-THEN rules
c) linguistic labels
d) None
13) The physician's medical knowledge is represented as a fuzzy relation between \qquad .
a) Disease \& patient
b) Symptoms \& patient
c) Both a and b
d) None
14) Chromosomes x \& y, to which crossover operation is applied is called \qquad .
a) Mutation
b) Mates
c) Fitness
d) None
15) For Nontransitive ranking, we introduce a special notion of \qquad .
a) Transitive
b) Relativity
c) Ordinal ranking
d) None
16) Interval valued fuzzy sets can further be generalized as \qquad .
a) Type II fuzzy sets
b) Ordinary fuzzy sets
c) Fuzzy power sets
d) None
17) Rank ordering ambiguity demonstrated for both fuzzy and \qquad variables.
a) Static
b) Constant
c) Random
d) None

SLR-FM-770 Set

18) In fuzzy expert systems, the knowledge is usually represented by the set of \qquad -
a) Fuzzy production rules
b) Fuzzy nos
c) Fuzzy coefficients
d) None
19) The model proposes two types of relation exist between symptoms and disease are \qquad
a) Occurrence relation
b) Confirmability relation
c) Both (a) and (b)
d) All
20) Fuzzy regression analysis uses \qquad to represent the coefficient.
a) Fuzzy number
b) Fuzzy coefficient
c) Fuzzy function
d) None

Seat

No.

B.E. (Part - II) (Old) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering FUZZY LOGIC

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 80
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.

a) Consider the following two discrete fuzzy sets, which are defined on universe $X=\{-5,5\}$: Construct relation for the rule IF A THEN B

$$
\begin{aligned}
& A=\text { Zero }=\left\{\frac{0.2}{-3}+\frac{0.5}{-1}+\frac{1.0}{0}+\frac{0.5}{1}+\frac{0.1}{2}\right\} \\
& B=\text { posisitive medium }=\left\{\frac{0}{0}+\frac{0.7}{1}+\frac{1.0}{2}+\frac{0.5}{3}+\frac{0.2}{4}\right\}
\end{aligned}
$$

b) Perform the following operations on intervals.

1) $[3,2]+[3,4]$
2) $[4,2] \times[1,2]$
c) Differentiate between fuzzy sets and crisp sets.
d) Write a short note on C means clustering.
e) Find the Cartesian product represented by the relation $R=X \times Y$

$$
\begin{aligned}
& X=\left\{\frac{0.2}{10}+\frac{0.5}{20}+\frac{0.8}{40}+\frac{1.0}{60}+\frac{0.6}{80}+\frac{0.1}{100}\right\} \\
& Y=\left\{\frac{0.3}{0.5}+\frac{0.6}{1}+\frac{0.9}{1.5}+\frac{1.0}{4}+\frac{0.6}{8}+\frac{0.3}{20}\right\}
\end{aligned}
$$

f) Using your own intuition and your own definitions of the universe of discourse, plot fuzzy membership functions for the following variables:
Education of people

1) Fairly educated
2) Educated
3) Highly educated
4) Not highly educated
5) More or less educated

Q. 3 Answer the Following.

a) A fuzzy tolerance relation, $\stackrel{R}{\sim}$, is reflexive and symmetric. Find the equivalence relation B_{e} and then classify it according to λ-cut levels $=\{0.7,0.6,0.5\}$.

$$
R=\left[\begin{array}{ccccc}
1 & 0.8 & 0 & 0.2 & 0.1 \\
0.8 & 1 & 0.9 & 0 & 0.4 \\
0 & 0.9 & 1 & 0 & 0.3 \\
0.2 & 0 & 0 & 1 & 0.5 \\
0.1 & 0.4 & 0.3 & 0.5 & 1
\end{array}\right]
$$

b) In fuzzy automata, generate fuzzy input and output states under following conditions.
Output relation $R=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.5 & 1 & 0.7\end{array}\right]$ and state transition relation
$S=\left[\left[\begin{array}{cccc}0 & 0.3 & 0.9 & 1 \\ 0.5 & 1 & 0 & 0.2 \\ 0.6 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0.2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0.4 & 0 & 0.6\end{array}\right]\right]\right.$
With initial state $C^{1}=\left[\begin{array}{llll}1 & 0.7 & 0.6 & 0.4\end{array}\right]$
Inputs $A 1=\left[\begin{array}{ll}0.4 & 0\end{array}\right] \quad A 2=\left[\begin{array}{ll}1 & 0\end{array}\right] \quad A 3=\left[\begin{array}{ll}1 & 0.7\end{array}\right]$
OR
b) What is defuzzification? Explain methods of defuzzification?

Section - II

Q. 4 Answer the following.

a) A manufacturing company is planning to purchase a lathe and is assessing the proposals from four lathe manufacturers. The company has developed a reciprocal relation for the four manufacturers based on the speed of delivery of the lathes and the cost. The relation is

$$
R=\left[\begin{array}{cccc}
0 & 0.1 & 0.7 & 0.2 \\
0.9 & 0 & 0.6 & 1 \\
0.3 & 0.4 & 0 & 0.5 \\
0.8 & 0 & 0.5 & 0
\end{array}\right]
$$

Calculate the degree of preference measures, and the distance to Type I, Type II consensus. Explain the differences between the distances to the three consensuses.

SLR-FM-770
 Set

a) Explain following

1) Fuzzy linear programming
2) Nontransitive ranking
b) Explain FSPC for measurement and attribute SPC.
Q. 5 Attempt any four.
a) Write a short note on Type 2 fuzzy.
b) Explain application of fuzzy in Genetic.
c) Explain fuzzy ranking method.
d) Explain simple fuzzy control system.
e) Explain Fuzzy Cognitive Map.

Seat	
No.	

B.E. (Part - II) (Old) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering FUZZY LOGIC

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 100
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 20
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 20

1) The induction is performed by \qquad
a) Standard value
b) Mean value calculations
c) Entropy minimizations
d) None
2) Centroid method is also known as \qquad .
a) Centre of area
b) Centre of gravity
c) Both (a) and (b)
d) None
3) The optimum partition, U*, to be the partition that produces \qquad .
a) Max value of J function
b) Min value of J function
c) Value of J function
d) None
4) Family of Fuzzy partition matrices, M_{FC}, for the classification involving C classes and n data points \qquad -
a) $\left\{\left(U \mid \mu i k \in[0,1] ; \sum_{i=1}^{C} \mu i k=1 ; 0<\sum_{k=1}^{C}<n ;\right\}\right.$
b) $\left\{\left(U \mid \mu i k \in[0,1] ; \sum_{i=1}^{C} \mu i k=1 ; 0<\sum_{i=1}^{C}<n ;\right\}\right.$
c) $\left\{\left(U \mid \mu i k \in[0,1] ; \sum_{i=1}^{n} \mu i k=1 ; 0<\sum_{k=1}^{c}<n ;\right\}\right.$
d) None
5) Fuzzy relation R based on, IF A, THEN B as \qquad .
a) $B \rightarrow A$
b) $A \rightarrow B$
c) $A \rightarrow \bar{B}$
d) None
6) Cognitive maps graphically describes a system in terms of \qquad .
a) Concept variables
b) Concept variables and causal relations
c) Causal relations
d) None
7) In simple fuzzy logic controllers, partition the universe of discourse by each variable into a number of fuzzy subsets, assigning each a \qquad .
a) Membership function
b) IF-THEN rules
c) linguistic labels
d) None
8) The physician's medical knowledge is represented as a fuzzy relation between \qquad .
a) Disease \& patient
b) Symptoms \& patient
c) Both a and b
d) None
9) Chromosomes $x \& y$, to which crossover operation is applied is called \qquad .
a) Mutation
b) Mates
c) Fitness
d) None
10) For Nontransitive ranking, we introduce a special notion of \qquad .
a) Transitive
b) Relativity
c) Ordinal ranking
d) None
11) Interval valued fuzzy sets can further be generalized as \qquad .
a) Type II fuzzy sets
b) Ordinary fuzzy sets
c) Fuzzy power sets
d) None
12) Rank ordering ambiguity demonstrated for both fuzzy and \qquad variables.
a) Static
b) Constant
c) Random
d) None
13) In fuzzy expert systems, the knowledge is usually represented by the set of \qquad .
a) Fuzzy production rules
b) Fuzzy nos
c) Fuzzy coefficients
d) None
14) The model proposes two types of relation exist between symptoms and disease are \qquad .
a) Occurrence relation
b) Confirmability relation
c) Both (a) and (b)
d) All
15) Fuzzy regression analysis uses \qquad to represent the coefficient.
a) Fuzzy number
b) Fuzzy coefficient
c) Fuzzy function
d) None
16) Implication connective is equivalent to Fuzzy relation R as
a) $(A \times B) \cup(\bar{A} \times Y)$
b) $(A \times B) \cup(A \times Y)$
c) $(A \times B) \cap(\bar{A} \times Y)$
d) None

SLR-FM-770
 Set

17) A / B is defined as \qquad
a) The collection of all elements in the universe that reside in A \& don't reside in B
b) The collection of all elements in the universe that reside in B \& don't reside in A
c) Null set
d) None
18) Fuzzy system are \qquad .
a) Control system
b) Rule based system
c) Both (a) and (b)
d) None
19) $A U A^{\prime}=X$ is called as \qquad .
a) Axiom of excluded middle
b) Axiom of Contradiction
c) Union operation
d) None
20) The support of a fuzzy set A within a universal set X is the crisp set that contain all elements of X that have \qquad .
a) Infinite membership grade in A
b) Non zero membership grade in A
c) zero membership grade in A
d) None

Seat
 No.

B.E. (Part - II) (Old) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering FUZZY LOGIC

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 80
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.

a) Consider the following two discrete fuzzy sets, which are defined on universe $X=\{-5,5\}$: Construct relation for the rule IF A THEN B

$$
\begin{aligned}
& A=\text { Zero }=\left\{\frac{0.2}{-3}+\frac{0.5}{-1}+\frac{1.0}{0}+\frac{0.5}{1}+\frac{0.1}{2}\right\} \\
& B=\text { posisitive medium }=\left\{\frac{0}{0}+\frac{0.7}{1}+\frac{1.0}{2}+\frac{0.5}{3}+\frac{0.2}{4}\right\}
\end{aligned}
$$

b) Perform the following operations on intervals.

1) $[3,2]+[3,4]$
2) $[4,2] \times[1,2]$
c) Differentiate between fuzzy sets and crisp sets.
d) Write a short note on C means clustering.
e) Find the Cartesian product represented by the relation $R=X \times Y$

$$
\begin{aligned}
& X=\left\{\frac{0.2}{10}+\frac{0.5}{20}+\frac{0.8}{40}+\frac{1.0}{60}+\frac{0.6}{80}+\frac{0.1}{100}\right\} \\
& Y=\left\{\frac{0.3}{0.5}+\frac{0.6}{1}+\frac{0.9}{1.5}+\frac{1.0}{4}+\frac{0.6}{8}+\frac{0.3}{20}\right\}
\end{aligned}
$$

f) Using your own intuition and your own definitions of the universe of discourse, plot fuzzy membership functions for the following variables:
Education of people

1) Fairly educated
2) Educated
3) Highly educated
4) Not highly educated
5) More or less educated

Q. 3 Answer the Following.

a) A fuzzy tolerance relation, $\stackrel{R}{\sim}$, is reflexive and symmetric. Find the equivalence relation B_{e} and then classify it according to λ-cut levels $=\{0.7,0.6,0.5\}$.

$$
R=\left[\begin{array}{ccccc}
1 & 0.8 & 0 & 0.2 & 0.1 \\
0.8 & 1 & 0.9 & 0 & 0.4 \\
0 & 0.9 & 1 & 0 & 0.3 \\
0.2 & 0 & 0 & 1 & 0.5 \\
0.1 & 0.4 & 0.3 & 0.5 & 1
\end{array}\right]
$$

b) In fuzzy automata, generate fuzzy input and output states under following conditions.
Output relation $R=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.5 & 1 & 0.7\end{array}\right]$ and state transition relation
$S=\left[\left[\begin{array}{cccc}0 & 0.3 & 0.9 & 1 \\ 0.5 & 1 & 0 & 0.2 \\ 0.6 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0.2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0.4 & 0 & 0.6\end{array}\right]\right]\right.$
With initial state $C^{1}=\left[\begin{array}{llll}1 & 0.7 & 0.6 & 0.4\end{array}\right]$
Inputs $A 1=\left[\begin{array}{ll}0.4 & 0\end{array}\right] \quad A 2=\left[\begin{array}{ll}1 & 0\end{array}\right] \quad A 3=\left[\begin{array}{ll}1 & 0.7\end{array}\right]$
OR
b) What is defuzzification? Explain methods of defuzzification?

Section - II

Q. 4 Answer the following.

a) A manufacturing company is planning to purchase a lathe and is assessing the proposals from four lathe manufacturers. The company has developed a reciprocal relation for the four manufacturers based on the speed of delivery of the lathes and the cost. The relation is

$$
R=\left[\begin{array}{cccc}
0 & 0.1 & 0.7 & 0.2 \\
0.9 & 0 & 0.6 & 1 \\
0.3 & 0.4 & 0 & 0.5 \\
0.8 & 0 & 0.5 & 0
\end{array}\right]
$$

Calculate the degree of preference measures, and the distance to Type I, Type II consensus. Explain the differences between the distances to the three consensuses.
a) Explain following

1) Fuzzy linear programming
2) Nontransitive ranking
b) Explain FSPC for measurement and attribute SPC.
Q. 5 Attempt any four.
a) Write a short note on Type 2 fuzzy.
b) Explain application of fuzzy in Genetic.
c) Explain fuzzy ranking method.
d) Explain simple fuzzy control system.
e) Explain Fuzzy Cognitive Map.

Seat	
No.	

B.E. (Part - II) (Old) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering FUZZY LOGIC

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 100
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Marks: 20
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 20

1) Cognitive maps graphically describes a system in terms of \qquad .
a) Concept variables
b) Concept variables and causal relations
c) Causal relations
d) None
2) In simple fuzzy logic controllers, partition the universe of discourse by each variable into a number of fuzzy subsets, assigning each a \qquad .
a) Membership function
b) IF-THEN rules
c) linguistic labels
d) None
3) The physician's medical knowledge is represented as a fuzzy relation between \qquad .
a) Disease \& patient
b) Symptoms \& patient
c) Both a and b
d) None
4) Chromosomes x \& y, to which crossover operation is applied is called \qquad .
a) Mutation
b) Mates
c) Fitness
d) None
5) For Nontransitive ranking, we introduce a special notion of \qquad .
a) Transitive
b) Relativity
c) Ordinal ranking
d) None
6) Interval valued fuzzy sets can further be generalized as \qquad .
a) Type II fuzzy sets
b) Ordinary fuzzy sets
c) Fuzzy power sets
d) None
7) Rank ordering ambiguity demonstrated for both fuzzy and \qquad variables.
a) Static
b) Constant
c) Random
d) None
8) In fuzzy expert systems, the knowledge is usually represented by the set of \qquad .
a) Fuzzy production rules
b) Fuzzy nos
c) Fuzzy coefficients
d) None
9) The model proposes two types of relation exist between symptoms and disease are \qquad .
a) Occurrence relation
b) Confirmability relation
c) Both (a) and (b)
d) All
10) Fuzzy regression analysis uses \qquad to represent the coefficient.
a) Fuzzy number
b) Fuzzy coefficient
c) Fuzzy function
d) None
11) Implication connective is equivalent to Fuzzy relation R as
a) $(A \times B) \cup(\bar{A} \times Y)$
b) $(A \times B) \cup(A \times Y)$
C) $(A \times B) \cap(\bar{A} \times Y)$
d) None
12) A / B is defined as \qquad .
a) The collection of all elements in the universe that reside in A \& don't reside in B
b) The collection of all elements in the universe that reside in B \& don't reside in A
c) Null set
d) None
13) Fuzzy system are \qquad .
a) Control system
b) Rule based system
c) Both (a) and (b)
d) None
14) $A U A^{\prime}=X$ is called as \qquad .
a) Axiom of excluded middle
b) Axiom of Contradiction
c) Union operation
d) None
15) The support of a fuzzy set A within a universal set X is the crisp set that contain all elements of X that have \qquad .
a) Infinite membership grade in A
b) Non zero membership grade in A
c) zero membership grade in A
d) None
16) The induction is performed by \qquad .
a) Standard value
b) Mean value calculations
c) Entropy minimizations
d) None
17) Centroid method is also known as \qquad .
a) Centre of area
b) Centre of gravity
c) Both (a) and (b)
d) None

SLR-FM-770
 Set R

18) The optimum partition, U^{*}, to be the partition that produces \qquad .
a) Max value of J function
b) Min value of J function
c) Value of J function
d) None
19) Family of Fuzzy partition matrices, $M_{F \mathrm{~F}}$, for the classification involving C classes and n data points \qquad .
a) $\left\{\left(U \mid \mu i k \in[0,1] ; \sum_{i=1}^{C} \mu \overline{i k=1} ; 0<\sum_{k=1}^{C}<n ;\right\}\right.$
b) $\left\{\left(U \mid \mu i k \in[0,1] ; \sum_{i=1}^{C} \mu i k=1 ; 0<\sum_{i=1}^{C}<n ;\right\}\right.$
c) $\left\{\left(U \mid \mu i k \in[0,1] ; \sum_{i=1}^{n} \mu i k=1 ; 0<\sum_{k=1}^{c}<n ;\right\}\right.$
d) None
20) Fuzzy relation R based on, IF A, THEN B as \qquad .
a) $B \rightarrow A$
b) $A \rightarrow B$
c) $A \rightarrow \bar{B}$
d) None

Seat

No.

B.E. (Part - II) (Old) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering FUZZY LOGIC

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 80
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.

a) Consider the following two discrete fuzzy sets, which are defined on universe $X=\{-5,5\}$: Construct relation for the rule IF A THEN B

$$
\begin{aligned}
& A=\text { Zero }=\left\{\frac{0.2}{-3}+\frac{0.5}{-1}+\frac{1.0}{0}+\frac{0.5}{1}+\frac{0.1}{2}\right\} \\
& B=\text { posisitive medium }=\left\{\frac{0}{0}+\frac{0.7}{1}+\frac{1.0}{2}+\frac{0.5}{3}+\frac{0.2}{4}\right\}
\end{aligned}
$$

b) Perform the following operations on intervals.

1) $[3,2]+[3,4]$
2) $[4,2] \times[1,2]$
c) Differentiate between fuzzy sets and crisp sets.
d) Write a short note on C means clustering.
e) Find the Cartesian product represented by the relation $R=X \times Y$

$$
\begin{aligned}
& X=\left\{\frac{0.2}{10}+\frac{0.5}{20}+\frac{0.8}{40}+\frac{1.0}{60}+\frac{0.6}{80}+\frac{0.1}{100}\right\} \\
& Y=\left\{\frac{0.3}{0.5}+\frac{0.6}{1}+\frac{0.9}{1.5}+\frac{1.0}{4}+\frac{0.6}{8}+\frac{0.3}{20}\right\}
\end{aligned}
$$

f) Using your own intuition and your own definitions of the universe of discourse, plot fuzzy membership functions for the following variables:
Education of people

1) Fairly educated
2) Educated
3) Highly educated
4) Not highly educated
5) More or less educated

Q. 3 Answer the Following.

a) A fuzzy tolerance relation, ${ }^{R}$, is reflexive and symmetric. Find the equivalence relation B_{e} and then classify it according to λ-cut levels $=\{0.7,0.6,0.5\}$.

$$
R=\left[\begin{array}{ccccc}
1 & 0.8 & 0 & 0.2 & 0.1 \\
0.8 & 1 & 0.9 & 0 & 0.4 \\
0 & 0.9 & 1 & 0 & 0.3 \\
0.2 & 0 & 0 & 1 & 0.5 \\
0.1 & 0.4 & 0.3 & 0.5 & 1
\end{array}\right]
$$

b) In fuzzy automata, generate fuzzy input and output states under following conditions.
Output relation $R=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.5 & 1 & 0.7\end{array}\right]$ and state transition relation
$S=\left[\left[\begin{array}{cccc}0 & 0.3 & 0.9 & 1 \\ 0.5 & 1 & 0 & 0.2 \\ 0.6 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0.2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0.4 & 0 & 0.6\end{array}\right]\right]\right.$
With initial state $C^{1}=\left[\begin{array}{llll}1 & 0.7 & 0.6 & 0.4\end{array}\right]$
Inputs $A 1=\left[\begin{array}{ll}0.4 & 0\end{array}\right] \quad A 2=\left[\begin{array}{ll}1 & 0\end{array}\right] \quad A 3=\left[\begin{array}{ll}1 & 0.7\end{array}\right]$
OR
b) What is defuzzification? Explain methods of defuzzification?

Section - II

Q. 4 Answer the following.

a) A manufacturing company is planning to purchase a lathe and is assessing the proposals from four lathe manufacturers. The company has developed a reciprocal relation for the four manufacturers based on the speed of delivery of the lathes and the cost. The relation is

$$
R=\left[\begin{array}{cccc}
0 & 0.1 & 0.7 & 0.2 \\
0.9 & 0 & 0.6 & 1 \\
0.3 & 0.4 & 0 & 0.5 \\
0.8 & 0 & 0.5 & 0
\end{array}\right]
$$

Calculate the degree of preference measures, and the distance to Type I, Type II consensus. Explain the differences between the distances to the three consensuses.
a) Explain following

1) Fuzzy linear programming
2) Nontransitive ranking
b) Explain FSPC for measurement and attribute SPC.
Q. 5 Attempt any four.
a) Write a short note on Type 2 fuzzy.
b) Explain application of fuzzy in Genetic.
c) Explain fuzzy ranking method.
d) Explain simple fuzzy control system.
e) Explain Fuzzy Cognitive Map.

Seat	
No.	

B.E. (Part - II) (Old) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering FUZZY LOGIC

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 100
Time: 02:30 PM To 05:30 PM
Instructions: 1) Q. No. 1 is compulsory and it should be solved in first 30 minutes in answer book.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

MCQ/Objective Type Questions

Duration: 30 Minutes
Q. 1 Choose the correct alternatives from the options and rewrite the sentence. 20

1) Interval valued fuzzy sets can further be generalized as \qquad .
a) Type II fuzzy sets
b) Ordinary fuzzy sets
c) Fuzzy power sets
d) None
2) Rank ordering ambiguity demonstrated for both fuzzy and \qquad variables.
a) Static
b) Constant
c) Random
d) None
3) In fuzzy expert systems, the knowledge is usually represented by the set of \qquad .
a) Fuzzy production rules
b) Fuzzy nos
c) Fuzzy coefficients
d) None
4) The model proposes two types of relation exist between symptoms and disease are \qquad .
a) Occurrence relation
b) Confirmability relation
c) Both (a) and (b)
d) All
5) Fuzzy regression analysis uses \qquad to represent the coefficient.
a) Fuzzy number
b) Fuzzy coefficient
c) Fuzzy function
d) None
6) Implication connective is equivalent to Fuzzy relation R as
a) $(A \times B) \cup(\bar{A} \times Y)$
b) $(A \times B) \cup(A \times Y)$
c) $(A \times B) \cap(\bar{A} \times Y)$
d) None
7) A / B is defined as \qquad .
a) The collection of all elements in the universe that reside in A \& don't reside in B
b) The collection of all elements in the universe that reside in B \& don't reside in A
c) Null set
d) None
8) Fuzzy system are \qquad .
a) Control system
b) Rule based system
c) Both (a) and (b)
d) None
9) $\quad A U A^{\prime}=X$ is called as \qquad .
a) Axiom of excluded middle
b) Axiom of Contradiction
c) Union operation
d) None
10) The support of a fuzzy set A within a universal set X is the crisp set that contain all elements of X that have \qquad .
a) Infinite membership grade in A
b) Non zero membership grade in A
c) zero membership grade in A
d) None
11) The induction is performed by \qquad .
a) Standard value
b) Mean value calculations
c) Entropy minimizations
d) None
12) Centroid method is also known as \qquad .
a) Centre of area
b) Centre of gravity
c) Both (a) and (b)
d) None
13) The optimum partition, U^{*}, to be the partition that produces \qquad .
a) Max value of J function
b) Min value of J function
c) Value of J function
d) None
14) Family of Fuzzy partition matrices, M_{FC}, for the classification involving C classes and n data points \qquad -
a) $\left\{\left(U \mid \mu i k \in[0,1] ; \sum_{i=1}^{C} \mu i k=1 ; 0<\sum_{k=1}^{C}<n ;\right\}\right.$
b) $\left\{\left(U \mid \mu i k \in[0,1] ; \sum_{i=1}^{C} \mu i k=1 ; 0<\sum_{i=1}^{C}<n ;\right\}\right.$
c) $\left\{\left(U \mid \mu i k \in[0,1] ; \sum_{i=1}^{n} \mu i k=1 ; 0<\sum_{k=1}^{c}<n ;\right\}\right.$
d) None
15) Fuzzy relation R based on, IF A, THEN B as \qquad .
a) $B \rightarrow A$
b) $A \rightarrow B$
c) $A \rightarrow \bar{B}$
d) None

SLR-FM-770
 Set
 S

16) Cognitive maps graphically describes a system in terms of \qquad .
a) Concept variables
b) Concept variables and causal relations
c) Causal relations
d) None
17) In simple fuzzy logic controllers, partition the universe of discourse by each variable into a number of fuzzy subsets, assigning each a \qquad -.
a) Membership function
b) IF-THEN rules
c) linguistic labels
d) None
18) The physician's medical knowledge is represented as a fuzzy relation between \qquad .
a) Disease \& patient
b) Symptoms \& patient
c) Both a and b
d) None
19) Chromosomes $x \& y$, to which crossover operation is applied is called \qquad .
a) Mutation
b) Mates
c) Fitness
d) None
20) For Nontransitive ranking, we introduce a special notion of \qquad .
a) Transitive
b) Relativity
c) Ordinal ranking
d) None

Seat

No.

B.E. (Part - II) (Old) Examination Nov/Dec-2019 Electronics \& Telecommunication Engineering FUZZY LOGIC

Day \& Date: Wednesday, 27-11-2019
Max. Marks: 80
Time: 02:30 PM To 05:30 PM
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

Section - I

Q. 2 Attempt any four.

a) Consider the following two discrete fuzzy sets, which are defined on universe $X=\{-5,5\}$: Construct relation for the rule IF A THEN B

$$
\begin{aligned}
& A=\text { Zero }=\left\{\frac{0.2}{-3}+\frac{0.5}{-1}+\frac{1.0}{0}+\frac{0.5}{1}+\frac{0.1}{2}\right\} \\
& B=\text { posisitive medium }=\left\{\frac{0}{0}+\frac{0.7}{1}+\frac{1.0}{2}+\frac{0.5}{3}+\frac{0.2}{4}\right\}
\end{aligned}
$$

b) Perform the following operations on intervals.

1) $[3,2]+[3,4]$
2) $[4,2] \times[1,2]$
c) Differentiate between fuzzy sets and crisp sets.
d) Write a short note on C means clustering.
e) Find the Cartesian product represented by the relation $R=X \times Y$

$$
\begin{aligned}
& X=\left\{\frac{0.2}{10}+\frac{0.5}{20}+\frac{0.8}{40}+\frac{1.0}{60}+\frac{0.6}{80}+\frac{0.1}{100}\right\} \\
& Y=\left\{\frac{0.3}{0.5}+\frac{0.6}{1}+\frac{0.9}{1.5}+\frac{1.0}{4}+\frac{0.6}{8}+\frac{0.3}{20}\right\}
\end{aligned}
$$

f) Using your own intuition and your own definitions of the universe of discourse, plot fuzzy membership functions for the following variables:
Education of people

1) Fairly educated
2) Educated
3) Highly educated
4) Not highly educated
5) More or less educated

Q. 3 Answer the Following.

a) A fuzzy tolerance relation, ${ }_{\sim}^{R}$, is reflexive and symmetric. Find the equivalence relation B_{e} and then classify it according to λ-cut levels $=\{0.7,0.6,0.5\}$.

$$
R=\left[\begin{array}{ccccc}
1 & 0.8 & 0 & 0.2 & 0.1 \\
0.8 & 1 & 0.9 & 0 & 0.4 \\
0 & 0.9 & 1 & 0 & 0.3 \\
0.2 & 0 & 0 & 1 & 0.5 \\
0.1 & 0.4 & 0.3 & 0.5 & 1
\end{array}\right]
$$

b) In fuzzy automata, generate fuzzy input and output states under following conditions.
Output relation $R=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.5 & 1 & 0.7\end{array}\right]$ and state transition relation
$S=\left[\left[\begin{array}{cccc}0 & 0.3 & 0.9 & 1 \\ 0.5 & 1 & 0 & 0.2 \\ 0.6 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0.2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0.4 & 0 & 0.6\end{array}\right]\right]\right.$
With initial state $C^{1}=\left[\begin{array}{llll}1 & 0.7 & 0.6 & 0.4\end{array}\right]$
Inputs $A 1=\left[\begin{array}{ll}0.4 & 0\end{array}\right] \quad A 2=\left[\begin{array}{ll}1 & 0\end{array}\right] \quad A 3=\left[\begin{array}{ll}1 & 0.7\end{array}\right]$
OR
b) What is defuzzification? Explain methods of defuzzification?

Section - II

Q. 4 Answer the following.

a) A manufacturing company is planning to purchase a lathe and is assessing the proposals from four lathe manufacturers. The company has developed a reciprocal relation for the four manufacturers based on the speed of delivery of the lathes and the cost. The relation is

$$
R=\left[\begin{array}{cccc}
0 & 0.1 & 0.7 & 0.2 \\
0.9 & 0 & 0.6 & 1 \\
0.3 & 0.4 & 0 & 0.5 \\
0.8 & 0 & 0.5 & 0
\end{array}\right]
$$

Calculate the degree of preference measures, and the distance to Type I, Type II consensus. Explain the differences between the distances to the three consensuses.
a) Explain following

1) Fuzzy linear programming
2) Nontransitive ranking
b) Explain FSPC for measurement and attribute SPC.
Q. 5 Attempt any four.
a) Write a short note on Type 2 fuzzy.
b) Explain application of fuzzy in Genetic.
c) Explain fuzzy ranking method.
d) Explain simple fuzzy control system.
e) Explain Fuzzy Cognitive Map.
