

Punyshlok Ahilyadevi Holkar Solapur University, Solapur Electronics Engineering and Electronics & Telecommunication Engineering Ph.D. Course Work Syllabus December 2020 V2.0

Course/Paper-3 (Advanced Knowledge in Core domain of Concerned Subjects) *Note* –

- 1. Course/Paper -3 shall be common for Electronics Engineering and Electronics and Telecommunication Engineering
- 2. Candidate shall select an elective in consultation with guide from below list
 - a. Machine Learning
 - b. Advances in Image and Video Processing
 - c. Advances in Telecommunication

Elective a: Machine Learning

Unit-I	Introduction:	14 Hrs
	Definition of learning systems, goals and applications of machine learning, aspects of developing a learning system: training data, concept representation, function approximation.	1 Credits
		20 Marks
	Concept Learning: The concept learning task, concept learning as search through a hypothesis space, general-to-specific ordering of hypotheses, finding maximally specific hypotheses, version spaces and the candidate elimination algorithm, learning conjunctive concepts, the importance of inductive bias	
	Decision Tree Learning:	18 Hrs
Unit-II	Representing concepts as decision trees, recursive induction of decision trees, picking the best splitting attribute: entropy and information gain,	2 Credit
	searching for simple trees and computational complexity, Occam's	30 Marks
	razor, overfitting, noisy data and pruning.	
	Artificial Neural Networks :	
	Neurons and biological motivation, linear threshold units,	
	Perceptrons: representational limitation and gradient descent training,	
	multilayer networks and backpropagation, convolution neural networks and deep learning	
Unit-III	Computational Learning Theory :	18 Hrs
	Models of learnability: learning in the limit; probably approximately correct (PAC) learning, sample complexity: quantifying the number of examples needed to PAC learn, computational complexity of training, sample complexity for finite and infinite hypothesis spaces, mistake bound model of learning	2 Credit

	Instant Based Learning : k nearest neighbor learning, locally weighted regression, radial basis functions, case based reasoning Sparse Kernel Machines: Maximum margin classifiers, support vector machines, relevance vector machines	30 Marks
Unit – IV	Clustering: k-means, adaptive hierarchical clustering, Gaussian mixture model Ensemble Learning: Using committees of multiple hypotheses, bagging, boosting, active learning with ensembles	10 Hrs 1 Credit 20 Marks
	Total Credit = 06 ; Total Marks = 100 UA + 50 CA ; Total Hrs = 60 s : chine Learning, Tom M. Mitchell, McGraw-Hill tern Recognition and Machine Learning, Christopher M. Bishop, Springer	

Elective B: Advances in Image and Video Processing

Unit-I	Image and Video Foundation Image and video formats, Sampling in 2-dimension (2-D) and 3- dimension (3-D), image processing operations, digital video basics	10 Hrs
		1 Credit
		20 Marks
Unit-II	Image and Video Enhancement Histogram, Point processing, spatial operations, transform operations, multi-spectral image enhancement, fundamentals of 2-D motion estimation and motion compensation, frame rate conversion, deinterlacing	18 Hrs
		2 Credit
		30 Marks
Unit-III	Image and Video Segmentation: Discontinuity based segmentation- line detection, edge detection, thresholding, region based segmentation, scene change detection, spatiotemporal change detection, motion segmentation, simultaneous motion estimation and segmentation.	18 Hrs
		2 Credit
		30 Marks
	Image and Video Restoration Image observation models, inverse & Wiener filtering, generalized inverse, SVD and iterative methods, maximum entropy restoration, Bayesian methods, blind de-convolution, intraframe shift invariant restoration, multiframe restoration.	14 Hrs
Unit – IV		1 Credits
		20 Marks

Total Credit = 06; Total Marks = 100 UA + 50 CA; Total Hrs = 60

References :

- 1. Fundamentals of Digital Image Processing, K. Jain, Pearson education (Asia) Pte. Ltd. / Prentice Hall of India, 2004
- 2. Handbook of Image & Video Processing, Al Bovik, Elsevier Academic Press, 2nd Edition
- 3. Multidimensional Signal, Image and Video Processing and Coding, John W. Woods, Academic Press, Elsevier, 2006.
- 4. Fundamentals of Multimedia, Z. Li, M.S. Drew, Pearson education (Asia) Pte. Ltd., 2004
- 5. Digital Image Processing, R. C. Gonzalez, R. E. Woods, Pearson education (Asia) Pte. Ltd. /Prentice Hall of India, 2004, 2nd Edition
- 6. Digital Video Processing, M. Tekalp, Prentice Hall, USA, 1995

Elective c: Advances in Telecommunication

Unit-I	Cooperative Communication and Networks :	12 Hrs
	Introduction to the cooperative communication, Basic Techniques, Purpose, Benefits and Drawbacks, Applications of Cooperative	1 Credit
	Communications, Implementation Scenarios and Issues, Concept of MIMO and Smart Antennas	20 Marks
	Cognitive Radio Network :	18 Hrs.
	Cognitive radio network architectures- Cognitive Resource Manager	2 Credit
	Framework, Architectures for Spectrum Sensing, Network Optimization through Utilities, Policy Support as a Part of the Architecture	30 Marks
Unit-II	Spectrum Sensing and Identification- Primary Signal Detection, Energy Detection Techniques, Cyclostationary Feature Detector, Matched Filter, Cooperative Sensing	
	Spectrum Access and Sharing- Introduction and Classification, Unlicensed Spectrum Sharing, Licensed Spectrum Sharing	
	Recent topics in Communication :	18 Hrs
Unit-III	E-Business- Introduction and benefits of E-Business, Business revolution, Security issues in E-Business, Common Vulnerabilities in e- Business, Prevention Mechanism Blockchain Technology- Introduction, Need for Blockchain Security, Characteristics and Types of Blockchains, Architecture and Working of Blockchain Technology, Challenges faced and future of blockchain technology	2 Credit
	Green Communication- Introduction, Broadband Access Evolution, Cell Site Power Consumption Modeling, Power and Energy Metrics, Energy and Throughput Efficiency in LTE Radio Access Networks	30 Marks
	5G Communication :	12 Hrs
Unit – IV	5G Communication : Interference management, mobility management and dynamic reconfiguration, Spectrum, the 5G wireless propagation channel models, Simulation methodology	12 Hrs 1 Credit

Total Credit = 06; Total Marks = 100 UA + 50 CA; Total Hrs = 60

References :

- 1. K. J. Ray Liu, Ahmed K. Sadek, Weifeng Su and Andres Kwasinski, Cooperative Communications and Networking, Cambridge University Press 2009
- 2. A. M. Wyglinski, M. Nekovee, Y. T. Hou, Cognitive Radio Communications and Networks-Principles and Practice, Elsevier, 2010
- 3. D-N Le, R. Kumar, B. K. Mishra and M. Khari, Cyber security in Parallel and Distribute Computing: Concepts, Techniques, applications and case studies, Wiley 2018
- 4. K. Samdanis, P.Rost, A. Maeder, M. Meo and C. Verikoukis, Green Communications: Principles, Concepts and Practice, Wiley 2015
- 5. A. Osseiran, J. F. Monserrat and P. Marsch, 5G Mobile and Wireless Communications Technology, Cambridge University Press 2016