

PREAMBLE:

Department of Applied Geology of Punyashlok Ahilydevi Holkar Solapur University is one of the oldest Departments in the Solapur district. The Department of Applied Geology at Punyashlok Ahilydevi Holkar Solapur University offers the Master of Geology (M.Sc.) program. This program is designed to provide deep knowledge and develop necessary skills to acquire good jobs in various Industries such as Petroleum, Geotechnical, NRSA, Groundwater consultancy, Gemology, Exploration, Mining and in Government sector. Over the past 35 years, the faculty members of department have been committed to improving curriculum, increasing experiential learning, and identifying best practices in teaching through rigorous assessment and review of our programs.

PROGRAM OBJECTIVES:

The program objectives for student's post graduating with a degree from Applied Geology are;

- 1. Effective use of literature for evaluation of data, hypothesis and conclusions.
- 2. To communicate scientific ideas and interpretations of data in writing.
- 3. An interdisciplinary approach for solving the geologic problems associated with earth's geological material.

4. Conducting advanced study in many areas of geology and also eliminate deficiencies in their geological education.

5. Prepare for jobs in the Geology or student may be enrolled in doctoral program.

PROGRAMME SPECIFIC OUTCOMES:

1. Students can understand effective use of scientific methods in the geological sciences. They should have thorough knowledge about the;

- a) Earth's interior, plate movement and the development of new features on the surface of the earth.
- b) Formation process and classification of rocks and mineral.
- c) Work of geological agents with the solid earth and the formation of new landforms.
- d) Sequential arrangement of the strata and establishing history of deposition.

2. Apply knowledge and techniques from allied fields, including chemistry, physics, biology, mathematics, and computing, to solve geological problems.

3. Acquiring basic skills of geological science including use of modern technology in presenting public data, hypothesis and conclusion.

4. Applying existing field and laboratory procedures to acquire original data, and using appropriate means to analyze research data.

- 5. Students participate in workshops/seminar/conferences on current geological issues.
- 6. Contributing in public issues related with geological sciences and be ready for resolution.
- 7. Develop and present scientific proposal, conduct original research for Master's thesis.

School of Earth Science Solapur University M.Sc Applied Geology (CBCS Syllabus) 2020-21

Seme CODE		TITLE OF THE PAPER	Semester Exam		L	Τ	P	Credi t	
First		Hard Core	Theo ry	IA	Tot al		<u> </u>		t
	HCT1.1	Mineralogy	70	30	100	4			4
	HCT1.2	Indian Stratigraphy	70	30	100	4			4
	HCT1.3	Sedimentary and Metamorphic Petrology	70	30	100	4			4
		Soft Core (any One)							
	SCT1.1	Geochemistry	70	30	100	4			
	SCT1.2	Paleontology	70	30	100	4			4
		Practical (Hard Core)							
	HCP1.1	Practical HCP1.1	35	15	50			2	
	HCP1.2	Practical HCP1.2	35	15	50			2	6
	HCP1.3	Practical HCP1.3	35	15	50			2	
		Soft Core (Any One)							
	SCP1.1	Practical SCP1.1	35	15	50			2	2
	SCP1.2	Practical SCP1.2	35	15	50			2	2
		Tour			25		01		1
		Total for First Semester	420	180	625				25
		Total for First Semester	720	100	025				
Second		Hard Core	Theo ry	IA	Tot al	L	Т	Р	
AGT	HCT2.1	Igneous Petrology	70	30	100	4			4
	HCT2.2	Structural Geology and	70	30	100	4			4
		Tectonics					-		
	SCT2.1	Soft Core (any One)	70	30	100	4			4
		Hydrogeology							4
	SCT2.2	Geotechnical Engineering	70	30	100	4			
	OET2 1	Open Elective (Any One) SWAYAM	70	20	100	4			
	OET2.1		70	30	100				4
	OET2.2	Watershed Management	70	30	100	4			
		Practical (Hard Core)	25	15	50			-	
	HCP2.1	Practical HCP2.1	35	15	50		<u> </u>	2	4
	HCP2.2	Practical HCP2.2	35	15	50		<u> </u>	2	
		Practical (Soft Core) (any one)							
	SCP2.1	Practical SCP2.1	35	15	50		+	2	
	SCP2.2	Practical SCP2.2	35	15	50	-	+	$\frac{2}{2}$	2
		Practical Open	~~				1	\vdash	
		Elective(any one)							
	OEP2.1	Practical OEP2.1	35	15	50	İ	1	2	2
	OEP2.2	Practical OEP2.2	35	15	50	İ	1	2	2
		Soft skill and Tour			25		01		1
		Soft Skill allu Toul							

Paper No: HCT 1.1 MINERALOGY

	week:04 Total load: 56 Credits:04 s:External:70 Interna	al:30
Unit 1	Isotropic and anisotropic substances; Concepts of light under microscope,	14
	Reflection, refraction and refractive index; Relief, birefringence and Becke	
	line effect; Optically uniaxial and biaxial minerals; Determination of optic	
	sign of uniaxial and biaxial minerals, Determination of optic axial angle(2V);	
	Interference figures; Pleochroism and determination of pleochroic scheme in	
	minerals; X-ray crystallography and Bragg's equation; Application of X-ray	
	diffraction spectrometry in mineral characterization;	
Unit2	Principle of crystal structure; Bonding in minerals; Silicate structures and	14
	structural formula; Isomorphism and solid solution; Types of ionic	
	substitution; Polymorphism and types of polymorphic transformations;	
	Pseudomorphism.	
	A detailed study with reference to their atomic structure, chemistry, optical	
	and physical properties and Paragenesis of the following Non silicates	
	groups of mineral:	
	Carbonates- Calcite Group, Phosphates- Apatite, Sulphates- Barite, Halides-	
	Halite, Fluorite; Oxides and Hydroxides- Spinel Group, Hematite Group,	
	Rutile Group.	
Unit3	A detailed study with reference to their atomic structure, chemistry, optical	14
	and physical properties and Paragenesis of the following Silicates groups of	
	mineral: Nesosilicates- Olivine Group, Garnet Group and Aluminosilicate	
	Group; Sorosilicates: Epidote Group, Cyclosilicates- Beryl, Inosilicates-	
	Pyroxene Group, Amphibole Group; Phyllosilicate- Mica Group, Chlorite	
	Group, Pyrophyllite: Talc; Tectosilicates- Quartz, Feldspars, Feldspathoides	
	and Zeolite Group.	
Unit4	Crystals, crystalline solids and their formation; Ordered patterns, nets and	14
	lattices; Symmetry in crystals; Axial ratio, indices, lettering and order of the	
	crystallographic axes; Crystallographic notation (Weiss and Miller indices	
	and convention in notation); Classification of crystals, Introduction to 32	
	classes of symmetry; The crystal systems and symmetry types; Stereographic	
	representation of crystal symmetry and their uses; Imperfection of crystals	
	and crystal defects; Twinning- causes, effects and genetic types.	

- Battey, M.H. (1981) Mineralogy for students 2nd Edn. Longmans.
- Berry, L.G. and Mason, B. and Dietrich, R.V. (1983) Mineralogy, 2nd Edn, Freeman.
- Bunn, C.W. (1961) Chemical Crystallography, Clarendon.
- Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to the rock forming minerals, Longman. Donald Bloss (1971) Crystallography and Crystal chemistry, Holt, Rinehart and Winston.
- Hota, R.N. (2011) Practical Approach to Crystallography and Mineralogy, CBS Publisher and Distributors Pvt Ltd., New Delhi.
- Hutchinson, C.S. (1974) Laboratory Handbook of Petrographic Techniques, John Wiley.
- Kerr, P.F. (1977) Optical Mineralogy 4th Edn., McGraw-Hill
- Klein, C. and Hurlbut, Jr., C.S. (1993) Manual of Mineralogy, John Wiley.
- Phillips, Wm, R. and Griffen, D.T. (1986) Optical Mineralogy, CBS Edition.
- Putnis, Andrew (1992) Introduction to Mineral Sciences, Cambridge University Press.
- Santosh, M. (1988) Fluid Inclusions, Geological Society of India, Banglore.
- Slemmons, D.B. (1962)Determination of Volcanic and Plutonic Plagioclases using a three- or FourAxis Universal Stage, Geological Society of America.
- Spear, F.S. (1993) Mineralogical Phase Equilibria and Pressure -Temperature-Time Paths, Mineralogical Society of America Publication.
- Szymanski, A. (1988). Technical Mineralogy and Petrography, Elsevier.
- Winchell, A.N. (1962) Elements of Optical Mineralogy, John Wiley.

INTERNALEVALUATION

(30 Marks)

Paper No. HCT 1.2: INDIAN STRATIGRAPHY

Load/we	ek:04 Total load:56	Credits:04	Marks: Extern Interna	
Unit 1	Approaches to measurement of geolog	ical time; Surface and subs	surface stratigraphic	
	procedures, Stratigraphic Principles	and concept of Litho,	Bio and Chrono	
	Stratigraphy, brief idea about seque	ence, magneto- seismic-	chemo- and event	
	stratigraphy; Stratigraphic correlation	ons (Litho-, Bio- and	Chronostratigraphic	
	Correlation)			
Unit 2	Precambrian Stratigraphy of Peninsula	r India.		14
	Classification, Structure and Tectonics	of Archaean Provinces of	Peninsular India.	
	Archaeans of the Extra-Peninsular regi	on.		
	Archaean- Proterozoic boundary probl	em		
	Stratigraphy, classification and evolu	tion of the following pro	terozoic basins of	
	Peninsular India. Cuddapah Basin, V	indhyan Basin, Delhi-Arv	valii Supergroup,	
	Pranhita- Godavari Basin, Indravati Ba	asin, Bhima-Kaladgi Basin,	Chhattisgarh basin	

	Pranhita- Godavari Basin, Indravati Basin, Bhima-Kaladgi Basin, Chhattisgarh basin		
Unit 3	Stratigraphy, tectonic and classification of Gondwana formations of India.		
	Paleozoic stratigraphy of Himalayan sequences from Kashmir, Spiti, Kumaon		
	region, Cambrian of Spiti, Triassic of Spiti, Triassic of Pin valley.Indus Ophiolite		
	belts, Trans-himalayan and Karakoram granite batholiths.		
	Stratigraphy, classification and evolution of the Siwlaik group.		
	Stratigraphy, tectonic and classification of Deccan volcanic,		
	Stratigraphy and classification of marine transgression in South India,		
	Stratigraphy and classification of Jurassic formation in Kutch,		
Unit 4	K.T. boundary problem, Quternaries of Peninsular India, Rise of Himalaya	14	
	Glacial periods in Indian stratigraphic, Neogene-Quaternary boundary		

Reference Books :

- 1. Historical Geology and Stratigraphy of India Ravindra kumar
- 2. Geology of India & BurmaD.N.Wadia
- 3. A Manual of Geology of India and Burma Pascoevolume1,2,3,4
- 4. Geology of Maharashtra,G,G,Deshpande,Geological Society of India,Banglore.
- Geology of India Vol.1.and Vol2. Ramakrishnanand Vidynathan, Geological Society of India, Bangalore.

INTERNALEVALUATION

Paper : HCT 1.3 : SEDIMENTARY AND METAMORPHIC PETROLOGY

tal load:56	6 Credits:04 Marks Intern	s: Extern nal:30
Unit 1	Introduction and principles of sedimentology, Sedimentary cycle and diastrophic cycle, Sedimentary processes: Weathering–Mechanical ,Chemical and Biological , Transport mechanism saltation, traction and suspension, Deposition by fluids, Fundaments of fluid and types of fluid, Reynold number and Froude number, their application. Bed configuration due to sediment transportation. Sedimentary textures of clastic and nonclastic rocks, concept of size and shape, Shape aspects–sphericity and roundness, surface textures fractals, Fabric measurements.	14
Unit 2	Classification of sedimentary environments, sedimentary basin and their tectonic setting. Structures in alluvial, fluvial, deltaic, lacustrine, coastal, marine, glacial and Aeolian conditions, products of various basins, heavy minerals and their significance in province studies. Paleo-climate and paleoenvironment analysis; Implication of facies in environmental interpretation and basin analysis; Sedimentary environments. Classification of clastic and non clastic rocks. Classification and composition of conglomerate, sandstones, shale and carbonate rocks; Diagenesis - physical and chemical, processes and evidences of diagenesis in sandstones, mud rocks and carbonate rocks; Detailed study of siliceous, phosphatic and ferruginous rocks; Study of evaporites such as gypsum, anhydrite and halite; Dolomites, their petrographic characteristics and models of dolomitization.	14
Unit 3	Metamorphism: Nature and scope; Factors controlling metamorphism (T, P and fluids); Types of metamorphism: Regional, contact, dynamic, hydrothermal, impact, retrograde and ocean floor metamorphism; Transient and steady state geotherms; Protolith types and characteristic metamorphic minerals; metamorphic textures and structures. Metamorphic zones; Metamorphic differentiation; Metasomatism; Granitization and crustal anatexis; Paired metamorphic belts; Eskolas classification of Metamorphic facies, Petrography and origin of following rock types: hornfelses, amphibolites, charnockites, and Migmatites	14
Unit 4	Regional & thermal Metamorphism of mafic and ultramafic rocks, pelitic sediments and impure calcareous rocks; ACF, AKF and AFM diagrams. Experimental studies on metamorphic reactions; P-T conditions of isograds, Concepts of geothermometry and geobarometry; Relationship of metamorphic rocks and associated mineral deposits; Tectonic controls of metamorphism. NCE BOOKS:	14

REFERENCE BOOKS:

- Sedimentary rocks 3rdedition, Pettijohn F.J., CBS Publication Stratigraphy and sedimentation 2 edition, W.H. Freeman and Co.
- Principles of sedimentology, Friedman and Sanders J.m., JohnWiley.
- Origin of sedimentary rocks., Blatt H., Middleton Gand Murry R, PentileHall.
- Petrology of sedimentary rocks., Folk R. L., Hemphill publicationCo.
- Sedimentary petrology: An introduction., Tucker M.E., ELBS., Blackwell Scientific Publication.
- Applied sedimentology Sukhtankar R.K. CBSPublishers.

INTERNALEVALUATION

Paper No: SCT 1.1GEOCHEMISTRY

Load/we	eek:04 Total load:56 Credits:04 Marks: External:70 Internal:30	
Unit 1	Introduction to the principles of geochemistry. Formation of universe, Origin and cosmic abundance of elements, Geochemical composition of the Solar System, the Sun, Planets, Moon, Comets, Asteroids and meteorites; Geochemical composition of the earth and its constituent parts such as crust, mantle, core.14Chemical Bonding: Ionic bonding, Ionic substitution in crystals, Crystal-field 	4
Unit 2	Basic Thermodynamic Concepts: Aspects of equilibrium thermodynamics- enthalpy and entropy, free energies, chemical potentials, fugacity and activity. Few problems related to thermodynamics.14Major, minor and trace elements and their representation on variation diagrams for presentation of geochemical data (bivariate, multivariate, element ratio variation, enrichment-depletion and vector diagrams); Primary differentiation of earth, Use of major elements for classification and characterization of igneous, metamorphic and sedimentary rocks.	4
Unit 3	The composition of atmosphere, biosphere and hydrosphere, Global biogeochemical cycles (Carbon, Oxygen, Nitrogen and Sulphur cycles), Primary and secondary dispersion of elements and their use in geochemical exploration for mineral deposits; Anomalies and various methods of geochemical surveys; Eh-pH diagrams Mineral stability– Pauling rules, speciation of elements during magmatic crystallization. laws of Goldschmidt, Ahren rules and Ringwood rules, Secondary environmental geochemistry	4
Unit 4	 Discovery of radioactivity, radioactive decay and growth, Radioactive & stable Isotope, Dating techniques using Rb-SR, K-Ar, U-Th-Pb, C-14, Applications of above methods for determining ages of igneous, metamorphic and sedimentary rocks, Stable isotopes and their applications Oxygen and hydrogen in hydrosphere and atmosphere, in ore deposit, in igneous, sedimentary rocks. Quality controls of data generation, Wet and Dry chemical analysis, Partial and total analysis 	14

Reference Books:

- Geochemistry pathways and processes 2nd edition, Harryy.mc sween Jr, Steven M. Richards on and Maria E Uhle. OverseasPress
- Radioactive minerals, Dhanaraju, geological society of India, Banglore.
- Principles of Geochemistry, Mason and Moore; John Wiley & Sons
- Introduction to geochemisty .K.B. Krauskopf; Mcgraw- HillPublication
- Geochemistry in Mineral Exploration. A.W. Rose, H.E. Hawkes &J.S. Webb; AppliedPublication
- Handbook of GeochemistryWadephol.
- Statistical Methods in Exploration Geochemistry. Govett. J. G.S. ElsevierPublication
- Nuclear Methods in mineralogy & geology techniques & applications., Attila Vertes, Sandor Nagy &KarolySuvegh.PlenumPress
- Stable Isotope Geochemistry, J.Hoefs, Springer-Verlag

INTERNALEVALUATION

(30 Marks)

Paper No. SCT 1.2 : PALAEONTOLOGY

Paper No:SCT1.2 Load/week:04 Total load:56 Credits:04 Marks: External:70 Internal:30

Unit 1	Originand evolution of life through the ages, origin of metazoan,	1/
Unit I		14
	nomenclature, and Classification, species concept, Migration dispersion and	
	extinction of animals and plants.	
	Concept of evolution, Precambrian life, Major evidences in the history of	
	Palaeozoic life.	
	Palaeoecology, Techniques in Palaeontology - mega fossils - microfossils -	
	nannofossils - ichnofossils - collection, reformation & illustration - binomial	
	nomenclature	
Unit 2	Triassic, Jurassic and Cretaceous systems in major basins of India. Concept,	14
	classification, fauna, flora and age limits of Gondwana Supergroup and related	
	paleogeography, paleoclimate, depositional characteristics and igneous	
	activities. Stratigraphy of Deccan Trap, Permian/Triassic boundary.	
	Palaeogene, Neogene and Quaternary systems and their equivalents in India;	
	Epoch boundaries of the Cenozoic in India. Cretaceous/Tertiary boundary.	
	Paleogene/ Neogene boundary.	
Unit 3	Types of fossils and taphonomy; Origin of life; Modern concept of systematic	14
	of fossils; Concept of species and type specimens; Types of growth; Concept of	
	evolution and extinction; Micro and macro-evolution; Phylogenetic analysis.	
	Brief morphology and evolutionary trends in Bivalves, Gastropods,	
	Cephalopods, Brachiopods, Echinoids, Graptoloides and Trilobites;	
	Ichnofossils their modes of preservation and significance.	
Unit 4	Study of important microfossils: Diatom, Radiolaria, Conodont, Ostracod,	14
	Stable isotope studies of shells in paleoclimatology; Study of paleobotany	
	micro and mega fossils. Application of paleobotany in assessing paleoclimate	
	and paleoenvironment;	
	Applications of important mega and micro fossils in the exploration of coal	
	and petroleum.	
	Study of important Indian Gondwana and Paleogene flora; Paleogeographic	
	maps. Origin and evolution of the mammals; Siwalik mammals; Evolution of	
	Homo; Major extinction and origination through ages.	

Reference Books :

- Historical Geology and Stratigraphy of India Ravindra kumar
- Geology of India & BurmaD.N.Wadia
- A Manual of Geology of India and Burma Pascoevolume1,2,3,4
- Geology of Maharashtra,G,G,Deshpande,Geological Society of India,Banglore.
- Geology of India Vol.1.and Vol2. Ramakrishnanand Vidynathan, Geological Society of India, Bangalore.
- Boardman, R.S., Cheethan, A.M. and Rowell, A.J. (1988) Fossil Invertebrates, Blackwell.
- Clarksons, E.N.K. (1998) Invertebrate Paleontology and Evolution, Allen and

Unwin, London.

- Dobzhansky, Ayala, Stebbins and Valentine (1977) Evolution, Freeman.
- Horowitz, A.S. and Potter, E.D. (1971) Introductory Petrography of Fossils, Springer Verlag.
- Mayr, E. (1971) Population, Species and Evolution, Harvard.
- Prothero, D.R. (2004) Bringing Fossil to Life An Introduction to Paleontology (2nd Ed.), McGraw Hill.
- Raup, D.M. and Stanley, S.M. (1985) Principles of Paleontology ,CBS Publishers, New Delhi.
- Smith, A.B. (1994) Systematics and Fossil Record Documenting Evolutionary Patterns, Blackwell.
- Strean, C.W. and Carroll, R.L. (1989) Paleontology the record of life, John Wiley.

INTERNALEVALUATION

(30 Marks)

Practical Hcp 1.1 + Hcp 1.2: Mineralogy+ Indian Stratigraphy

Credit :4

Marks:100

MINERALOGY

- 1. Physical properties of common rock forming minerals in hand specimen.
- 2. Optical properties of common rock forming minerals in thin sections.
- 3. Study of Interference figures of uniaxial and biaxial minerals and determination of optic sign.
- 4. Conversions of oxide and element weight percentages.
- 5. Calculation of mineral formulae.
- 6. Study of Crystallographic systems.

INDIAN STRATIGRAPHY

- 1. Preparation of Indian stratigraphycolumn
- 2. Identification of Precambrian Stratigraphy of South India. Preparation of Dharwar distributionmap.
- 3. Identification of purana basins of India.
- 4. Preparation of tectonic evolution map of cuddapah basin. Map showing evolution of vindhyan stratigraphy. Distribution of Aravali supergroup and Delhigroup.
- 5. Preparation of map showing Gondwana supergroup and succession from type area. Map showing marine transgression of SouthIndia.
- 6. Tectonic evolution of Himalayas.

PRACTICAL HCP 1.3 + SCP 1.1/SCP1.2: SEDIMENTOLOGY & METAMORPHIC PETROLOGY + **GEOCHEMISTRY OR STRUCTURAL GEOLOGY AND GEOTECTONICS** Credit :4

Marks:100

SEDIMENTOLOGY & METAMORPHIC PETROLOGY

- 1. Detailed study of clastic and non-clastic rocks in hand specimens
- 2. Study of assemblages of sedimentary structures in context of their paleoenvironmental significance.
- 3. Study of Sedimentary structures and their attributes, study of sedimentary textures -size analysis by sieving and othertechniques.
- 4. Determination of sphericity and roundness of grains, graphical presentation of data and determination of statistical parameters; insoluble residue analysis and preparation of acetate peels of limestone.
- 5. Megascopic and Microscopic study of metamorphic rocks of different metamorphic facies.
- 6. Detailed study of textures in thin sections with reference to time relations between the phases of deformation and recrystallization of minerals.
- 7. Calculation of ACF, AKF and AFM values from chemical and structural formulation of minerals and their graphical representation
- 8. Use of rock composition diagrams
- 9. Calculation of P-T conditions from the composition of co-existing mineral assemblages serving as geothermometers and geobarometers

GEOCHEMISTRY

- 1. Demonstration of sampling methods for geochemical analysis.
- 2. Preparation of anomaly maps using chemical data.
- 3. Calculation of important indices related to petrogenesis and weathering.
- 4. Discriminant diagrams and interpretation of geochemical data.
- 5. REE and trace elements plotting and interpretation.
- 6. End member calculations from given EPMA data.

STRUCTURAL GEOLOGY AND TECTONICS

- 1. Preparation and interpretation of geological maps and cross sections.
- 2. Structure contour maps, isopach maps and other facies maps, balanced cross-section, their importance in unraveling the geological history.
- 3. Structural problems concerning economic deposit based on orthographic and stereographic projections.
- 4. Solution to structural geology problems by orthographic and stereographicmethods.
- 5. Completion of outcrops, construction of structural sections and interpretation of geological maps.
- 6. Plotting and interpretation of mesoscopic structuraldata.
- 7. Recording and plotting of the field data.

INTERNALEVALUATION

(30 Marks)

SEMESTER II

Paper No: HCT 2.1 IGNEOUS PETROLOGY

Load/we	ek:04 Total load:56	Credits:04	Marks: Externa Interna	
Unit 1	Introduction to rocks and mag	gmas; Internal structure and	thermal properties	14
	of the earth; The nature of	magmas (temperature, visc	osity and volatile	
	component); Melting (partial r	melting, batch melting, dyna	mic melting); and	
	generation of magmas; Mover	nent and storage of magma	(magma chambers	
	and modes of emplacement);	A window to the mantle:	crustal xenoliths,	
	xenocrysts and glimmerites). N	Mantle metasomatism; Petrog	graphy of gabbros,	
	charnockites, carbonatites. Mag	gma and Plate tectonics.		
Unit 2	Introduction to phase petrology	y; Phase relations of silicates	and silicate melts:	14
	Elementary Thermodynamics,	Chemical Potential and G	ibbs Energy, Free	
	Energy, Enthalpy, and Entrop	py, The Clausius-Clapeyror	n Equation; Unary	
	Systems: (kyanite, sillimanite	e, and andalusite, SiO2 po	olymorph); Binary	
	systems: (Di-An, Ne-Si, Fo-Si,	, Ab –Or, and Fo- H2O); Ter	rnary systems (Ab-	
	An-Di, Fo-Di-Si).			
Unit 3	Diversity and evolution of n	nagma; Magma Formation,	Segregation, and	14
	Ascent vis-a-vis plate tectonic	cs; IUGS classification of I	Plutonic rocks and	
	volcanic rocks; TAS classific	cation of volcanic rock; Fo	orms, textures and	
	structures of igneous rocks;	Petrography and interpre	tation of igneous	
	textures in terms of rate of nuc	leation and crystal growth.		
Unit 4	Petrography and petrogenesis	s of major igneous rock	clans with Indian	14
	examples and world famous l	ocalities: The basalt clan (M	IORB, OIB, CFB,	
	spillites, komatiites); The and	esites, boninites and related r	ocks.The trachyte-	
	syenite clan; Granites and gr	anitic rocks; The anorthosi	tes and ultramafic	
	rocks; Nephelinites and ca	arbonatites; Lamprophyres,	lamproites and	
	kimberlites; The alkaline rocks	s. LIP's; Lunar basalts.		

Reference Books :

- 1. Best, M. G. (2003) Igneous and Metamorphic Petrology, 2nd Edn., Blackwell.
- 2. Bhaskar Rao, B. (1986) Metamorphic Petrology, IBH & Oxford.
- 3. Bose, M.K. (1997) Igneous Petrology, World Press, Kolkata.
- 4. Cox, K. G., Bell, J. D. and Pankhurst, R. J. (1979) The Interpretation of Igneous Rocks. Unwin Hyman.
- 5. Fitton, J.G. and Upton, B.J.G. (Eds) (1987) Alkaline Igneous Rocks, Geological Society, London
- 6. Hall, A. (1996) Igneous Petrology, 2nd Edn., Longman.
- 7. Hota, R.N. (2011) Practical Approach to Petrology, CBS Publisher and Distributors Pvt Ltd., New Delhi
- 8. Turner, F.J. (1980) Metamorphic Petrology, McGraw Hill, New York.
- 9. Winter, J.D. (2001) Introduction to Igneous and Metamorphic Petrology, Prentice-Hall.

INTERNALEVALUATION

(30 Marks)

Paper No. HCT 2.2 : STRUCTURALGEOLOGY AND GEOTECTONICS

Load/w	reek:04 Total load:56	Credits:04	Marks: External:70 Internal:30	
Unit 1	Introduction to structural geology	: planes and line, Attitud	e, Bearing, Inclination, Strike,	14
	Dip, Apparent dip, Plunge, Trend	and Pitch; Concept of pri	mary and secondary structures,	
	Types of stress and strain analysis	using deformed objects he	omogeneous and heterogeneous	
	deformations; Mohr circle, strain	indicators, strain ellipse	and reciprocal strain ellipse,	
	behaviour of rocks with respect	to stress and strain. De	termination of infinite strains	
	fromoriginally spherical and ellipso	oid ac markers.		
Unit 2	Introduction to folds: geometric of	classification of folds, me	echanics of folding, folding in	14
	shear zones; buckling- states of str	ain within and outside buc	ckled layers and field evidences	
	of buckling; Ramsay's classification	on of folds.		
	Introduction to faults: Geometric	classification of faults an	d joints, Anderson's theory of	
	faulting; types of shear zones(du	ctile and brittle), Determ	ination of fault displacement;	
	Recognition of faults; difference b	between fault and joint; '	Types of joints. Mylonites and	
	cataclasites, their origin and sign	nificance; thrust (sheets,	ramp anticline, thrust system,	
	duplex brittle). Lineation and folia	tions morphology and clas	sification significance of minor	
	structures to determine major struc	tures, Classification of unc	conformities and significance.	
Unit 3	Plate tectonics: Basic concepts and	l definition, types of plate	margins & their characters and	14
	associated processes like magnetism	m, seismicity, volcanism n	nountain belts, Benioff zones.	
	Tectonic evolution of continents, c	ratons and ocean basins.		
	Tectonic framework of Indian subc	continent.		
	Oogenesis: Precambrian and Phan	erozoic orogenesis, source	e and nature of tectonic forces,	
	comparisons of hypothesis of or	rogenesis – contraction,	expansion, convection, Plume	
	hypothesis and micro plate tectonic	c, sea floor spreading. Tec	tonic model of evolution of the	
	Himalayas.			
Unit 4	Morphologic and tectonic doma	ains of the ocean floor	. Structure, composition and	14
	mechanism of the formation of	oceanic crust. Ocean m	argins and their significance.	
	Opening and closing of ocean gate	eways and their effects on	circulation and climate during	
	the Cenozoic. Sea level processes a	and Sea level changes.		
	Coastal geomorphology, Classic	fication of coasts, erosion	nal and depositional features,	
	Lineament analysis, Neotectonic F	Features and evidences-cha	aracteristic landforms, Methods	
	of analysis of neotectonism, Clima	te and landforms.		

REFERENCEBOOKS

Structural Geology

- Ghosh, S.K. (1993) Structural Geology: Fundamental and Modern Developments. Pergamon Press.
- Hobbs, B.E., Means, W.D. and Williams, P.F. (1976) An outline of Structural Geology, John Wiley and Sons, New York.
- Marshak, S. and Mitra, G. (1988) Basic methods of Structural Geology, Prentice-Hall, New Jersey.
- Ramsay, J.G. (1967) Folding and fracturing of rocks, McGraw Hill.
- Ramsay, J.G. and Huber, M.I. (1983) Techniques of Modern Structural Geology, Vol. I, Strain Analysis, Academic Press.
- Ramsay, J.G. and Huber, M.I. (1987) Techniques of Modern Structural Geology, Vol. II, Folds and Fractures, Academic Press.
- Ramsay, J.G. and Huber, M.I. (2000) Techniques of Modern Structural Geology, Vol. III (Application of continuum mechanics), Academic Press.
- Turner, F.J. and Weiss, L.E. (1963) Structural analysis of Metamorphic Tectonites, McGraw Hill.

Geotectonics

- Condie, K.C. (1989) Plate Tectonics and Crustal Evolution, 3rd Ed., Pergamon, Oxford Press.
- Gass, I.G. (1982) Understanding the Earth, Artemis Press (Pvt) Ltd. U.K.
- Kearey Phillips and Vine, F.J. (1996) Global Tectonics, Blackwell Science, Oxford.
- Keary, P., Klepeis, K.A. and Vine, F.J. (2012) Global Tectonics, Third Edition (Reprint), Wiley-Blackwell, Wiley India Pvt. Ltd.
- Moores, E and Twiss, R.J. (1995) Tectonics, Freeman.
- Moores, Eldridge M. and Twiss, Robert J. (1995) Tectonics, Freeman and Company.
- Patwardhan, A.M. (1999) The Dynamic Earth System, Prentice-Hall, New Delhi
- Storetvedt, K.N. (1997) Our Evolving Planet: Earths History in New Perspective, Bergen (Norway), Alma Mater Fortag.
- Summerfield, M.A. (2000) Geomorphology and Global Tectonics, Wiley.
- Valdiya, K.S. (1984) Aspects of Tectonics -Focus on south central Asia, Tata McGraw-Hill.
- Valdiya, K.S. (2010) The Making of India: Geodynamic Evolution, Macmillan Publishers India Limited.
- Windley, B.F. (1977) The Evolving Continents, John Wiley and Sons, New York.

INTERNALEVALUATION

(30 Marks)

Paper No: SCT 2.1 Hydrogeology

Load/v	week:04	Total load:56	Credits:04	Marks: Exter Inter	rnal:70 rnal:30
Unit 1	precipitation movement aquifers, C of rocks transmissiv concept of of rocks w	water: meteroic, juvenile, m on, runoff, infiltration and e and vertical distribution of Concepts of drainage basin and – specific yield, specific r vity, storage coefficient, wa barometric and tidal efficience ith respect to their water bear ter provinces of India, Hydrog	vapotranspiration, Hydrogr of groundwater, Springs, d groundwater basin. hydro retention, porosity, hydrau ter table fluctuations – cies, water table contour ma ing characteristics, Hydro-s	raphs. Subsurface Classification of ological properties ulic conductivity, causative factors, aps, Classification stratigraphic units,	14
Unit 2	permeabilit design, de determinati Pumps test: Evaluation Groundwat different us different pr in coastal	groundwater flow, Darey's ty in laboratory and in field, T evelopment and maintenan- tion. Unconfined, confined, s s – methods, data analysis and of aquifer parameters using ter modeling – numerical and the ses, graphical presentation of covinces of India – problems of and other aquifers and its pro- oundwater contamination.	ypes of wells, drilling methods ce of wells, specific of teady, unsteady and radia l interpretation for hydroge Thiem, Theis, Jacob and electrical models. mical properties of water, of water quality data, groun of arsenic and fluoride, Sali	nods, construction, capacity and its l flow conditions, ologic boundaries, Walton methods, quality criteria for ndwater quality in ine water intrusion	14
Unit 3 Unit 4	Hydrogeold Hydraulic sensing – h satellite mi using satell and magne aquifers an	– lithological and struct ogical – lithological classific continuity in relation to geol hydrogeomorphic mapping of dissions, lineament mapping, s lite images, Surface geophysical d estimation of water quality.	ation with respect of hydrogic structures, Location of the terrain using different i hallow groundwater poten cal methods – seismic, gra methods – well logging	rologic properties, of springs Remote mages of different tial zone mapping avity, geoelectrical for delineation of	14
	Problems o urban area problems i estimation.	of over exploitation and groun s and rain water harvesting, in arid regions and remediat Groundwater legislation. Su	dwater mining. Groundwat , Artificial recharge meth- cion. Groundwater balance stainability criteria and ma	ter development in ods, Groundwater e and methods of	

Reference Books :

- 1. Davies, S.N. and De Wiest, R.J.N. (1966) Hydrogeology, John Wiley and Sons, New York.
- 2. Driscoll, F.G. (1988) Groundwater and Wells, UOP, Johnson Div. St. Paul. Min. USA.
- 3. Karanth, K. R. (1989) Hydrogeology, Tata McGraw Hill Publishers.
- 4. Nagabhushaniah, H.S. (2001) Groundwater in Hydrosphere (Groundwater hydrology), CBS Publ.
- 5. Raghunath, H.M. (1990) Groundwater, Wiley Eastern Ltd.,
- 6. Todd, D.K. (1995) Groundwater Hydrology, John Wiley and Sons.
- 7. Tolman, C.F. (1937) Groundwater, McGraw Hill, New York and London.

INTERNALEVALUATION (Seminar + Term paper + Test) (30 Marks)

Paper No: SCT 2.2 Geotechnical Engineering

Load/week:04	Total load:56	Credits:04	Marks: External:70
			Internal:30

Unit 1 Unit 2	Scope of geology in civil engineering and mining industry; Various stages of engineering geological investigations for civil engineering projects; Engineering properties of rocks and soils: soil classification, rock discontinuities; Physical characters of building stones, metal and concrete aggregates; Use of remote sensing in engineering geology. Preliminary geological investigations for the various engineering projects: dams, reservoirs, tunnels, highways, bridges, hydroelectric power projects, shoreline and airfield engineering; Case history of engineering projects and geological causes for mishaps and failure of engineering structures.	14
Unit 3	Mass movements with special emphasis on landslides and cause of hill slope instability; Earthquake and seismicity, seismic zones of India, aseismic design of building; Influence of geological conditions on foundation and design of buildings.	14
Unit 4	Geophysical methods for the selection of engineering sites; exploratory drilling, study and construction of subsurface sections based upon drilling data; Core logging: core recovery, preservation of cores, R.Q.D. analyses; Preparation and presentation of geotechnical reports.	14

Reference Books :

- 1. Jaeger Rock Mechanics in Engineering, Cambridge Univ Press London, 1990.
- 2. Megaw T. M.& Tunnels: Planning, Design, Construction
- 3. Goodmann Engg.Geology.
- 4. J. V. Bartlett Int. ED, Ellis Horwood ltd. John Willey & Sons
- 5. Bieniawski Z. T. Engineering Classification of jointed RockMasses.
- 6. Introduction to Rock Mechanics by B. P. Verma-Khanna Pub NewDelhi

INTERNALEVALUATION

(30 Marks)

Paper No: OET 2.1 SWAYAM

Load/week:04	Total load:56	Credits:04	Marks: External:70
			Internal:30

The students should choose any course given on SWAYAM.

Paper No: OET 2.2 Watershed Management

Load/week:04	Total load:56	Credits:04	Marks: External:70 Internal:30

Unit 1	Watershed management – Concept, need, principles & components of watershed	14		
	management, integrated watershed management; Factors affecting watershed			
	management; soil erosion and its types, modelling of erosion using Universal			
	soil loss equation, socio-economic concept of watershed. Peoplesparticipation is			
	watershed management.			
	Groundwater Management: Hydrologic cycle: precipitation, runoff, infiltration			
	and evapotranspiration, Hydrographs. Subsurface movement and vertical distribution			
	of groundwater, Springs, Classification of aquifers, Concepts of drainage basin and groundwater basin.			
	hydrological properties of rocks – specific yield, specific retention, porosity,			
	hydraulic conductivity, transmissivity, storage coefficient,			
	Water table contour maps, Groundwater provinces of India, Hydrogeology and			
	Zones of India. BIS and WHO parameters.			
Unit 2	Rainfall :Formation precipitation/rainfall, rainfall pattern in India, rainfall	14		
	parameters, rainfall measurement types. Estimating runoff processes, factors	14		
	affecting runoff, design of peak runoff through rational and cook's method.			
	Rain Water Harvesting : Introduction to rainwater harvesting; Rainwater harvesting			
	systems; scope of Rainwater harvesting; benefits & disadvantages of rainwater			
	harvesting system			
	Coastal Waters Management: Discussion of coastal water quality issues; impacts			
	from watershed development, and coastal management techniques.			
Unit 3	Grassland waters management -Definition of grassland, range land and pasture land	14		
	and their classification. Major grass covers of India. Management of grass land, range			
	and pasture to improve and maintain them and watershed management, carrying			
	capacity of grassland range and pastures. Controlled grazing, rotational and deferred			
	grazing management of grasses and legumes for special problem sites. Drainage of			
	pasture land.			
	Dryland farming practices - Principles of conservation farming in dry and irrigated			
	lands; dry land farming choice of crops and cropping, tillage and manuring practices,			
	seeding, mulching for moisture conservation, moisture judging for irrigation,			
	consumptive use of water. Water requirement of crops, water use efficiency and			
	evapotranspiration ratios.			
Unit 4	Agronomical practices - Role of agronomy in soil conservation. Principles of	14		
	scientific land management for soils conservation viz. (i) soil and water loss (ii) soil			

drainage (iii) soil structure and organic matter (iv) tillage and (v) soil fertility and
fertilizer programmes. conservation cropping systems, soil depleting and soil building
system, basis for selecting crop rotations for different soil & climatic zones. Mixed &
cover cropping.Strip cropping - functions and types, methods of laying out strips, selecting crops for
strips and inter-culture, procedure to fix strip width and strips ratios of erosion
permitting to erosion resisting crops for different soil climatic belts.Engineering measures -Basic engineering measures for soil and water conservation,
contour cultivation, bunding, terracing, continuous contour and staggered trenches,
treatment of catchments, gully plugging, check dams, small storage structures,
designing of simple bund structure.

Reference Books :

- 1. Common guidelines for watershed development projects (2008). Government ofIndia
- 2. Dhruva N.V.V., Sastry G.O., (1990): Watershed management, ICAR, NewDelhi.
- 3. Frevert R.K., Schwab G.O., Edminster T.W., and Barnes K.K. (2009) Soil and water conservation engineering, 4th edition, John willey and sons, NewYork.
- 4. Jain S.K. and Sing V.P. (2006) Water resources system planning and management, Elsvier India, NewDelhi
- 5. Mukherjee A. (2004) Participatory learning and action: Monitoring and evaluation and participatory monitoring and evaluation, Concept publishing company, NewDelhi.
- 6. Rao K.V.S. (2003) Watersheds: comprehensive development, B.S.Publication.
- 7. Sharda V.N., Sikka A.K. and Juyal G.P. (2006) Participatory integrated watershed management: A field manual, central soil and water conservation research training institute, Dehradun.
- 8. Singh R.V. (2003) watershed planning and management, Yash publication, Bikaner

INTERNALEVALUATION

(30 Marks)

PRACTICAL HCP 2.1 + HCP 2.2: Igneous Petrology + Structural Geology And Geotectonics Marks:100 Credit :4

IGNEOUS PETROLOGY:-

- 1. Megascopic and microscopic study of different igneous rocks
- 2. Calculation of CIPW norms calculations for all types of saturated and unsaturated rocks.
- 3. Modal analysis
- 4. Classification of plutonic rocks under IUGSscheme
- 5. Classification of volcanic rocks under TASscheme.
- 6. Preparation and description of variation diagrams.

STRUCTURAL GEOLOGY AND TECTONICS

- 1. Preparation and interpretation of geological maps and cross sections.
- 2. Structure contour maps, isopach maps and other facies maps, balanced cross-section, their importance in unraveling the geological history.
- 3. Structural problems concerning economic deposit based on orthographic and stereographic projections.
- 4. Solution to structural geology problems by orthographic and stereographicmethods.
- 5. Preparation & interpretation of pi and beta diagram.
- 6. Completion of outcrops, construction of structural sections and interpretation of geological maps.
- 7. Recording and plotting of the field data.

PRACTICAL SCP 2.1/2.2 + OEP 2.1/2.2 :

Hydrogeology or Geotechnical Engineering + SWAYAM or Watershed Management Marks:100 Credit :4

PRACTICAL SCP 2.1: HYDROGEOLOGY

- 1. Preparation and interpretation of Hydrogeological maps. Computation of Hydraulic Gradient.
- 2. Groundwater flow maps and flow net analysis, problem related to Darcy'slaw.
- 3. Calculation eh, ph, water hardeness
- 4. Analysis of well inventory data, pump test analysis, field techniques and computation of aquifer parameters by different methods.
- 5. Use of well loggingtechniques.
- 6. Exercises on groundwater exploration using remote sensing techniques.
- 7. Water budgeting problems.

PRACTICAL SCP 2.2: GEOTECHNICAL ENGINEERING

- 1. Study of Engineering Geologicalmap
- 2. Study and Interpretation of seismic zonation map ofIndia
- 3. Preparinggeologicalcrosssectionsfromdrillholedata&usingthemfordesigningofcivil engineering structures in folded & faulted region, spillways on igneous rocksetc.
- 4. Study of soil profile of different terrains ofIndia
- 5. Study of Morphometric parameters ofterrain
- 6. Computation of RQD & Joint FrequencyIndex

PRACTICAL OEP 2.2 : WATERSHED MANAGEMENT

- 1. Toposheets reading and analysis.
- 2. Study of drainage pattern.
- 3. Determination of contour interval andprofile.
- 4. Determination of drainagedensity.
- 5. Study of water holdingcapacity.
- 6. Rainfall profiling on regional scale.
- 7. Water budgeting (domestic, agriculture, industrial)
- 8. Study of wiltingcoefficient
- 9. Estimation of peakrunoff
- 10. Estimation soilerosion