# PUNYASHLOK AHILYADEVI HOLKAR SOLAPUR UNIVERSITY, SOLAPUR



Name of the Faculty: Science & Technology
CHOICE BASED CREDIT SYSTEM

**Syllabus: GEO-CHEMISTRY** 

Name of the Course: B.Sc. II (Sem-III & IV)

(Syllabus to be implemented from w.e.f. June 2020)

# 1) Preamble:

Syllabus for B.Sc. II Geochemistry is designed to provide an insight of applications and concepts of basics geochemistry, its principles, physicochemical properties of minerals, solar system and dynamics of various spheres of the earth and chemistry of the earth. In the theory course student can acquire the knowledge about the chemical and atomic properties of mineral matter, integrated study of solar and earth system. Also emphasis has been given on the chemical properties and pollutions of spheres of the earth. The chemical process operating on the earth surfaces as well as chemical reactions, origin of varies economic minerals has also included in the syllabus.

Practical course has been designed on the basis of theoretical approach and objectives of the course.

# 2) Objectives of the Course

- 1. To introduce students to applications of chemical concepts to predict the outcome of geologic processes and use of chemical data to solve applied, real-world problems;
- 2. To introduce students to basic concepts of geochemistry and several up-to-date issues which are widely discussed in the field of geochemistry;
- 3. To orient students to the current status of numerous chemical analysis techniques commonly used in the field of geochemistry;
- 4. To provide students with opportunities to use available analytical instruments in the department;
- 5. To provide students with opportunity to discuss about their research topics in terms of geochemistry.
- 6. Understanding the basic principles of isotope geochemistry and to apply the fundamental principles to earth scientific processes.

# 3) Outcome of the Course

- 1. Understand geochemical concepts operating within various spheres in the dynamic earth system.
- 2. Chemical analysis various ore minerals and its applications to mining industries.
- 3. Analysis of various pollutants in various ecosystems.
- 4. Increase in the curiosity about events in the universe and its origin.

## Punyashlok Ahilyadevi Holkar Solapur University, Solapur

Faculty of Science & Technology

### **Choice Based Credit System (CBCS)**

(w.e.f.2020-21)

**Draft Structure for B. Sc-II** 

| Subject/ Core                                 | Name and        | <b>Type of the Paper</b> | No. of papers/             |         | rs/weel | K  | Total  | UA          | CA  | Credit |
|-----------------------------------------------|-----------------|--------------------------|----------------------------|---------|---------|----|--------|-------------|-----|--------|
| Course                                        | Type            | Name                     | Practical                  | L       | T       | P  | Marks/ |             |     | S      |
| ~                                             |                 |                          |                            | _       |         |    | Paper  |             |     |        |
| Class:                                        |                 | 1                        | B.Sc II S                  |         | r - III | •  |        |             |     |        |
| Core                                          |                 | C-5                      | Paper-V                    | 3.0     |         |    | 50     | 40          | 10  |        |
| (*Students can opt a subjects among the       |                 |                          | Danas VI                   | 2.0     |         |    | 50     | 40          | 10  | 4.0    |
| offered at B.Sc.I. O                          |                 | 0.6                      | Paper-VI                   | 3.0     |         |    | 50     | 40          | 10  |        |
| Subjects offered On                           |                 | C-6                      | Paper-V                    | 3.0     |         |    | 50     | 40          | 10  | 4.0    |
| be the Core Subject                           | OR              |                          | Paper-VI                   | 3.0     | -       |    | 50     | 40          | 10  | 1.0    |
|                                               |                 | C-7                      | Paper-I                    | 3.0     |         |    | 50     | 40          | 10  |        |
|                                               |                 | GEOCHEMISTRY             |                            |         |         |    |        |             |     |        |
|                                               |                 |                          | Geochemistry               |         |         |    |        |             |     |        |
|                                               |                 |                          | Paper-II                   | 3.0     |         |    | 50     | 40          | 10  | 4.0    |
|                                               |                 |                          | Introduction to            |         |         |    |        |             |     |        |
|                                               |                 |                          | Solar system               |         |         |    |        |             |     |        |
|                                               |                 |                          | and Geo-spheres            |         |         |    |        |             |     |        |
|                                               |                 | SEC-1                    |                            |         |         |    |        |             |     |        |
|                                               |                 | GE-3                     |                            |         |         |    |        |             |     |        |
| <b>Grand Total</b>                            |                 |                          |                            | 18      |         |    | 300    | 240         | 60  | 12     |
| Class:                                        |                 |                          | B.Sc II S                  | Semeste | er -    | IV | ı      |             |     |        |
| Core                                          |                 | C-8                      | Paper-VII                  | 3.0     |         |    | 50     | 40          | 10  | 4.0    |
| (*Students can opt ar                         |                 |                          | Paper-VIII                 | 3.0     |         |    | 50     | 40          | 10  |        |
| subjects among the F<br>offered at B.Sc.I. Ou |                 | C-9                      | Paper-VII                  | 3.0     |         |    | 50     | 40          | 10  | 4.0    |
| Subjects offered One                          |                 |                          | Paper-VIII                 | 3.0     |         |    | 50     | 40          | 10  |        |
| the Core Subject <b>OF</b>                    |                 | C-10                     |                            | 3.0     |         |    | 50     | 40          | 10  |        |
| Students can opt any among the Four Subj      | Two subjects    | GEOCHEMISTRY             | Paper-III                  | 3.0     |         |    | 30     | 40          | 10  |        |
| B.Sc.I. Out of Two S                          |                 | GEOCHEMISTKI             | Geochemistry               |         |         |    |        |             |     |        |
| Subject will be the C                         | ore Subject and |                          | Paper-IV                   | 3.0     |         |    | 50     | 40          | 10  | 4.0    |
| any One Subject amo<br>will be Elective Subj  |                 |                          | Chemistry of the           | 3.0     |         |    | 30     | 40          | 10  |        |
| will be Elective Subj                         | ect             |                          | Earth                      |         |         |    |        |             |     |        |
|                                               |                 | SEC-2                    |                            |         |         |    |        |             |     |        |
|                                               |                 | GE-4                     |                            |         |         |    |        |             |     |        |
|                                               |                 |                          |                            | 2.0     |         |    | 70     | 40          | 1.0 | NG     |
|                                               |                 | Environmental            |                            | 3.0     |         |    | 50     | 40          | 10  | NC     |
| Total                                         |                 | Studies                  |                            | 21      |         |    | 350    | 280         | 70  | 12     |
| (Theory)                                      |                 |                          |                            | 41      |         |    | 330    | <b>∠</b> ∂∪ | 70  | 12     |
| Practical                                     |                 | C-5 & C-8                | Pr. III&IV                 | _       | _       | 8  | 100    | 80          | 20  | 4.0    |
| 1 factical                                    |                 | C-6 & C-9                | Pr. III&IV                 | _       | _       | 8  | 100    | 80          | 20  | 4.0    |
|                                               |                 |                          |                            |         |         |    |        |             |     |        |
|                                               |                 | C-7 & C-10               | Pr. III&IV<br>Geochemistry |         |         | 8  | 100    | 80          | 20  | 4.0    |
|                                               |                 | GE-3 & GE-4              | Geochemsu y                |         |         |    |        |             |     |        |
| Total (Practica                               | J)              | GE-3 & GE-4              |                            |         |         | 24 | 300    | 240         | 60  | 12     |
| •                                             | 11)             |                          |                            | 20      |         |    |        |             |     |        |
| <b>Grand Total</b>                            |                 |                          |                            | 39      |         | 24 | 950    | 760         | 190 | 36     |

# \*Core Subjects:

Chemistry / Physics / Electronics / Computer Science / Mathematics / Statistics / Botany / Zoology / Microbiology / Geology / Geography / Psychology Core Subjects- (<u>Additional</u>)-Geochemistry / Biochemistry / Meterology / Plant Protection

Summary of the Structure of B.Sc. Programme

| Class  | Semester | Marks-<br>Theory | Credits-<br>Theory | Marks-<br>Practical | Credits-<br>Practicals | Total -<br>credits |
|--------|----------|------------------|--------------------|---------------------|------------------------|--------------------|
| B.ScII | III      | 300              | 12                 |                     |                        | 12                 |
|        | IV       | 350              | 12                 |                     |                        | 12                 |
| Total  |          | 650              | 24                 | 300                 | 12                     | 36                 |

## **B.Sc. Programme:**

**Total Marks**: Theory + Practical's =650 + 300= 950**Credits**: Theory + Practical's= 12 + 24= 36

**Number of Papers** Theory: Ability Enhancement Course (AECC) : 00

Theory: Discipline Specific Elective Paper (DSE) : 00 Theory: CC : 06 Skill Enhancement Courses :00 GE :00

Total: Theory Papers : 06

**Practical Papers** : 02

#### Abbreviations:

L: Lectures T: **Tutorials** P: **Practicals** 

UA: University Assessment CA: College Assessment

DSC / CC: Core Course

AEC: Ability Enhancement Course DSE: Discipline Specific Elective Paper

SEC: Skill Enhancement Course

GE: Generic Elective

CA: Continuous Assessment **End Semester Examination** ESE:

# Punyashlok Ahilyadevi Holkar Solapur University, Solapur

CBCS Pattern Syllabus of B. Sc. (Part-II), (w. e. f. June 2020)

# **Geo-chemistry**

# DSC/CC – Theory course SEMESTER – III

 $\label{eq:total_continuity} \mbox{Title of the Paper} - \mbox{{\bf I. Introduction to Geochemistry}}$ 

Contact hours – 30

Total Marks 50 (UA - 40 + CA - 10) (Credit 2)

| Unit   | Topic                                                                         | Contact |
|--------|-------------------------------------------------------------------------------|---------|
|        |                                                                               | Hrs     |
| Unit 1 | Gibbs phase rule, one component system (water and sulphur),                   | (07)    |
|        | Goldschmidt's Mineralogical phase rule                                        |         |
| Unit 2 | The states of matter, the crystalline state, principles of crystal structure, | (09)    |
|        | formation of crystal, lattice energy of crystals, radius ratio, coordination  |         |
|        | number, structure of Sodium Chloride, Cesium Chloride, Zinc Sulphide.         |         |
|        | Brief idea of radii of common ions in rock forming minerals. General rules    |         |
|        | of the three dimensional structure with the help of solid geometry            |         |
| Unit 3 | Chemistry of carbon compounds, General characteristics of organic             | (07)    |
|        | compounds, classification of organic compounds, homologous series,            |         |
|        | empirical and molecular formula of organic compound.                          |         |
| Unit 4 | Colloids-Definition, electrical, mechanical and optical properties of         | (07)    |
|        | colloids, origin of charge, kinds of colloidal system, silica as chemical     |         |
|        | sediment, clay minerals as colloids                                           |         |

- 1. Brian Mason and C.B. Moore Principles of Geochemistry
- 2. H.H. Read (ed.) Rutley's Elements of Mineralogy
- 3. Krauskopf Introduction to Geochemistry
- 4. Rollinson, H.R., 1993. Using geochemical data: Evaluation, Presentation, and Interpretation. Longman.

# $\label{thm:condition} \mbox{Title of the Paper} - \mbox{\bf II. Introduction to solar system and Geo-spheres}$

Contact hours -30

Total Marks 50 (UA - 40 + CA - 10) (Credit 2)

| Unit   | Topic                                                                      | Contact |
|--------|----------------------------------------------------------------------------|---------|
|        |                                                                            | Hrs     |
| Unit 1 | Nature of solar system, composition of the sun; Composition of Meteorites  | (08)    |
|        | and their types; Cosmic abundance of the elements                          |         |
| Unit 2 | Zonal structure of the earth, Composition of the crust; Composition of the | (08)    |
|        | earth as a whole; primary differentiation of the elements, geochemical     |         |
|        | classification of the elements.                                            |         |
| Unit 3 | Structure of atmosphere, composition of the atmosphere, variable           | (07)    |
|        | constituents of the atmosphere; Evolution of the atmosphere and            |         |
|        | composition of the primeval atmosphere; Atmospheric additions and losses   |         |
|        | during geological time                                                     |         |
| Unit 4 | Nature of the hydrosphere, composition of seawater, composition of         | (07)    |
|        | terrestrial waters; Gains and losses of elements in the oceanic water      |         |

- 1. Brian Mason and C.B. Moore Principles of Geochemistry
- 2. Krauskopf Introduction to Geochemistry
- 3. Standard Manuals Procedures for analysis and estimations of ores, minerals & rocks

# $\begin{array}{c} \textbf{DSC/CC-Theory course} \\ \textbf{SEMESTER-IV} \end{array}$

Title of the Paper – III. Principles of Geochemistry

Contact hours -30 Total Marks 50 (UA - 40 + CA - 10) (Credit 2)

| Unit   | Topic                                                                                       | Contact |
|--------|---------------------------------------------------------------------------------------------|---------|
|        |                                                                                             | Hrs     |
| Unit 1 | Chemical equilibrium - The law of mass action, an example of equilibrium,                   | (09)    |
|        | hydrogen chloride, the effect of temperature, other examples as $\text{CO}_2$ in water      |         |
|        | and calcium sulphate. Le chateliar's rule, stability, Van't Hoff isotherm                   |         |
|        | equation                                                                                    |         |
| Unit 2 | Acids and bases, Chemical definition, Geological usage, pH, Hydrolysis of                   | (08)    |
|        | Na <sub>2</sub> CO <sub>3</sub> ; Estimation of ionic concentration, carbonate equilibrium, |         |
|        | Temperature changes; Changes in pressure & organic activity                                 |         |
| Unit 3 | Organic material in sediments; organic reactions, carbon in rocks, origin of                | (07)    |
|        | petroleum, origin of coal, organic matter in black shale, carbon compounds                  |         |
|        | as reducing agents                                                                          |         |
| Unit 4 | Water pollution: types of water pollution, treatment on water pollutant by                  | (06)    |
|        | chemical oxygen demand (COD), biological oxygen demand (BOD) and                            |         |
|        | Total dissolved solid (TDS)                                                                 |         |
|        |                                                                                             |         |

- 1. Brian Mason and C.B. Moore Principles of Geochemistry
- 2. Krauskopf Introduction to Geochemistry
- 3. Kula C. Misra. 2012. Introduction to Geochemistry: Principles and Applications. Wiley and Blackwell
- 4. Rollinson, H.R., 1993. Using geochemical data: Evaluation, Presentation, and Interpretation. Longman.

# Title of the Paper – IV. Chemistry of the Earth

Contact hours -30

Total Marks 50 (UA - 40 + CA - 10) (Credit 2)

| Unit   | Topic                                                                      | Contact |
|--------|----------------------------------------------------------------------------|---------|
|        |                                                                            | Hrs     |
| Unit 1 | The earth as a physico-chemical system; Crust as a separate system         | 12      |
|        | Geochemical cycle                                                          |         |
|        | Fundamentals of Radioactive and Radiogenic Isotope Geochemistry.           |         |
|        | Geochronology: long-lived radioactive decay systems. Radiogenic Isotopic   |         |
|        | tracers: evolution of Mantle, Crust and Sediments.                         |         |
| Unit 2 | Oxidation potentials- Oxidation and reduction, electrode reactions,        | 07      |
|        | standard potentials, use of the table of oxidation potentials; Redox       |         |
|        | potential, Ionic potential, Hydrogen ion concentration, Limits of pH and   |         |
|        | Eh in nature, Eh and pH diagrams.                                          |         |
| Unit 3 | Formation of clay minerals, their classification, types, composition.      | 04      |
|        | Properties of soils                                                        |         |
| Unit 4 | Nature of chemical weathering, types- solution, hydration,                 | 04      |
|        | Oxidation and hydrolysis. Agents of chemical weathering,                   |         |
|        | Sequence of mineral alteration                                             |         |
| Unit 5 | Environmental pollution: Definition of pollution, Brief introduction types | 03      |
|        | and sources of Air, Water and Soil Pollutions                              |         |

- 1. Brian Mason and C.B. Moore Principles of Geochemistry
- 2. Khopkar S.M. Environmental Pollution Analysis
- 3. K.S. Valdiya Environmental Geology (Indian context)
- 4. Krauskopf Introduction to Geochemistry
- 5. Standard Manuals Procedures for analysis and estimations of ores, minerals and rocks

# Syllabus of B Sc. (Part-II) Geochemistry Laboratory Course

Marks - 80 + 20 = 100 Credit - 4

#### Practical – I

| Section A        | Volumetric analysis and chromatography                        | experiments |  |  |
|------------------|---------------------------------------------------------------|-------------|--|--|
| •                | Estimation of alumina in ore, Estimation of manganese in ore, |             |  |  |
|                  | Estimation of calcium and magnesium in carbonate rocks.       | (5)         |  |  |
| •                | Analysis of natural waters and soils. Estimation of Ca, Mg-   | (5)         |  |  |
|                  | carbonates, bicarbonates, chlorides, and sulphates.           | (3)         |  |  |
| •                | Detection of traces of metals by chromatography.              | (5)         |  |  |
| <b>Section B</b> | Qualitative and Colorimetric Analysis                         |             |  |  |
| •                | Qualitative analysis of representative ores and minerals.     |             |  |  |
| •                | Calorimetric determinations:                                  | (5)         |  |  |
|                  | a) Estimation of alumina b) Estimation of manganese,          |             |  |  |
|                  | c) Estimation of total Iron d) Estimation of copper           |             |  |  |
|                  |                                                               |             |  |  |

# Practical – II

| <b>Section C</b> | Mineral and Rock Calculations experiments                       |     |  |  |  |
|------------------|-----------------------------------------------------------------|-----|--|--|--|
| •                | Pyroxene- Hess calculation from given chemical data.            | (8) |  |  |  |
| •                | Plagioclase- Feldspar calculations                              | (6) |  |  |  |
| •                | Norm calculations from given chemical data (Persalic type       | (8) |  |  |  |
|                  | only) (8)                                                       |     |  |  |  |
| <b>Section D</b> | Mineral identification                                          |     |  |  |  |
|                  | Identification and description of following ores and industrial |     |  |  |  |
|                  | Minerals - Hematite, magnetite, pyrolusite, psilomelane,        |     |  |  |  |
|                  | galena, graphite, chalcopyrite, malachite, chromite, bauxite,   |     |  |  |  |
|                  | coal, muscovite, biotite, calcite, dolomite, garnet, quartz,    | (3) |  |  |  |
|                  | olivine, tourmaline, talc, barytes, kyanite, asbestos,          |     |  |  |  |
|                  | plagioclase, orthoclase, and gypsum.                            |     |  |  |  |

#### **Practical Record**

- Certified record of the practical done by the student should be maintained as a journal and must be submitted at the time of annual practical examination.
- Certified report of Field visit / Project / Oral / Seminar / Group discussion should be submitted before annual practical examination.
- Demonstration of GM counter.

# Punyashlok Ahilyadevi Holkar Solapur University, Solapur

# Syllabus for B.Sc. II- Geochemistry - (IDS) Semester System Choice Based Credit System (CBCS) Pattern To be implemented from Academic Year- 2020 - 21

Course Structure – Total Credit 12 - (Theory  $(4 \times 2) = 12 + Practical (1 \times 4) = 4$ )

| Sr.<br>No. | Semester               | Paper<br>No.        | Title                                             | No. of<br>Contact<br>Hrs/sem. | Credit<br>Point | Total Marks (UA + CA) |
|------------|------------------------|---------------------|---------------------------------------------------|-------------------------------|-----------------|-----------------------|
|            | Semester               | I                   | Introduction to Geochemistry                      | 30                            | 02              | 50 = 40+10            |
| 1          | III                    | II                  | Introduction to Solar system and Geo-spheres      | 30                            | 02              | 50 = 40+10            |
| 2          | Semester               | III                 | Principles of Geochemistry                        | 30                            | 02              | 50 = 40+10            |
|            | IV                     | IV                  | Chemistry of the Earth                            | 30                            | 02              | 50 = 40+10            |
| 3          | Semester<br>III and IV | Practical<br>Course | Practical Examination (Two Days) (Annual Pattern) | 60                            | 04              | 100 = 80 + 20         |
|            |                        |                     |                                                   | Total                         | 12              | 300 = 240 +60         |

#### **IMPORTANT TO NOTE**

- 1. 40 marks for university examinations (UA) + 10 marks internal examinations (CA) = 50 marks
- 2. Minimum passing percentage = 40%
- 3. Separate passing for both university (UA) and internal examinations (CA) in Theory and Practical examinations

### 2. Distribution of each Theory paper (Marks 50)

University Assessment (UA) :40 Marks

College Assessment (CA) :10 Marks

#### 3. Distribution of each Practical Marks (100)

Practical examination will be conducted annually i.e. at the end of fourth semester. It will be conducted for 80 marks (UA) and 20 marks (CA).

$$80 \text{ (UA)} + 20 \text{ (CA)} = 100 \text{ marks}$$

### University Practical Examination for 80 Marks (UA):

1st day - Practical I

**Total-40 marks** 

| Section A | A1 | Estimation           | 10 marks | Total 20 |
|-----------|----|----------------------|----------|----------|
|           | A2 | Chromatography       | 10 marks | 10111 20 |
| Section B | B1 | Colorimetric         | 10 marks | Total 20 |
|           | B2 | Qualitative analysis | 10 marks | 1011120  |

## 2st day – Practical II

**Total-40 marks** 

| Section C | C1. Pyroxene (One example)       | 06 marks |               |  |
|-----------|----------------------------------|----------|---------------|--|
|           | C2. Norm (One example)           | 12 marks | Total 25      |  |
|           | C3. Feldspars (Two examples)     | 07 marks |               |  |
| Section D | D1. Identification of minerals   | 10 marks | Total 15      |  |
|           | D2. Certified Journal submission | 05 marks | 1 3 3 3 4 7 5 |  |

#### • Theory internal continuous assessment (CA):

- 5 marks home assignment and 5 marks unit test.
- Total 10 marks for each paper / semester
- Practical internal continuous assessment (CA):
- Practical exam of 10 marks covering topics of Paper I and II.
- Practical exam of 10 marks covering topics of Paper III and IV.
- Submission of report of eological Field excursion / project / Oral / Seminar / group discussion is compulsory.

# **Equivalent Subject for Old Syllabus**

| Sr.<br>No. | Name of the Old Paper                              | Name of the New Paper                                  |
|------------|----------------------------------------------------|--------------------------------------------------------|
| 1.         | PI – Introduction to Geochemistry                  | PI – Introduction to Geochemistry                      |
| 2.         | PII – Introduction to Solar system and Geo-spheres | PII – Introduction to Solar system and Geo-<br>spheres |
| 3.         | PIII – Principles of Geochemistry                  | PIII – Principles of Geochemistry                      |
| 4.         | PIV – Chemistry of the Earth                       | PIV – Chemistry of the Earth                           |